MOVIMIENTOS EN EL PLANO 1- VECTORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MOVIMIENTOS EN EL PLANO 1- VECTORES"

Transcripción

1 1 MOVIMIENTOS EN EL PLANO 1- VECTORES Las medidas de magnitudes ectoiales son los ectoes. Un ecto se epesenta gáficamente po una flecha que a desde el punto llamado oigen al etemo. La longitud del ecto es su módulo. La ecta a la que petenece nos da su diección la punta de flecha indica el sentido. Un ecto se simboliza po una leta con una flecha encima. Su módulo puede indicase con la misma leta sin flecha,, o mediante. Suma de ectoes La suma de dos ectoes es oto ecto. Se detemina situando el oigen de uno de ellos sobe el etemo del oto; el ecto suma tiene el oigen en el oigen del pimeo su etemo en el etemo del segundo. Consecuencia de ello es la egla del paalelogamo: colocando los ectoes a suma con el mismo oigen, la diagonal del paalelogamo que definen que pasa po el oigen es el ecto suma. La suma de ectoes tiene las popiedades conmutatia asociatia: a) Conmutatia: a + b = b + a b) Asociatia: a + b + c = (a + b) + c = a + (b + c) Poducto de un escala po un ecto El poducto de un escala k po un ecto es oto ecto de módulo k, la misma diección que, igual sentido que si k es positio contaio si es negatio. El ecto -, opuesto de, es (-1), de igual módulo diección que sentido contaio. Difeencia de ectoes La difeencia ente dos ectoes 1 2 el opuesto de 2. 1 = 2 + ( ) 1 2 es la suma de 1

2 2 De foma gáfica, se puede calcula utilizando la egla del paalelogamo: el ecto difeencia es el que a del etemo del segundo al etemo del pimeo. Vectoes unitaios Tienen po módulo 1. Son mu impotantes los ectoes unitaios en las diecciones de los ejes X e Y, denominados i j, espectiamente Componentes de un ecto Sea un ecto de módulo que foma un ángulo con el eje X, colocado de modo que su oigen coincide con el oigen de coodenadas las coodenadas de su etemo son (,). Puedes obsea que dicho ecto puede obtenese como suma de dos ectoes pependiculaes colocados a lo lago de los ejes de coodenadas ( e ). = + Como: = i = j Resulta: = + = i + j e se denominan componentes del ecto. En la figua puedes obsea que: cos α = senα = tgα = 2- VECTOR DE POSICIÓN Y VECTOR DESPLAZAMIENTO Vimos que en el moimiento ectilíneo la posición de un móil se detemina tomando un punto oigen sobe la taectoia. Entonces la posición se indica mediante la distancia al oigen, una magnitud escala que es positia o negatia según el móil se halle en la zona consideada positia o negatia. Cómo se puede detemina la posición en un plano pescindiendo de la taectoia? Un modo sencillo es utiliza ectoes, segmentos oientados con un oigen un etemo, que se caacteizan po su módulo (longitud), diección sentido. Paa ello en un plano tomamos un sistema de coodenadas catesianas señalamos la posición del móil mediante un ecto con oigen en el oigen de coodenadas

3 3 etemo en el punto móil (figua). Éste se denomina ecto de posición. Cuando las coodenadas del punto son (,), el ecto de posición se epesa como: = + = i + j donde i j son los ectoes unitaios en las diecciones de los ejes. Cuando el punto se muee, el ecto de posición cambia. A cada alo del tiempo coesponde una posición distinta del punto un ecto de posición que aía con el tiempo, de modo que las coodenadas e son funciones del tiempo t. El cambio de posición se epesa mediante la aiación del ecto de posición. Si el punto ha pasado de P 1 a P 2 = 2 1 Este ecto P 1 P 2, con oigen en el punto de patida etemo en el de llegada, se llama ecto desplazamiento (figua). Obsea que el ecto desplazamiento no ha de coincidi con la taectoia ecoida. Sólo en un moimiento ectilíneo el ecto desplazamiento tiene la diección de la taectoia. 3- VECTOR VELOCIDAD El ecto elocidad media es el cociente ente el ecto desplazamiento el intealo de tiempo tanscuido: m = t El ecto elocidad media en un tiempo infinitamente pequeño es el ecto elocidad instantánea, deiada del ecto de posición especto al tiempo: d = dt Como los ectoes i j son constantes, al deia el ecto de posición: = i + j obtenemos: d d d = = i + j = i + j dt dt dt

4 4 Las componentes del ecto elocidad son las deiadas de las coodenadas del punto con especto al tiempo, esto es: d dt = d = dt El ecto elocidad en cada punto tiene la diección de la tangente a la taectoia en ese punto, como puede obsease en la figua. Hace que t tienda a 0 supone que el punto P 2 se aceque al P 1 indefinidamente. Entonces la diección de la secante a la cua P 1 P 2, tiende a confundise con la de la tangente: 4- VECTOR ACELERACIÓN 4.1- Aceleación media e instantánea Duante el moimiento la elocidad puede aia en diección, sentido módulo, puesto que se tata de una magnitud ectoial. Relacionando la aiación del ecto elocidad con el tiempo, se tendá el ecto aceleación. Vecto aceleación media es el cociente ente el incemento del ecto elocidad el tiempo. Si es 1 la elocidad del móil paa t 1 2 la elocidad paa t a = = m t2 t1 t Obsea que no es la difeencia ente los módulos de la elocidad en esos instantes, sino la difeencia ente los ectoes elocidad. El ecto aceleación instantánea es la aceleación media calculada en un tiempo infinitamente pequeño, esto es la deiada del ecto elocidad especto al tiempo. d d d dt dt dt a = = i + j = a i + a j 4.2- Componentes intínsecos de la aceleación

5 5 Cuál es la diección del ecto aceleación? La elocidad es tangente a la taectoia en cada punto, peo la aceleación pesenta una situación algo más compleja. Un cuepo que se desplaza en línea ecta no tiene aceleación si el módulo de su elocidad es constante, a que el ecto elocidad pemanece constante = 0. Si el cuepo que se desplaza en línea ecta aía el módulo de su elocidad, la aiación de elocidad tiene la diección de la taectoia,, po tanto, la aceleación, también. Estos dos pimeos casos son sencillos poco sopendentes. Si un cuepo tiene taectoia cua el módulo de su elocidad es constante (p. ej. un moimiento cicula unifome) puede paece a pimea ista que no ha aceleación, pues no aía el alo de la elocidad. Sin embago, ésta es un ecto que en este caso cambia continuamente de diección. Po ello no es ceo eiste aceleación. Esta aceleación, denominada nomal o centípeta, es pependicula a la taectoia, po tanto, al ecto elocidad; po ejemplo, en un moimiento cicula a diigida hacia el cento de la cicunfeencia. Su módulo es: 2 an = R donde es la elocidad R es adio de la cicunfeencia (o el denominado adio de cuatua si es ota cua). Po tanto, en cualquie moimiento cuilíneo ha aceleación. La eistencia de la aceleación nomal es esponsable de que nos aamos hacia afuea en una cua cuando iajamos en un coche o de que al centifuga una laadoa, la opa se aa hacia la pate eteio del tambo Si un cuepo ecoe una taectoia cua aiando el módulo de su elocidad, como sucede en un moimiento cicula unifomemente aceleado, eiste: una aceleación que hace aia el módulo de la elocidad, tangente a la taectoia (igual que en el moimiento ectilíneo); se denomina aceleación tangencial; en el moimiento cicula se denomina aceleación lineal se elaciona con la aceleación angula mediante la epesión: a t = α R siendo la aceleación angula R el adio de la cicunfeencia una aceleación que pooca el cambio de diección, la módulo 2 /R diección pependicula a la taectoia. aceleación nomal, de En este caso, la aceleación total es la suma ectoial de las aceleaciones tangencial nomal. Como éstas son pependiculaes, el módulo de la aceleación total puede calculase aplicando el teoema de Pitágoas: a = a + a 2 2 total t n

6 6 Estos dos ectoes aceleación tangencial nomal se denominan componentes intínsecas de la aceleación, que en esumen tienen las siguientes caacteísticas: a) aceleación tangencial, que modifica el módulo de la elocidad su diección es tangente a la taectoia en cada punto; es la aceleación lineal del moimiento cicula o la aceleación del moimiento ectilíneo; b) aceleación nomal o centípeta, de módulo 2 /R diección pependicula a la taectoia, que modifica la diección de la elocidad; se diige hacia el cento de la cicunfeencia en los moimientos ciculaes. 5- COMPOSICIÓN DE MOVIMIENTOS Veemos a continuación algunos moimientos en el plano que pueden considease compuestos po dos moimientos a lo lago de los ejes de coodenadas. Vimos anteiomente que la ecuación de moimiento en dos dimensiones se epesa como: = i + j Deiando se obtiene: d d d = = i + j = i + j dt dt dt Y oliendo a deia: d d d a = = i + j = a i + a j dt dt dt A pati de las epesiones anteioes puedes obsea que las componentes de la posición, elocidad aceleación en ambos ejes an po sepaado no se mezclan, esto es, conocida, se detemina a independientemente de, iceesa. Supongamos un móil con un moimiento en el plano con ecto de posición: 2 = (5 + 6t)i + (4 + 10t 6t )j Sus coodenadas en cada momento son: X= 5+6t =4+10t-6t 2 A pati de éstas podemos detemina,, a a : = 5+6t =6 m/s a =0 =4+10t-6t 2 =10-12t a =-12 m/s 2 La coodenada X se compota como la coespondiente a un moimiento ectilíneo con elocidad constante de 6 m/s coodenada inicial 0 =5 m. Po su pate, la coodenada Y se compota como la de un moimiento ectilíneo unifomemente aceleado con aceleación -12 m/s 2, elocidad inicial 10 m/s coodenada inicial 0 =4 m. Esto es, el moimiento plano anteio puede considease compuesto po dos moimientos ectilíneos pependiculaes, uno unifome en el eje X oto unifomemente

7 7 aceleado en el eje Y. En geneal, los moimientos en el plano que estudiaemos los descompondemos en dos moimientos sencillos en cada uno de los ejes Composición de moimientos ectilíneos unifomes pependiculaes. Supongamos una baca con la que un emeo petende cuza un ío pependiculamente a la oilla. La baca es desiada po la coiente del ío de modo que si el umbo es pependicula a la coiente, la baca no llega a la oilla opuesta fente al punto de patida, sino que la coiente la aasta aguas abajo una cieta distancia. Supongamos que el agua del ío llea una elocidad constante. Si el emeo dejase paada la baca, ésta aanzaía aguas abajo a la misma elocidad del ío. Si emase un estanque, donde el agua no se muee, con una elocidad b constante pependicula a la oilla, la baca lleaía esta elocidad b. Peo cuando la baca se halla en el ío está afectada po una elocidad constante en el eje X ota elocidad constante b en eje eje Y. La elocidad total de la baca iene dada po: = i + j Po se el moimiento en cada eje unifome, si consideamos que la baca pate del punto (0,0), las coodenadas del moimiento de la baca son: = t b = b t 5.2- Moimiento paabólico El moimiento de un balón lanzado po encima de la baea al saque de una falta o el de una pieda lanzada desde un acantilado hacia el ma con elocidad inicial hoizontal son moimientos cua taectoia es una paábola. Este tipo de moimiento puede considease compuesto po un moimiento unifome hoizontal un moimiento unifomemente aceleado etical, cua aceleación es la de la gaedad. Si la elocidad inicial 0 foma un ángulo con la hoizontal, sus componentes en los ejes hoizontal etical son: o = o cos o = o sen La elo- cidad hoizontal no se modifica a lo lago de la taectoia paabólica, como se e en la gáfica. Sin embago, disminue hasta se ceo en el punto más alto paa después olese negatia duante el descenso. La ecuación de moimiento en cada uno de los ejes puede escibise como: = o + o t = o + o t gt2 Sustituendo o o en función de o esulta:

8 8 = o + o t cos = o + o t sen gt2 Po su pate, las componentes de la elocidad ienen dadas po: = o = o cos sen - g t = o g t = o - El módulo de la elocidad en cada punto se calcula (teoema de Pitágoas, obsea el gáfico anteio) según: = Y el ángulo que foma en cada instante la elocidad con el eje X se calcula como: tgα =

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

MOVIMIENTO DE LA PELOTA

MOVIMIENTO DE LA PELOTA MOVIMIENTO DE LA PELOTA Un niño golpea una pelota de 5 gamos de manea que, sale despedida con una elocidad de 12 m/s desde una altua de 1 5 m sobe el suelo. Se pide : a) Fueza o fuezas que actúan sobe

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

UNIDAD. Cinemática ÍNDICE DE CONTENIDOS

UNIDAD. Cinemática ÍNDICE DE CONTENIDOS UNIDAD Cinemática ÍNDICE DE CONTENIDOS 1. SISTEMAS DE REFERENCIA. ELEMENTOS DEL MOVIMIENTO.............................. 4 1.1. Vecto de posición................................................................

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

α = 180º+18º=198º (3r cuadrante)

α = 180º+18º=198º (3r cuadrante) 1- Dados los puntos del plano XY: P 1 (,3), P (-4,1), P 3 (1,-3). Detemina: a) el vecto de posición y su módulo paa cada uno; b) el vecto desplazamiento paa un móvil que se desplaza de P 1 a P y paa oto

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Existe la costumbre de dividir el estudio de la Mecánica en tres partes:

Existe la costumbre de dividir el estudio de la Mecánica en tres partes: U I.- T : Cinemática del Punto Mateial 3 1.- LA MECÁNICA Y SUS PARTES Existe la costumbe de dividi el estudio de la Mecánica en tes pates: + Cinemática: es una descipción geomética del movimiento + Dinámica:

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro)

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro) UNIDD.- Geometía afín del espacio tema del libo). VECTOR LIBRE. OPERCIONES CON VECTORES LIBRES En este cuso amos a tabaja con el espacio ectoial de dimensión,, que es simila al tatado en º de Bachilleato,

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIVERSI NCIONL E SN CRISTÓL E HUMNG (SEGUN UNIVERSI FUN EN EL PERÚ) FCULT E INGENIERÍ E MINS, GEOLOGÍ Y CIVIL ESCUEL E FORMCIÓN PROFESIONL E INGENIERÍ CIVIL EJERCICIOS PROPUESTOS E CINEMÁTIC E PRTÍCULS

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

s v t r r Aceleración centrípeta Cuando una partícula se mueve con rapidez constante v en un circunferencia de Dinámica del Movimiento Circular

s v t r r Aceleración centrípeta Cuando una partícula se mueve con rapidez constante v en un circunferencia de Dinámica del Movimiento Circular Cuso: FISICA I CB 30U 0010I Pofeso: Lic. JOAQUIN SALCEDO jsalcedo@uni.edu.pe Tema: Dinámica cicula Dinámica del Moimiento Cicula Aceleación centípeta Cuando una patícula se muee con apidez constante en

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

REPARTIDO III CIRCUNFERENCIA

REPARTIDO III CIRCUNFERENCIA Pof.: Lucia Tafenabe Ecuación Geneal REPRTIDO III IRUNFERENI B B cento, Ecuación de la icunfeencia conociendo cento (α, β) adio. adio B MN ( - α) ( - β) Deteminación de la ecuación de la cicunfeencia conociendo:

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

Mecánica I Tema 1. Cinemática de la partícula... 2

Mecánica I Tema 1. Cinemática de la partícula... 2 ecánica I Tema 1 Cinemática de la Patícula anuel Rui Delgado 4 de septiembe de 1 Cinemática de la patícula..................................................... Definiciones..............................................................

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad. Una patícula de masa m, situada en un punto A, se muee en línea ecta hacia oto punto B, en una egión en la que existe un campo gaitatoio ceado po una masa. Si el alo

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDAD DE ALCALÁ PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (Mayoes 5 años) Cuso 009-010 MATERIA: FÍSICA INSTRUCCIONES GENERALES Y VALORACIÓN La pueba consta de dos pates: La pimea pate consiste en

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

Ejemplos 1. Cinemática de una Partícula

Ejemplos 1. Cinemática de una Partícula Ejemplos 1. inemática de una atícula 1.1. Divesos Sistemas oodenadas 1.1.* La velocidad peiféica de los dientes de una hoja de siea cicula (diámeto 50mm) es de 45m/s cuando se apaga el moto y, la velocidad

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

Fundamentos Físicos de la Ingeniería Primer Parcial /10 de enero de 2004

Fundamentos Físicos de la Ingeniería Primer Parcial /10 de enero de 2004 Fundamentos Físicos de a Ingenieía ime acia /1 de eneo de 4 1. E ecto posición de un mói puntua iene dado en función de tiempo po a epesión: = 4cos1t i 5sen1t j 3cos1t k en a que todos os aoes están epesados

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la Nombe y apellidos: Puntuación: 1. Pimeo vetical, luego hoizontal Un muelle, de masa despeciable, se defoma 20 cm cuando se le cuelga un cuepo de 1,0 kg de masa (figua 1). A continuación, se coloca sin

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

Actividad para el curso de Física: Mecánica del movimiento circular de un punto material.

Actividad para el curso de Física: Mecánica del movimiento circular de un punto material. Mecánica del movimiento cicula de un punto mateial. Pofeso Eduado Abaham Escácega Pliego *. Índice 1. Intoducción. 2 2. Apunte 2 2.1. Posición de un punto mateial en movimiento cicula.........................

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

Dinámica del movimiento circular uniforme

Dinámica del movimiento circular uniforme Dinámica del moimiento cicula unifome 1 5.1 Moimiento cicula unifome Definición: el moimiento cicula unifome es el moimiento de un objeto desplazándose con apidez constante en una tayectoia cicula. 5.1

Más detalles

Unidad didáctica 8. Gravitación

Unidad didáctica 8. Gravitación Unidad didáctica 8 Gaitación .- Intoducción. Desde los tiempos más emotos, el se humano ha intentado da una explicación del Unieso que le odeaba: el día y la noche, las estaciones del año, el moimiento

Más detalles

MOVIMIENTO CIRCULAR UNIFORME. = t

MOVIMIENTO CIRCULAR UNIFORME. = t C U S O: FÍSICA Mención MATEIAL: FM-08 MOVIMIENTO CICULA UNIFOME Una patícula se encuenta en movimiento cicula, cuando su tayectoia es una cicunfeencia, como, po ejemplo, la tayectoia descita po una pieda

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO TEMA 8: ELEMENTOS DEL MOVIMIENTO Ha movimiento po todas pates a nuesto alededo, lo vemos en la actividad cotidiana de las pesonas, en los coches que pasan po la caetea, con un poco de paciencia, lo vemos

Más detalles

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

Apuntes de Trigonometría Elemental

Apuntes de Trigonometría Elemental Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

Problemas de movimiento rectilíneo

Problemas de movimiento rectilíneo Poblemas de movimiento ectilíneo 1.- Te dicen que la ecuación de un movimiento es la siguiente: x 0 - t. a) Podías deci si la tayectoia es ectilínea o cuvilínea? b) Cuál es la velocidad de ese movimiento,

Más detalles

RECTAS EN EL ESPACIO.

RECTAS EN EL ESPACIO. IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas.

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas. Univesidad de Los Andes. acultad de Ingenieía. Escuela Básica de Ingenieía. Tema I Conceptos Pincipios fundamentales. Estática de patículas. Sistemas Equivalentes de fuezas. Pof. Naive Jaamillo S. Cáteda:

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos.

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos. Resmen Unidad 5: Vectoes en el espacio. Pegntas : Vectoes opeaciones con ectoes. En n ecto tenemos qe distingi: Módlo: es la longitd del ecto se epesenta po La flecha indica el sentido del ecto Diección:

Más detalles

UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA

UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA I.E.S. Ciudad de Ajona Depatamento de Matemática. º BAC UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA. VECTORES. DEFINICIÓN Y OPERACIONES Definición: Un ecto fijo AB e un egmento oientado ue tiene u oigen en

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Interacción Electromagnética

Interacción Electromagnética Inteacción lectomagnética Campo léctico Campo Magnético Inducción lectomagnética Coulomb mpèe Faaday Lenz Maxwell La Fueza con que se ataen o epelen dos cagas es: Campo eléctico c. eléctico q 3 F 1 Una

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1.- Halla la velocidad con que peneta un electón pependiculamente en un campo magnético de 5 x 10-6 T, si descibe una tayectoia cicula de 40 cm. Sol.: 3,5 x 10 5 m/s. 2.- Un

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

2º de Bachillerato Campo Eléctrico

2º de Bachillerato Campo Eléctrico Física TEM 6 º de achilleato ampo Eléctico.- Tes cagas elécticas puntuales iguales, de n, están situadas en el vacío ocupando los puntos cuyas coodenadas en metos son (,, (,4 y (,. alcula la fueza que

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

Trigonometría. Positivo

Trigonometría. Positivo Seminaio Univesitaio de Ingeso 17 Tigonometía La tigonometía es una de las amas de la matemática, cuyo significado etimológico es la medición de los tiángulos. Se deiva del vocablo giego tigōno: "tiángulo"

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles