Diseño óptimo de un regulador de tensión en paralelo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diseño óptimo de un regulador de tensión en paralelo"

Transcripción

1 Deño óptmo de un regulador de tenón en paralelo Federco Myara 1. egulador mple con un dodo de ruptura El cao má mple e el regulador con un dodo zener, ndcado en la fgura 1. S ben el crcuto parece muy encllo, u deño requere certo cudado para lograr la mejore condcone de operacón para el zener y el mejor rendmento. G z z Fgura 1. Un regulador paralelo baado en un dodo zener a corrente entregada por el generador etá dada por G Z. (1) Suponendo por el momento que G e contante, emo que la corrente por el zener y por la carga reponden a un prncpo de baculardad, e decr que la corrente entregada por la fuente bacula entre el zener y la carga egún ea lo requerdo por eta últma. Normalmente e una arable aleatora que depende de la carga y de u condcone de operacón. Por ejemplo, la carga fuera un amplfcador de audo, la corrente araría alrededor de un punto de trabajo conforme a arando la eñal. No nterea er cómo aría la corrente por el zener: Z G. () S uponemo que por epecfcacón e cumple que I mín < < I, e erfcará G G < Z < mín. (3) Para garantzar el funconamento del zener e necearo que en la peor condcón crcule por él al meno la corrente I Zmín que aegura que la regulacón. Eta condcón e da para, de donde reulta Para eto hace falta que I mín I I Zmín. (4) 1

2 G. (5) I I Z mín S ahora permtmo que la tenón del generador aríe, 1 Gmín G G, la retenca deberá atfacer la condcón anteror aun para el mínmo alor de G, e decr G mín. (6) I I Z mín Ahora hagamo alguna conderacone energétca. a potenca umntrada por el generador e a potenca entregada a la carga erá, a u ez, de modo que el rendmento de la fuente etará dado por P G G. (7) P, (8) P. (9) P G G En todo deño e mportante lograr el mo rendmento poble, e decr, el mínmo conumo de energía. Suponendo G, e fjo, el rendmento mo e logra cuando la corrente de carga e ma, ya que en ete cao e mínma la corrente por el zener y por lo tanto tambén lo e la potenca dpada por éte. Suponendo ahora que, emo que el rendmento crece al reducr y G. A prmera ta parecería que la olucón óptma e logra elgendo lo mínmo alore poble de eto parámetro. El mínmo alor de G ería, en prncpo,, lo cual oblgaría a elegr 0. Eta olucón no e admble porque la corrente quedaría ndetermnada. Aunque podría parecer que reducr G a un alor muy cercano a (por ejemplo, 0,1 ) proporconaría un rendmento cercano al óptmo, eto no ucede debdo a que en todo lo cao práctco G aría. Eto mplca que fjamo u alor mínmo muy próxmo a, el alor mo no etará tan próxmo y, como e en ete cao pequeña, aumentaría demaado. El exceo de corrente deberá drgre al zener, con do conecuenca: el zener reultará muy obrecargado, oblgando a obredmenonarlo, y e dpará en él y en mucha potenca, con lo cual bajará el rendmento. Como ejemplo numérco, upongamo 10, I 100 ma e I Zmín 1 ma y que la ma aracón de G e un 0 %. S adoptamo Gmín 10,5 reultará 10,5 10 Ω 4, 95 Ω. 0,1 0,001 En la tuacón de ma corrente por la carga, e decr, 100 ma, por el zener crculará 1 ma. S ahora G e ncrementa en un 10 %, G 1,6, la corrente erá: 1 Eta aracón e puede deber tanto a la preenca de algún rpple redual del rectfcador y el fltro como a dera orgnada en la fluctuacone de conumo del tema de umntro de energía eléctrca. Sería un cao de tpo 0/0. En la práctca, el alor de reultaría nulo debdo a la retenca no nula del conductor y del generador.

3 1,6 10 A 4,95 55 ma por lo que el zener no ólo deberá oportar 45 ma no que el rendmento e habrá reducdo a un 19 %. Determnemo el alor de Gmín que optmza el rendmento. Sea α el ncremento relato entre Gmín y G, e decr, G (1 α) Gmín. (10) S e ha adoptado un alor de Gmín la retenca óptma puede calculare como G mín. (11) I I Z mín El cao que no nterea optmzar e el peor cao, e decr, cuando la tenón de entrada alcanza u alor mo. En tal tuacón tambén e ma. El rendmento reulta G G ( G mín ) ( I I Z mín )( G ) G Podemo exprear Gmín a partr de (10). eulta G ( 1 α) ( 1 α)( I I Z mín ) ( G ) G (1) Para obtener el mo deramo con repecto a G e gualamo a 0, llegando a la guente ecuacón G (1 α) G (1 α) 0, cuya olucón luego de aplcar la reolente de la ecuacón de egundo grado e eulta, tambén, α G ( 1 α) 1. (13) 1 α α G mín 1. (14) 1 α Se toma ólo la olucón con el gno () pue debe er Gmín >. En el cao en que I y I Zmín << I e obtene el mayor rendmento poble, que reulta dependente ólo de α. eulta 3

4 α 1 α (15) α α ( 1 α) ( ) 1 α α 1 α En la fgura e preenta la gráfca del rendmento mo en funcón del alor de la toleranca α en la tenón de almentacón G Fgura. endmento mo alcanzable en funcón de la toleranca en la tenón de almentacón. α eptamo el ejemplo anteror con ete crtero de optmzacón. En ete cao α 0,, de donde a retenca ale El rendmento e 0, G mín ,08 1,. G 1, G mín 16,9. G mín 14, , 4 Ω. I I 0,101 Z mín 0, ,6 %. 16, ,9 40,4 4

5 El rendmento logrado, pee a er el óptmo, e batante bajo. Éta e una caracterítca de ete tpo de reguladore. En la fgura 3 e muetra la aracón de en funcón de Gmín. Se obera que el alor óptmo no e demaado crítco, ya que una aracón del orden de ± 1 produce una reduccón pequeña del rendmento G mín [] Fgura 3. endmento en funcón de la tenón de almentacón mínma para el ejemplo del texto. a corrente entregada por el generador en el peor cao, e decr, cuando G e ma, ale 16,9 10 G 171 ma. 40,4 Cuando e ma crculan por el zener 71 ma. Parte del bajo rendmento e atrbuble a la potenca extra perdda en el zener; el reto e debe a la potenca dpada en. El método de deño anteror no tuo en cuenta el poble límte de corrente del zener. Por ejemplo, un zener de 10 y 500 mw tene una corrente ma de 50 ma, por lo cual no ería compatble con el deño óptmo. En ete cao erá preco aumentar la tenón de almentacón G de manera que u toleranca tenga menor efecto en. S G e muy cercano a, aun una toleranca baja mplca una gran corrente en el peor cao. S, en cambo, G >>, la toleranca de G práctcamente e tralada a. Conendrá tomar G lo menor poble compatble con la egurdad del zener. Aí, fjamo un límte I Z para el zener, la corrente debe arar a lo umo entre I I Z y I I Zmín. Entonce G G mín (1 ) mín G mín G mín α, (16) de donde 5

6 G mín. (17) mín ( 1 α) mín En nuetro ejemplo, tomamo I z 50 ma, , 101 G mín 17,0 y G Gmín (1 α) 17 1, 0,4. El rendmento e reduce, como e apreca en la fgura 3, de un 35 % a un 33 %. En mucho cao eta pérdda de rendmento e condera poco gnfcata, aunque debería ealuare el coto total del exceo de energía durante la da útl del regulador y compararlo con el coto extra de obredmenonar la potenca del zener. Debe notare que en todo momento upumo que la corrente por la carga era la ma. S la corrente e reduce, el rendmento baja aún má y, ademá, aumenta la ma corrente por el zener, por lo que ete tpo de regulador ólo e conenente cuando la corrente de carga expermenta aracone muy pequeña.. egulador con un prerregulador de corrente El bajo rendmento e debe a do factore: que la carga recbe ólo parte de la tenón del generador y que recbe ólo parte de la corrente. No e poble en la práctca etar el aumento de la tenón del generador, pero í e poble etar que éte e traduzca en un ulteror ncremento de la corrente, para lo cual e puede reemplazar la retenca por una fuente de corrente. En la fgura 4 e muetra un ejemplo. z G z b z1 Fgura 4. Fuente regulada paralelo con un zener que ncluye un prerregulador de corrente para etar la aracón de. con G. a corrente etá dada por 3 z EB, (18) 3 Etrctamente, habría que multplcar el egundo membro por h FE / (1 h FE ), pero podemo aproxmarlo a 1 dado que h FE >> 1. 6

7 por lo cual, tenendo en cuenta la ecuacón (4) z EB. (19) I I z1mín a corrente e mantene ahora mucho má contante. Sólo aría leemente a caua de que la caída de tenón en b depende de G, por lo cual el exceo de corrente crculará por Z, proocando una aracón de u tenón debdo a u retenca dnámca r z. En ete crcuto, dado que ya no depende no déblmente de G, cuanto menor ea Gmín mayor erá el rendmento. a únca lmtacón erá la mínma caída de tenón de la fuente de corrente neceara para que éta funcone apropadamente, que e aproxmadamente gual a la tenón del zener z. eulta, entonce, Gmín z1 z z (0) El rendmento mo de peor cao reulta, para I, que puede aproxmare por G (1 α) ( z ). (1) I, () z1mín 1 z ( I I )( α)( ), (3) ( α)( ) 1 z En el cao del ejemplo anteror, adoptamo un zener de 3,3 para la fuente de corrente reulta 10 6,6 %. ( 1 0,)( 10 3,3) 7

Unidad temática 2: AMPLIFICADORES DE AUDIOFRECUENCIAS DE GRAN SEÑAL

Unidad temática 2: AMPLIFICADORES DE AUDIOFRECUENCIAS DE GRAN SEÑAL Undad temátca : AMPLIFICADOES DE AUDIOFECUENCIAS DE GAN SEÑAL Profeor: Ing. Aníbal Laqudara. J..P.: Ing. Idoro Pablo Perez. Ay. Dplomado: Ing. Carlo Díaz. Ay. Dplomado: Ing. Alejandro Gordana Ay. Alumno:

Más detalles

El CAT se calcula a partir de los flujos de recursos entre el cliente y la institución que otorga el crédito. t j

El CAT se calcula a partir de los flujos de recursos entre el cliente y la institución que otorga el crédito. t j Explcacón del cálculo del Coto nual Total (CT) El CT e calcula a partr de lo fluo de recuro entre el clente y la nttucón que otorga el crédto.. Fórmula para el cálculo del CT El CT e el valor numérco de,

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA Deño de Controladore PID Stema de Control Prof. Marela CERRADA Controlador del to PI: Mejorando la reueta etaconara Lo controladore del to PI olo ncororan la accone Proorconale Integrale, aumentando en

Más detalles

Interferencias en los equipos electrónicos de medida

Interferencias en los equipos electrónicos de medida 6 Interferenca en lo equpo electrónco de medda 6. Introduccón En el capítulo e comprobó que el rudo y la eñale externo no deeado e acoplan a todo equpo electrónco de un laboratoro o cadena de produccón

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

TABLAS DE RESULTADOS DEL ESTUDIO DE COMISIONES BANCARIAS 2014. Opción de análisis de cuentas sin nómina o ingresos regulares:

TABLAS DE RESULTADOS DEL ESTUDIO DE COMISIONES BANCARIAS 2014. Opción de análisis de cuentas sin nómina o ingresos regulares: Co m o n e b a n c a r a E t u d od e1 6e n t d a d e j u l o e p t e mb r e2 01 4 TABLAS DE RESULTADOS DEL ESTUDIO DE COMISIONES BANCARIAS 2014 Opcón de anál de cuenta n nómna o ngreo regulare: Entdade

Más detalles

Anál de ere temporale Fernando Berzal, berzal@acm.org Anál de ere temporale Caracterítca de la ere temporale Vualzacón de ere temporale Fltrado de ere temporale Meda móvle Suavzado exponencal Técnca de

Más detalles

Cinemática de Robots. Práctica 2. 2.1.- Introducción

Cinemática de Robots. Práctica 2. 2.1.- Introducción Práctca de Robótca utlzando Matlab Práctca 2 Cnemátca de Robot 2..- Introduccón Lo robot cláco preentan una arqutectura antropomórfca eral, emejante al brazo humano. Conten de una ere de barra rígda unda

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Circuito Monoestable

Circuito Monoestable NGENEÍA ELETÓNA ELETONA (A-0 00 rcuto Monoestable rcuto Monoestable ng. María sabel Schaon, ng. aúl Lsandro Martín Este crcuto se caracterza por presentar un únco estado estable en régmen permanente, y

Más detalles

CONTENIDO 1. TEORÍA DEL RIESGO Y ÁRBOLES DE DECISIÓN...2

CONTENIDO 1. TEORÍA DEL RIESGO Y ÁRBOLES DE DECISIÓN...2 CONTENIDO. TEORÍ DEL RIESGO Y ÁRBOLES DE DECISIÓN.... ELEMENTOS ESTRUCTURLES DE JUEGOS EN RIESGO.... DOMINCIÓN SIMPLE Y ESTOCÁSTIC.... DOMINCIÓN ESTOCÁSTIC....4 VLOR ESPERDO DE L INFORMCIÓN PERFECT....4.

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

NOCIONES DE ELECTRÓNICA ANALÓGICA (Realimentación)

NOCIONES DE ELECTRÓNICA ANALÓGICA (Realimentación) Ncne de ealmentacón NOCIONES DE ELECTÓNIC NLÓGIC (ealmentacón Ecuela Pltécnca Superr Prfer: Darí García dríguez 1 Ncne de ealmentacón ELIMENTCION Cncept de ealmentacón.- Su gnfcad e ler a almentar, quere

Más detalles

Programación de la Producción en un sistema flow shop híbrido sin esperas y tiempos de preparación dependientes de la secuencia

Programación de la Producción en un sistema flow shop híbrido sin esperas y tiempos de preparación dependientes de la secuencia DITS ( 2006/01). Workng Paper del Departament d Organtzacó D empree de la Unvertat Poltècnca de Catalunya. Programacón de la Produccón en un tema flow hop híbrdo n epera y tempo de preparacón dependente

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

EL AMPLIFICADOR OPERACIONAL.

EL AMPLIFICADOR OPERACIONAL. Tema 6. El mplfcador peraconal. Tema 6 EL MPLIFICD PECINL.. Introduccón... Símbolos y termnales del amplfcador operaconal... El amplfcador operaconal como amplfcador de tensón..3. Conceptos báscos de realmentacón..4.

Más detalles

ECUALIZADORES. 1. Introducción

ECUALIZADORES. 1. Introducción ECUALIADOES Federco Myara. Introduccón Un ecualzador permte aumentar o reducr la gananca selectamente en tres o más frecuencas para corregr defcencas en la respuesta frecuencal de un sstema (generalmente

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

= 1. junio-2007 Matemáticas Financieras LADE (Móstoles)

= 1. junio-2007 Matemáticas Financieras LADE (Móstoles) juno-007 Matemátca Fnancera LADE (Mótole Problema En el mercado cotzan lo guente bono: Bono A: Bono Cupón Cero a año y TIR del 0% Bono B: Bono Cupón Cero a año y TIR del 9% Bono C: Bono Cupón Explícto

Más detalles

Tema VI: Referencias de tensión y reguladores de tensión.

Tema VI: Referencias de tensión y reguladores de tensión. ESUELA ÉNA SUPEO DE NGENEOS NDUSALES Y DE ELEOMUNAÓN UNESDAD DE ANABA NSUMENAÓN ELEÓNA DE OMUNAONES (5º uro ngeniería de elecomunicación) ema : eferencia de tenión y reguladore de tenión. Joé María Drake

Más detalles

ANÁLISIS DEL CRITERIO COSTE AMORTIZADO. APLICACIÓN A UN PRÉSTAMO CONCERTADO POR EL SISTEMA DE AMORTIZACIÓN FRANCÉS CON TIPO DE INTERÉS INDICIADO

ANÁLISIS DEL CRITERIO COSTE AMORTIZADO. APLICACIÓN A UN PRÉSTAMO CONCERTADO POR EL SISTEMA DE AMORTIZACIÓN FRANCÉS CON TIPO DE INTERÉS INDICIADO 87a ANÁLISIS DEL RITERIO OSTE AMORTIZADO. APLIAIÓN A UN PRÉSTAMO ONERTADO POR EL SISTEMA DE AMORTIZAIÓN FRANÉS ON TIPO DE INTERÉS INDIIADO Mª armen Vall Martínez Alca Ramírez Orellana Profeora Ttulare

Más detalles

AMPLIFICADORES CON BJT.

AMPLIFICADORES CON BJT. Tema 5 MPLIFICDORES CON BJT..- Introduccón...- Prncpo de Superposcón...- Nomenclatura..3.- Recta de Carga Estátca..4.- Recta de Carga Dnámca..- Modelo de pequeña señal del BJT...- El cuadrpolo y el modelo

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton V Th Th L 3.6 Máxma transferenca de potenca José. Pereda,

Más detalles

MODELO ECONÓMICO MATEMÁTICO DE OPTIMIZACIÓN DEL COMPLETAMIENTO DE LA FLOTA MERCANTE NACIONAL.

MODELO ECONÓMICO MATEMÁTICO DE OPTIMIZACIÓN DEL COMPLETAMIENTO DE LA FLOTA MERCANTE NACIONAL. MODELO ECONÓMICO MATEMÁTICO DE OPTIMIZACIÓN DEL COMPLETAMIENTO DE LA FLOTA MERCANTE NACIONAL. Dr. Sutberto Cabrera García. Dpto. de Etadítca, Invetgacón Operatva Aplcada y Caldad. Unverdad Poltécnca de

Más detalles

Tema V: Trabajo, Potencia y Energía

Tema V: Trabajo, Potencia y Energía I.E. Juan Raón Jénez Tea V: Trabajo, Potenca y Energía La energía e una propedad que etá relaconada con lo cabo o proceo de tranforacón en la naturaleza. Sn energía nngún proceo fíco, quíco o bológco ería

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

COMPONENTES ELEMENTALES

COMPONENTES ELEMENTALES Capítulo COMPONENTES ELEMENTALES.. Modelos de Componentes Una componente eléctrca se descrbe por una relacón entre sus arables termnales, la que se denomna relacón de equlbro. El oltaje y la corrente,

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

1 Aplicaciones básicas del amplificador operacional

1 Aplicaciones básicas del amplificador operacional 1 Aplcacones báscas del amplfcador operaconal 15 1 Aplcacones báscas del amplfcador operaconal El objeto prncpal de esta práctca es la presentacón y expermentacón del amplfcador operaconal (AO) en confguracones

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Respuesta A.C. del FET 1/14

Respuesta A.C. del FET 1/14 espuesta A.C. del FET 1/14 1. Introduccón Una ez que se ubca al transstor dentro de la zona saturada o de corrente de salda constante, se puede utlzar como amplfcador de señales. En base a un FET canal

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

Tema 1. Conceptos Básicos de la Teoría de Circuitos

Tema 1. Conceptos Básicos de la Teoría de Circuitos Tema. Conceptos Báscos de la Teoría de Crcutos. Introduccón. Sstema de undades.3 Carga y corrente.4 Tensón.5 Potenca y energía.6 Ley de Ohm.7 Fuentes ndependentes.8 Leyes de Krchhoff.9 Dsores de tensón

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de Ingenería Eléctrca E.T.S. de Ingeneros Industrales Unversdad de Valladold 2003/2004 MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES Boletín de Problemas MÁQUINA

Más detalles

Simulador Convertidores DC-DC

Simulador Convertidores DC-DC Dept d'eng. Electrònca, Elèctrca, Automàtca (DEEEA) Escola Tècnca Superor d'engnyera (ETSE) Unverstat ovra rgl (U) Proyecto Fnal de arrera Smulador onvertdores D-D AUTO: íctor Galera Ortega DIETO: Abdelal

Más detalles

5. LNAs y Mezcladores

5. LNAs y Mezcladores 5. Ns y Mezcladores 5.1 Característcas de los N El N (ow Nose mplfer es el prmer eslabón de la cadena del receptor. En el caso de un transceptor (transmsor-receptor que use FDD (frequency-dson duplexng

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

El circuito eléctrico de la figura está formado por un conjunto de Resistencias, condensadores, bobinas y una fuente de tensión.

El circuito eléctrico de la figura está formado por un conjunto de Resistencias, condensadores, bobinas y una fuente de tensión. El crcuto eléctrco de la fgura está formado por un conjunto de esstencas, condensadores, bobnas y una fuente de tensón. L L Para el sstema de la fgura, se pde: Modelo de bond graph del sstema, ncluyendo

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA México D.F., 12 al 14 de Octubre de 2005

7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA México D.F., 12 al 14 de Octubre de 2005 7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Méxco D.F., 1 al 14 de Octubre de 005 ANÁLISIS DINÁMICO DE UN EQUIPO DE ENSAYO DE AMORTIGUADORES Zabalza

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

T M. dv dt. Examen de la Asignatura: Control e Instrumentación de Procesos Químicos. Junio 2009. 3. h. Problema 1

T M. dv dt. Examen de la Asignatura: Control e Instrumentación de Procesos Químicos. Junio 2009. 3. h. Problema 1 Examen de la Agnatura: Control e Intrumentacón de Proceo Químco Juno 9 3. h. Problema En la Fgura uede vere un dotvo en el que un certo roducto adquere una vcodad V tra er roceado. Se conoce que la relacón

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad.

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad. Cinemática 103 TEST 1.- Un móvil que va con M.R.U. inicia u movimiento en x = 12 m y luego de 8 etá en x = 28 m. Hallar u velocidad. a) 2 m/ d) 6 m/ ) 8 m/ e) 7 m/ c) 4 m/ 2.- Señalar verdadero o falo

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM Tema 4 Los mercados de benes y fnanceros: el modelo IS-LM Estructura del Tema 1. Introduccón 2. El mercado de benes y la relacón IS 3. Los mercados fnanceros y la relacón LM 4. El modelo IS-LM 4.1 La polítca

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1:

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1: 1 Problemas resueltos. Problema 6.1 Para la red de la fgura P6.1: j R e Fgura P6.1. a) etermnar la red pasa Norton entre y, sta por la resstenca. b) etermnar la fuente equalente Théenn entre y, sta por

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

LAS HERRAMIENTAS DE CALIDAD PARA EL DESARROLLO DE LA EMPRESA

LAS HERRAMIENTAS DE CALIDAD PARA EL DESARROLLO DE LA EMPRESA LAS HERRAMIENTAS DE CALIDAD PARA EL DESARROLLO DE LA EMPRESA TEMARIO: INTRODUCCIÓN HERRAMIENTAS DE CALIDAD MODELOS DE CALIDAD SISTEMAS DE GESTIÓN METODOLOGÍAS POR DÓNDE EMPEZAR? 1 INTRODUCCIÓN: El actual

Más detalles

Notas para su utilización en aplicaciones de conmutación

Notas para su utilización en aplicaciones de conmutación Transstres Ntas para su utlzacón en aplcacnes de cnmutacón Autr: Fernand fman Transstres Ntas para su utlzacón en aplcacnes de cnmutacón El transstr es un dspstv semcnductr, que presenta ds mds de funcnament:

Más detalles

Laboratorio de Análisis de Circuitos. Práctica 10. Medición de la potencia eléctrica y corrección del factor de potencia con Maple y Proteus ISIS

Laboratorio de Análisis de Circuitos. Práctica 10. Medición de la potencia eléctrica y corrección del factor de potencia con Maple y Proteus ISIS aboratoro de Análss de Crcutos Práctca 10 Medcón de la potenca eléctrca y correccón del factor de potenca con Maple y Proteus ISIS 1 Objetos 1 Calcular con el empleo de programas de cómputo las ntensdades

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL apítulo MPLFDO OPEONL El mplfcador Operaconal es un amplfcador con realmentacón que se encuentra en el mercado como una pastlla de crcuto ntegrado. Es dfícl enumerar la totaldad de las aplcacones de este

Más detalles

Análisis de ruido en detectores ópticos.

Análisis de ruido en detectores ópticos. Análss de rudo en detectores óptcos. La corrente real generada en un fotododo es de carácter aleatoro, cuyo valor fluctúa entre el valor promedo defndo por la foto-corrente: p = RP Dchas fluctuacones se

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEARTAMENTO DE INGENIERÍA ELÉCTRICA DESACHO DE CARGA ORIENTADO A EVENTUAL SEARACIÓN EN ISLAS MEMORIA ARA OTAR AL TÍTULO DE INGENIERO CIVIL

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

Calorimetría - Soluciones. 1.- Cuántas calorías ceden 5 kg de cobre (c = 0,094 cal/g C) al enfriarse desde 36 o C hasta -4 C?

Calorimetría - Soluciones. 1.- Cuántas calorías ceden 5 kg de cobre (c = 0,094 cal/g C) al enfriarse desde 36 o C hasta -4 C? Calormetría - Solucones 1.- Cuántas calorías ceden 5 kg de cobre () al enfrarse desde 3 o C hasta -4 C? m = 5 kg = 5.000 g T = 3 C T f = - 4 C = - T = - (T f T ) = - 5.000 g 0,094 cal/g C (-4 C 3 C) =

Más detalles

Algoritmo para la ubicación de un nodo por su representación binaria

Algoritmo para la ubicación de un nodo por su representación binaria Título: Ubcacón de un Nodo por su Representacón Bnara Autor: Lus R. Morera González En este artículo ntroducremos un algortmo de carácter netamente geométrco para ubcar en un árbol natural la representacón

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE CCESO L UNVERSDD L.O.G.S.E CURSO 004-005 CONVOCTOR SEPTEMRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón.- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE DAVID CUEVA ERAZO daidcuea.5@hotail.co ANTHONY ENCALADA CAIZAPANTA anthony-fer@hotail.co ALPHA LANDÁZURI

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Se desea definir redes lineales y estudiar sus propiedades.

Se desea definir redes lineales y estudiar sus propiedades. apítulo 6 1 EES LINELES Se desea defnr redes lneales y estudar sus propedades. Luego se desarrollará el método de análss por superposcón para redes lneales; y dos mportantes casos partculares de este método:

Más detalles

SOLICITUD DE ADMISIÓN

SOLICITUD DE ADMISIÓN SOLICITUD DE ADMISIÓN Prmer Apelldo Pegar foto Segundo Apelldo Nombre Fecha POSTULA A MAGÍSTER EN GESTIÓN Y DIRECCIÓN DE EMPRESAS (MBA): [ ] Tempo Completo Eta Solctud de Admón e válda para potular al

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles