c. C=(c ij )=i-j [0] b. B=(b ij )=mín(i,j) [1] x x

Tamaño: px
Comenzar la demostración a partir de la página:

Download "c. C=(c ij )=i-j [0] b. B=(b ij )=mín(i,j) [1] x x"

Transcripción

1 MTEMÁTICS CCSS II TEM: DETERMINNTES DETERMINNTES Dtrmt suo or S om trmt l mtr ur or os t l º rl rsultt t Ejmplos: ) ) ) s rprst Dtrmt trr or S om trmt l mtr ur or l º rl rsultt : t Est prsó s oo omo rl Srrus Ejros: º) Clul l vlor los trmts: Qué olusó ots sor l vlor l trmt u mtr trulr? [-] º) Dtrm l vlor los trmts ls mtrs trr or s omo su: j )máj) [] C j )-j [] j )míj) [] D j ) -j [] º) Rsulv ls uos: ) [ -] ) [-] ) [ -] Props los trmts Ls suts props so pr trmts ulqur or Pr los órs os trs pu sr mostrs srrollo os trmts / IR IES L NÍ

2 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ U trmt o vrí s s m sus ls por sus olums s r l trmt u mtr ur o o l su trspust: t L prop tror prmt justr qu tos ls props qu s váls pr ls lo srá tmé pr olums rípromt S u trmt s m tr sí os lís prlls l trmt m so pro osrv l vlor soluto S toos los lmtos u lí s multpl por u msmo º l trmt qu multplo por o º Est prop prmt "sr tor omú" los lmtos u lí Nóts l r o ls mtrs o pr multplr por u º s prso multplr pot él toos sus lmtos) S puo lulr S toos los lmtos u lí so ro l trmt vl ro S os lís prlls so uls l trmt vl ro S os lís prlls so proporols l trmt vl ro ) S u lí s omó otrs prlls l trmt vl ro porqu l prmr l s ul l su más l ol l trr S toos los lmtos u lí s sompo sum os térmos l trmt pu sompors tmé omo sum os trmts l sut orm:

3 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ S u lí s l sum u múltplo ulqur otr prll l trmt o vrí P P ) ) ; El trmt l prouto os mtrs urs o o l prouto sus trmts : Ejros: º) I ls props los trmts qu prmt srr ls suts uls: º) Just s srrollrlos qu los suts trmts vl : ) ) ) ) ) ) ) ) ) º) Oté smplo l vlor l trmt: [ ] º) Just plo ls props los trmts qu: º) So qu oté s srrollr l vlor los suts trmts:

4 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ ) ) ) ) º) S lul romt l vlor los suts trmts: [-] [] [] [-] º) Rsulv ls uos: [ ] [-/] [- -] [ -] U v otos sos vlors l l trmt l prop qu prmtrí justr qu l trmt s s srrollrlo [ ] ± [-/] [/] [/] DETERMINNTES DE ORDEN SUPERIOR m qu umt l or u trmt su álulo s ompl Vmos r u trmt or prtr otro or Pr llo stmos oor los optos mor omplmtro juto u lmto D u mtr ur s llm mor omplmtro l lmto j l trmt or l sumtr qu rsult l lmr l l l olum j

5 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ Lo rprstrmos omo M j H ttos mors omplmtros omo lmtos t l mtr Ejmplo: M S llm juto l lmto j l vlor l prsó: j j j M ) s l mor omplmtro pro por u so o por u so ) Ejmplo: Rtomo l jmplo tror ) ) ) ) ) M Co l trmoloí qu mos trour pomos srrollr u trmt or por los lmto u lí: El trmt u mtr ur or s ul l sum los proutos los lmtos u lí ulqur por sus rsptvos jutos D st moo u trmt or s prtr trmts or Ejmplo: Vmos srrollr l trmt prtr los lmtos l prmr l ) ) Ejros: º) Clul l vlor los trmts: [-] [-] [-] [-]

6 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ º) Clul l trmt plo ls props uso ros) [] MTRIZ INVERS Hmos rsulto l tm tror u sr jros o uos sstms los qu ls óts so mtrs L orm pror s mu smlr los rts métoos utlos l rsoluó uos umérs smpr qu l mtr ót o sté multpl por otr mtr Por jmplo: C C Pr por spjr s tpo uos os srá mu útl sr lulr l mtr vrs l stur l multpló os mtrs mos vsto qu s os lmtmos osrr ls mtrs urs or st u lmto utro qu smolmos por I Nos pltmos or s u mtr ur st otr mtr l qu rprstrmos por - llmrmos mtr vrs ) qu umpl: - I - I Sólo t sto pltrs l st mtr vrs l so mtrs urs o tos l t qulls mtrs urs qu t mtr vrs s llm rulrs vrsls o vrtls E so otrro s llm mtrs sulrs Pr lulr l vrs u mtr prormos l sut moo: Clulmos L oó sr sut pr qu st - s qu Clulmos l mtr jutos j : l mtr qu s ot s s susttu lmto j por su juto j Trspomos l mtr tror: j ) t Dvmos toos los lmtos l mtr tror por : ) t j NOT: El rsulto s l msmo s s m posó los psos Ejros: º) Clul l mtr vrs u ls suts mtrs: C D C D

7 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ º) Clul l vrs ls mtrs suts uo s posl so o srlo l ró: C º) Ds ls mtrs ompru s s umpl o o qu: ) ) º) Rsulv ls uos mtrls: o [I ] CD so D - - C - t I s IO so º) Dspj l mtr ls uos: D C ; F E º) D l mtr m m ll los vlors m pr los uls l mtr o t vrs [ ] º) S l mtr ll pr qu st - [ ] PLICCIONES DE LOS DETERMINNTES PR L RESOLUCIÓN DE SISTEMS DE ECUCIONES LINELES MÉTODO L MTRIZ INVERS Cosrmos u sstm "" uos o "" óts:

8 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ L mtr ots l sstm srá: S llmmos: l sstm s pu prsr l orm: llm prsó mtrl l sstm rvmt srí: S - umpl - I D st moo pomos spjr : multplo mos mmros por - por l qur: - - I - - Ejmplo: ) t Ejros: º) Rsulv por l métoo l mtr vrs ) [ ]

9 MTEMÁTICS CCSS II DETERMINNTES / IR IES L NÍ º) Rsulv l uó ) [ ] º) Oté l vrs l mtr los ots ls óts l sstm: utl st mtr pr rsolvr l sstm [//] º) Ds ls mtrs sr ls trs uos l sstm rsuélvlo otro tos ls soluos Sp-) [t) o mtr vrs SCI-)] REGL DE CRMER L rl Crmr srv pr rsolvr sstms "" uos o "" óts los qu l mtr ots s vrsl t) ) Nos rtmt l vlor ót o l sut prsó: S Ejros: º) Compru s los suts sstms so Crmr rsuélvlos utlo rl s s posl: -/) -) -/ -)/ ) --) -) --) s l mtr qu s ot mo los ots por los térmos pts l vlor ót s ot rtmt omo l ot los trmts:

10 MTEMÁTICS CCSS II DETERMINNTES º) Hllr u º rs so qu sum qu s l º o s rst l qu rsult vrtr l or sus rs l r s ; qu más l r ls s s m rtmét ls otrs os [] º) L sum ls trs rs u º s s s trm l ªts) l ª l º umt us Flmt s s trm l ª l ª l º umt us Clul l º [] º) Eotrr u º trs rs qu vr: l sum sus rs s ; l r ls rs ls ts ls s s uo; s s trm ls rs ls us ls ts l º smu [] º) U ostrutor vrto uros l ompr trs prls L prmr l ompro uros l mtro uro l su uros/m l trr uros/mso qu l supr totl ls trs prls s m qu por l trr pó ls o otvs prts lo qu pó por ls otrs os juts lul l supr prl[ ] º) U omrt vo ptlos por los qu oto mo L vt s rlo l sut orm: l prpo vó los ptlos l u E ls rjs vó luos llos o u % suto El rsto lo vó l lquó o u suto l % sor l pro l ) So qu l tmpor rjs vó l mt ptlos qu los otros os príoos jutos lul uátos ptlos vó urt l lquó [] ) S l lquó por ptló vo uáto ro o tr toos los príoos? º) U spulor qur ojtos rt por u pro totl Véolos spr otr us s l % l % l % rsptvmt o lo qu su o totl srí Pro osu más pus o l vt ot s l % l % l % rsptvmt lo qu l u o totl Cuáto l ostó ojto?[ ] º) U joro t trs lss mos: C Ls mos l tpo t rmos oro rmos plt rmos or; ls l tpo t rmos oro rmos plt rmos or ls l tpo C t rmos oro rmos plt or Fuo l t u tpo mos prt otr rmos oro rmos plt rmos or Epl romt s pu osur o o su ojtvo º) Dos rmos vrtr uo sttos proutos ros El mor vrtó u t u prouto qu proporoo u o l % u t otro qu o u rtl l % l rsto u plo jo l % trés El rmo mor vrtó ss msms ts otros proutos qu l proporoo rsptvmt uos os l % Dtrmr ls ts C vrts s ls s l rmo mor so ls l pquño [] º) Trs ostrutors vrt l ompr trros l sut orm: l prmr vrtó mo mlló uros trro uro uros trro ustrl uros trro rústo L su vrtó trro uro ustrl rústo rsptvmt l trr stos msmos trros rsptvmt Trsurro u ño v toos los trros L rtl qu ot l prmr ostrutor s l % l l su l % lmt l l trr s l % Dtrm l rtl uo los trros por spro [% % %] º) U molr vo u totl pls rj trs uros rts Ls s ots por l vt u pl rj l uró so por u l uró por u l uró C S s qu s vo u % más pls l uró qu l uró C Clul l úmro pls rj vs uró so qu l o oto por ls vs l uró C s ul l sum los os otos por ls vs ls uros [] / IR IES L NÍ

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS UVRS TÉ MBÍ FULT S MSTRTVS Y OÓMS RRR: MSTRÓ MPRSS TÍTULO: GRO OMRL Malla urricular 009 (ctualizada gosto 01) SGTURS VL 10 0 VL 9 VL 8 VL 7 6 VL 6 4 VL 5 SRROLLO GR L L Y RSPOSBL SOL GR VLORO MPRSS RGRÍ

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS DETERMINCIÓN DE LOS ELEMENTOS DE ORIENTCION INTERIOR LS DISTORSIONES DEL OBJETIVO DE LS CÁMRS FOTOGRÁFICS NO MÉTRICS B D. Díz Ríuz, Gl Ház S S Hé Gzáls Gí Jsé Mul Cvz P GEOCUB IC,, Pl. C.P. 00, CH, Cu,

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

TEMA 1. OPERACIONES BANCARIAS A CORTO

TEMA 1. OPERACIONES BANCARIAS A CORTO 1 E 6 TEMA 1. OPERACIONES BANCARIAS A CORTO PLAZO (I) 1.1. Itrouccó 1.2. Cuts corrts 1.3. Cuts corrts bcrs 1.4. Cuts créto 1.5. Cálculo los ttos fctvos 1. INTROUCCIÓN Toos los rchos rsrvos. Qu prohb l

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales Cítulo 4: Rotcos Multdmsols co Orcos ctorls Como s vo l cítulo tror s ud hcr rotr u ojto l sco D roorcodo - utos o cohrlrs s dcr s roorco l j d rotcó l cul s l rrstcó d u sml -D. E st cítulo s lz y td

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO TEÁTS PRUES DE ESO L UNVERSDD DE OVEDO.- rs Drnns.- ODELO DE PRUE Prouo rs: onpo. onons pr su rlón. Es posl qu pr os rs no urs pun sr?. S D E son rs rs urs ul nsón ls qu D E S pu surr qu D E? Por qué?.

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

LA ESTRATEGIA DE INVERSIÓN DE INVERSIS ESCENARIO ECONÓMICO GLOBAL

LA ESTRATEGIA DE INVERSIÓN DE INVERSIS ESCENARIO ECONÓMICO GLOBAL ARTERA MODELO DEFENSVA DE NVERSS BANO Oub 2004 LA ESTRATEGA DE NVERSÓN DE NVERSS Hk Lumol, Es Jf NVERSS BANO A ouó ls psmos los lmos sls l s vsó p los pómos 3-6 mss. Ofmos u vloó l sfoo oómo Esos Uos y

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

TEMA 7: RENTAS VARIABLES

TEMA 7: RENTAS VARIABLES Mtemáts Fers Prof. Mª Merees Rojs e Gr TEM 7: RENTS VRIBLES ÍNDICE. RENTS VRIBLES EN PROGRESIÓN GEOMÉTRIC..... RENT TEMPORL, POSPGBLE, INMEDIT Y ENTER...... CÁLCULO DEL VLOR CTUL...... CÁLCULO DEL VLOR

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

4. EL PRODUCTO EXTERIOR Y SUS APLICACIONES. Definición de producto exterior de vectores

4. EL PRODUCTO EXTERIOR Y SUS APLICACIONES. Definición de producto exterior de vectores EL ÁLGEBR GEOMÉTRIC DEL ESPCIO Y TIEMPO. EL PRODUCTO EXTERIOR Y SUS PLICCIONES Dfó prouto tror tors S f l prouto tror ualqur úmro tors omo su prouto atsmétro, s r, l úo prouto strbuto rspto a la suma tors

Más detalles

( ) [ ( )] ( ) PRODUCTOS NOTABLES Y FACTORIZACIÓN UNIDAD V V.1 PRODUCTOS NOTABLES. a + b se puede obtener multiplicando término a término:

( ) [ ( )] ( ) PRODUCTOS NOTABLES Y FACTORIZACIÓN UNIDAD V V.1 PRODUCTOS NOTABLES. a + b se puede obtener multiplicando término a término: Pági l Colgio Mtátis l ENP-UNAM Proutos otls toriió Autor: Dr. José Mul Brr Esios PRODUCTOS NOTABLES Y FACTORIZACIÓN UNIDAD V V. PRODUCTOS NOTABLES Tto l ultiliió lgri oo l ritéti s sigu u lgorito uos

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ).

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ). Tem 3 mortcó e prétmo Defcó y mgtue fumetle opercó e mortcó e prétmo e u opercó fcer e l ue u pero pretmt o creeor cocert etregr otr pero prettro o euor u eterm cutí e u mometo coro y el euor e compromete

Más detalles

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO Ó Ó SÍT Ó R Ó SÍT T (*) S ÓS TS "" (*-**) ST TZRS R R SRÓ R SÍT T R SST S ÓS RRÓ R - RS T S ÓS SÍT R.8-00/0 8 STT TRTT SÉS Ú T T RÍ RT Ó RÓ T Ú / / S / S TRR ÍS SÉS RÁ STS / STWR / / S / R / R(S) ST S

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

PROP. MODIFICACIÓN DE RPT (FMTO. BOC) Report Página

PROP. MODIFICACIÓN DE RPT (FMTO. BOC) Report Página PROP. MOÓ RPT (MTO. BOC) echa : 17/11/2008 15:05 Usuai : GUBR Rept Página : X_R000355 1 de 14 Ppuesta 126710 MOO RPT 2008 Unidad de la ppuesta : 384640 COSR TURSMO jecici 2008 Clectiv MSTRCO GR Cección

Más detalles

SÁCALE PROVECHO AL CRÉDITO. c h. n a. que la a. e c. un c. e d CINTLI MORENO

SÁCALE PROVECHO AL CRÉDITO. c h. n a. que la a. e c. un c. e d CINTLI MORENO SÁCALE PROVECHO AL CRÉDITO dqusó d qu l u s j o d u f No ud ro t. CINTLI MORENO 32 Ats d otrtr Plr l dqusó d u uto mpl u gm d opos, dsd ls rlods o l víulo st l tpo d fmto dudo pr t y tu olsllo. T mostrmos

Más detalles

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y Crso nzdo d Fnómnos d Trnsport Dr. Jn Cros Frro Gonzáz Dprtmnto d Ingnrí Qímc Insttto Tcnoógco d Cy Oprcons con Vctors Adcón y sbstrccón d ctors S y w son mbos ctors, ntoncs rstdo d s oprcons w y w son

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

LÓGICA PROPOSICIONAL. Capítulo 1 INTRODUCCIÓN

LÓGICA PROPOSICIONAL. Capítulo 1 INTRODUCCIÓN Cpítul LÓGIC PROPOSICIONL INTRODUCCIÓN L lógi stui l frm rzmit. Es u isipli qu s utiliz pr trmir si u rgumt s váli, ti pliió ts ls mps l sr; l filsfí, pr trmir si u rzmit s váli, y qu u frs pu tr ifrts

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

TEMA 2: NÚMEROS RACIONALES: FRACCIONES.

TEMA 2: NÚMEROS RACIONALES: FRACCIONES. TEMA NÚMEROS RACIONALES FRACCIONES.. Cojuto e los Núeros Rioles, Q. El ojuto e los úeros rioles es u pliió e los úeros eteros, los que se le ñe uevos úeros que se ostruye o úeros eteros y se ll FRACCIONES.

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

b n œ œ œ œ n œ. œ œ œ œ œ œ & b C œ œ œ œ œ œ œ œ œ œ œ b œ &b C œ b œ œ œ œ œ # œ œ œ n œ œ œ n œ œ bœ œ œ œ œ #œ œ G b 7( # 11) A b dim 7 rubato

b n œ œ œ œ n œ. œ œ œ œ œ œ & b C œ œ œ œ œ œ œ œ œ œ œ b œ &b C œ b œ œ œ œ œ # œ œ œ n œ œ œ n œ œ bœ œ œ œ œ #œ œ G b 7( # 11) A b dim 7 rubato Livrão cdero 02 3/27/02 2:41 PM Desfido Pge 42 Off key Atoio Crlos oim Neto Medoç vers. Gee Lees rr. Atoio Crlos oim Moderto F m 7 ruto C A dim 7 C 74 ( 9) C 7 A dim 7 F m 7/A Qu do_eu vou Whe try C c

Más detalles

Exportación e Importación en formato XML

Exportación e Importación en formato XML Exportcó Importcó formto XML Tléfoo (506) 2276-3380 Fx (506) 2276-3778 d@c.co.cr www.d.com 1 Exportcó d Iformcó formto XML Pr xportr dto dd lpho formto XML, l mú Admtrcó, cutr l opcó Exportr S motrrá l

Más detalles

Núméro: 00033/2014. Fechal. Titular. Asunto: MINISTERIO DE VIVIENDA, ORDENAMIENTO TERRITORIAL Y MEDIO AMBIENTE NACIONAL DE VIVIENDA ACENCIA

Núméro: 00033/2014. Fechal. Titular. Asunto: MINISTERIO DE VIVIENDA, ORDENAMIENTO TERRITORIAL Y MEDIO AMBIENTE NACIONAL DE VIVIENDA ACENCIA \ ACENCIA NACIONAL DE VIVIENDA Núméro: 00033/2014 Fechal o2o1l2o14 5:30:45 PM Titular MINISTERIO DE VIVIENDA, ORDENAMIENTO TERRITORIAL Y MEDIO AMBIENTE Asunto: RM 1780i2013. SE DISPONE LOS VALORES DE TASACION

Más detalles

0. x = 0. 0. x = b. x Solución:

0. x = 0. 0. x = b. x Solución: TEMA : ECUACIONES E INECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu l umpln tn solo un sri númros qu son ls soluions. Es ir, Ls soluions un uión son los vlors qu n tomr ls ltrs pr qu l igul

Más detalles

1ª Semana. 01 Enero 2017 C E N A C O M I D A LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO

1ª Semana. 01 Enero 2017 C E N A C O M I D A LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO 1ª Semana. 01 nero 2017 LUS RTS ÉRLS JUVS VRS SÁB G TBL BÉRS, QUS Y PTÉ RRLLR BÉR L V TT PURÉ Z TRT TRUF SP PLL STR TRTLL PTT TRSS VRS YGUR 2ª Semana el 02 al 08 de nero 2017 LUS RTS ÉRLS JUVS VRS SÁB

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO SOPA DE BULLIT BULLIT DE PEIX FRUTA / YOGUR CREMA DE BERENJENA ALBÓNDIGAS A LA JARDINERA

LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO SOPA DE BULLIT BULLIT DE PEIX FRUTA / YOGUR CREMA DE BERENJENA ALBÓNDIGAS A LA JARDINERA Semana del 28/09 al 04/10 LUS RTS ÉRLS JUVS VRS SÁB G FBS PTS RRZ PS SLS VR SL FRUT / YGUR SL PLT GUS TRR PTT PRSS FRUT / GLT RRZ L RR SLUS PV FRUT / TLLS SP BULLT BULLT PX FRUT / YGUR TRPÓ GRBZS BR L

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

Para medir la importancia de la clase modal como medida central usaremos el concepto de tasa de variación. Se denota por V

Para medir la importancia de la clase modal como medida central usaremos el concepto de tasa de variación. Se denota por V dds d Tdc Ctrl y Dsprsó EDIDAS DE TENDENCIA CENTRAL Y DISERSIÓN dds d Tdc Ctrl So mdds d u cojuto d dtos qu proporco u vlor smpl y rprsttvo, qu rsum u gr volum d ormcó. Est vlor td ubcrs l ctro dl cojuto

Más detalles

La Patata. La Patata Frita

La Patata. La Patata Frita La Patata La c omú n y c or r i e n t e pat at a (S ol an u m t u b e r osu m) t i e n e u n pasado e xót i c o. Las pat at as pr ovi e n e n de S u damé r i c a, don de l os n at i vos de l ár e a ah

Más detalles

DIRECCIÓN DE INVESTIGACIÓN

DIRECCIÓN DE INVESTIGACIÓN DIRECCIÓN DE Cotdo 1. Atdts; 2. Polít sttol d vstgó; 3. Msó d l vstgó; 4. Vsó d l vstgó; 5. Lís d vstgó sttol; 6. Objtvos d vstgó; 7. Esttgs d vstgó; 8. Sstm sttol d vstgó; 9. Pl d dsollo sttol 2016-2010

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

Aproximación de π: el método de Arquímedes.

Aproximación de π: el método de Arquímedes. eme 4 Aproximación de π: el método de Arquímedes Elegida una unidad de longitud, se considera una circunferencia (C) de radio y centro O Su perímetro es π y su semiperímetro es π La idea de Arquímedes

Más detalles

A - 00 CENTRO CULTURAL & DEPORTIVO TUCSON PLANTA DE CONJUNTO /ESTACIONAMIENTO PROPUESTA DE ESTACIONAMIENTO SIN ESCALA PLANTA DE CONJUNTO SIN ESCALA

A - 00 CENTRO CULTURAL & DEPORTIVO TUCSON PLANTA DE CONJUNTO /ESTACIONAMIENTO PROPUESTA DE ESTACIONAMIENTO SIN ESCALA PLANTA DE CONJUNTO SIN ESCALA TRO ULTURL & PORTIVO TUSO V. LOS ORMLISTS & PROPUST STIOMITO SI SL LUMOS: JIM SÁHZ MIR MUL OÑI MORR ISTITUTO TOLÓIO MOTRRY MYO 05 PLO: PLT OJUTO SI SL PLT OJUTO /STIOMITO LV L PLO: - 00 TRO ULTURL & PORTIVO

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : x. d) x 12

1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : x. d) x 12 PRO PO RCIO NALIDADES 1) Cal c ul a r el t érm i n o d es c o n oc i do d e l a s si g ui en t es p r o p or ci o n es : a) 4 x 10 60 b) 9 12 12 x c) 8 2 32 3 x x d) x 12 Sol : a) x= 2 4, b) x= 1 6, c)

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x REGREION LINEAL IMPLE FORMULARIO Mdl d Rgrsó Ll mpl Jrg Glt Rsc + β + ε qu β s fjs, ε s u vrl ltr c sprz E(ε) 0 vrz V(ε) σ fj. Ls prámtrs dl mdl s, β σ. rprst l vrl dpdt, qu tm vlrs fjs dtrmds pr l prmtdr.

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio.

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio. . Introuón Equlro Químo ermonám. em 4 El esto e equlro e ls reones químs reversles en sstems y onstntes tene ls sguentes rterísts: ) L omposón e los omponentes e l reón no vrí en el tempo. or eso, es posle

Más detalles

Cómo es la distribución de los alimentos servidos?

Cómo es la distribución de los alimentos servidos? Cómo s l distribució d los limtos srvis? 5 " Co u bu limt ció, p Los iños y iñs s ppr pr cosumir los limtos 6 CUÁL ES EL OBJETIVO? Promovr y forzr buos hábitos d higi los iños y iñs como l lv d mos ts

Más detalles

Sector Nestlé 16965-IB-D-6 FIRMA 2012-1205-IB-D-6 CLIENTE. PLANO No. CLIENTE NOMBRE

Sector Nestlé 16965-IB-D-6 FIRMA 2012-1205-IB-D-6 CLIENTE. PLANO No. CLIENTE NOMBRE LNT PLNO No. LNT 0-0--- NOMR UO OMPRO. T.. NO NTVO SN L RM PLNO No. RVSON 9--- RM 0 0, Km SP. 0 SP. 0.. STO SLS NRO PL SPL L NOU SST È - PROT LÍN Situació global de la zona d'estudi PROP NTLTUL: RSRVOS

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

Temporada Primavera-Verano Ropa Corporativa y de Trabajo

Temporada Primavera-Verano Ropa Corporativa y de Trabajo Temporada Primavera-Verano Ropa Corporativa y de Trabajo TE.(56-2) 2809 2598 Presentación Brandcorp, inicia sus actividades en el año 1993 en la Sexta Región. En sus comienzos se especializa en la confección

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

d e l a L e y 1 8. 3 8 4.

d e l a L e y 1 8. 3 8 4. D I A G N Ó S T I C O D E L A S I T U A C I Ó N E N E L S I S T E M A T E A T R A L E n e l c a m i n o d e p r o f u n d i z al r a c o n s o l i d a c i ó n d e l s e c t o r t e a t rsae l, r e s u

Más detalles