ANÁLISIS DE ARMONICOS EN SISTEMAS DE POTENCIA. LEÓNIDAS SAYAS POMA, Phd,Msc, MBA, Prof. Ing Gerencia de Fiscalización Eléctrica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS DE ARMONICOS EN SISTEMAS DE POTENCIA. LEÓNIDAS SAYAS POMA, Phd,Msc, MBA, Prof. Ing Gerencia de Fiscalización Eléctrica"

Transcripción

1 //4 AÁSS DE ARMOOS E SSEMAS DE POEA EÓDAS SAYAS POMA, Pd,Msc, MBA, Pof g Geecia de Fiscalizació Eléctica Magdalea del Ma, Juio 4 OEDO Defiicioes coceptuales, fudameto teóico de amóicos Oige de los amóicos de potecia Efecto de los amóicos e el sistema eléctico Modelamieto de la ed paa aálisis de amóicos Mitigació y cofiamieto de amóicos e SEP

2 //4 uales so las Picipales petubacioes e u SEP? Petubacioes e u SEP U t Amóicos peiódicos Flice Ruido ave otcig voltage dips Petubacioes e el SEP SES, SAG Suge mpulso te Amóicos U Sub Amóicos Amóicos apeiódicos t t 4

3 //4 ipos de distubios e la tesió Depesioes de tesió Elevacioes de tesió //4 5 uva de toleacias e baja tesió segú BEMAAsociació idustial de egocio de equipos de computació; ota:estos //4 limites fueo defiidos tomado e cueta la sesibilidad de equipos elécticos de 6 oficia 3

4 //4 Daños Po aiacioes De esió esió e % de la omial, alo eficaz Petubacioes ipo +% ímite de sobetesió del computado Aea de susceptibilidad ipo +% +3% Petubacioes ipo Petubacioes ipo ímites estáticos esió omial ímites de subtesió -7% -4% -3% -3% Aea de susceptibilidad ipo iempo 5 u m 833m iclos 5 Segudos //4 7 +6% Aálisis teóico de amóicos 4

5 //4 ARMÓOS: EORÍA ARMÓOS: Distosioes peiódicas de fomas de odas de coiete o tesió e sistemas elécticos FUÓ PERÓDA: x t x t es el peíodo de la fució peiódica xt Ejemplo: x/t -/ / t ARMÓOS: EORÍA x t x t dode es u eteo Si dos fucioes x t y x t tiee el mismo peiodo, luego la fució: x3 t ax t bx t dode a y b so costates, tambié tiee el peiodo ambié es cieto que la fució: xt=costate tambié es peiódica 5

6 //4 OEFEES Y SERES DE FOURER: a seie de Fouie de ua fució peiódica xt tiee la siguiete expesió: x t a a t t cos bse E esta expesió a costituye el valo medio de la fució xt, mietas que a y b, los coeficietes de la seie, so las compoetes ectagulaes del t amóico Elcoespodiete t vecto amóico es: A a jb o ua magitud: A a b y u águlo de fase: ta b a OEFEES Y SERES DE FOURER: Puede demostase que paa ua fució dada xt el coeficiete costate a es: a x t dt ambié puede veificase que: paa los = a b t x tcos dt t x t se dt 6

7 //4 FORMA OMPEJA DE A SERE DE FOURER: U vecto otado uifomemete A/e +j tiee ua magitud costate A/ y u águlo de fase el cual esta vaiado e el tiempo de acuedo a: ft dode es el águlo de fase iicial cuado t= U segudo vecto A/e j otaá e la diecció opuesta al ateio Este aumeto egativo de cambio e el águlo de fase puede se cosideado como ua fecuecia egativa a suma de estos dos vectoes estaá siempe a lo lago del eje eal, co la magitud oscilado ete A y A a: A e j A e j Acos FORMA OMPEJA DE A SERE DE FOURER: Reescibiedo la seie de Fouie como: x t a A se t Aset Dode xt es peiódica co peíodo y =/=f, la compoete t de esta seie, coespodiete a la amóica a ua fecuecia de f =f,esdadopo: f e / / x t e j f t dt j f t Dode es el vecto uitaio y f da la amplitud y fase paa el vecto amóico m A/ Máxima amplitud A Amplitud istatáea - - Re 7

8 //4 8 RASFORMADA DSREA DE FOURER: E el caso dode la fució e el domiio del tiempo es ua fució muesteada la expesió toma la foma: Se asume que la fució es peiódica co u total de muestas po peíodo EstafomadiscetadelaasfomadadeFouie es la apopiada paa evaluació uméica po cálculo digital a ecuació ateio puede tambié escibise como: Dode: =e j/ / j e t x f t x f RASFORMADA DSREA DE FOURER: Sobe todas las compoetes de fecuecia la ecuació ateio adquiee la siguiete foma maticial: E esta ecuació, [f ] es u vecto epesetado los compoetes de la fució e el domiio de la fecuecia, mietas que [xt] es u vecto epesetado las muestas de la fució e el domiio del tiempo El cálculo de las compoetes de fecuecia a pati de las muestas equiee u total de multiplicacioes complejas paa implemeta la foma ateio t x t x t x t x f f f f t x f

9 //4 FREUEA MUPOS EEROS Y O EEROS Y SUB MUPOS: tevalo de muesteo 5 / tevalo de muesteo f -f f f c ERARMÓOS: Fecuecias amóicas que o so múltiplos eteos de la fecuecia fudametal SUBARMÓOS: valoes de fecuecia que está po debajo de la fecuecia fudametal APERODOS???? 9

10 //4 OEPOS BÁSOS EESAROS alo RMS HD Potecia Amóica Facto de cesta Resoacia ompoetes siméticas amóicas to to P v t i t Potecia media p t dt alo eficaz, RMS ambié coocido como cuadático medio Se basa e la potecia media etegada a ua esistecia Paa ua tesió peiódica aplicada sobe ua esistecia, la tesió eficaz se defie como ua tesió que popocioa la misma potecia media que la tesió cotiua P o p t dt o cc ef P y P R R v t v t i t dt dt R R o ef ef ms ms to t dt i t dt to ef v t dt R

11 //4 AOR RMS DE ADADES ARMOAS Señal cotiua: ms v t dt Señal disceta: ms t O, e témio de los valoes ms de los amóicos: ms ms DSORSÓ ARMÓA OA HD D D HD A pati de lo cual: HD ms ms ms ms ms HD / ms ms HD / ms

12 //4 POEA AA, REAA Y APAREE POEA AA: E el caso seoidal: P P v t i t dt os P os Q Se S P S Q P POEA AA, REAA Y APAREE: E el caso O seoidal: S S Budeau: Q se E estas codicioes se defie la Distosió de Potecia: D S P Q

13 //4 3 //4 5 FAORES DE RESA F F F F pico pico F F pico pico pico pu pico pico pico pico pu pico

14 //4 4 RESOAA: E u cicuito R se poduciá esoacia cuado: a fecuecia de esoacia seá: Y el ode amóico al cual se poduce la esoacia: c f f f f f RESOAA SERE: a impedacia equivalete seá: Paa cualquie amóico : El módulo de la impedacia: Paa la fecuecia esoate: El Facto de alidad Q: j R Z j R Z R Z R Q

15 //4 RESOAA SERE: 9 Z [Om] Fecuecia [Hz] RESOAA PARAEO: a impedacia equivalete seá: R j Z R j R jr j a impedacia paa cualquie amóico seá: jr Z R j R Z R 5

16 //4 RESOAA PARAEO: E esoacia: Y el Facto de alidad: Q R RESOAA PARAEO: Z [O m ] 5 5 Q=,5 Q= Q= Fecuecia [Hz] Fase [º] Q=,5 Q= Q= Fecuecia [Hz] 6

17 //4 OMPOEES SMÉRAS Y ARMÓOS: as tesioes o coietes de u sistema tifásico puede descompoese como la suma de dos sistemas tifásicos, ua de secuecia positiva y oto de secuecia egativa, mas ua compoete omopola ógicamete esto es aplicable a los amóicos: a b c a a a a Dode:a =,5+j,866=, y a =,5 j,866=4 abc A* iv A * abc OMPOEES SMÉRAS Y ARMÓOS: ece amóico R S

18 //4 =+3 OMPOEES SMÉRAS Y ARMÓOS: Quito amóico R S

19 //4 =+3+5 =

20 //4 = OMPOEES SMÉRAS Y ARMÓOS: Secuecias de los compoetes amóicos: Sec Sec Sec

21 //4 yecció de coiete amóica desbalaceada e u sistema de potecia A desbalaceada Solució de la yecció de coiete amóica de las ecuacioes lieales simultaeas

22 //4 ORGE, EFEOS, MEDÓ, OFAMEO

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Tema 3. Series de Fourier. Aálisis de Espectros Idice: Series de Fourier Serie Trigoométrica de Fourier Aálisis gráfico. Primeras compoetes de frecuecia Ejemplo Serie de Fourier e forma de Expoeciales

Más detalles

a) [1,5 puntos] Discutir y resolver en función de los valores del parámetro m el sistema lineal = + + = + = + =

a) [1,5 puntos] Discutir y resolver en función de los valores del parámetro m el sistema lineal = + + = + = + = Puebas de Aptitud paa el Acceso a la Uivesidad. JUNIO 009. Matemáticas II.. ÁLGEBRA Opció A a) [,5 putos] Discuti y esolve e fució de los valoes del paámeto m el sistema lieal + y + z = + + = m + m y +

Más detalles

ALGUNAS CUESTIONES DE ELECTROMAGNETISMO LECCIONES 1 A 10 ( )

ALGUNAS CUESTIONES DE ELECTROMAGNETISMO LECCIONES 1 A 10 ( ) ALGUNAS CUESTIONES DE ELECTROMAGNETISMO LECCIONES 1 A 1 (24-25) 1. E ua esfea de adio a teemos ua caga Q distibuida de modo que cea u campo eléctico adial de itesidad: k E, < < a 2 siedo k ua costate.

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

Tema 5 Modos de convergencias de sucesiones de variables aleatorias

Tema 5 Modos de convergencias de sucesiones de variables aleatorias Tema 5 Modos de covegecias de sucesioes de vaiables aleatoias Itoducció Cuado se cosidea sucesioes y seies de vaiables aleatoias, es deci, sucesioes y seies de fucioes medibles, su covegecia puede se cosideada

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bábaa Cáovas Coesa 67 7 www.clasesalacata.com Reseva. 6 Dada la fució f() = + a + a, b R b + a) Detemia el valo de los paámetos a, b R sabiedo que y = + es ua asítota oblicua de f(). b) aa los valoes de

Más detalles

w = 3α 2w r α = α = = 5014 Mecánica Segunda Parte (90 minutos) : Ejercicio nº 1 w( α ) =

w = 3α 2w r α = α = = 5014 Mecánica Segunda Parte (90 minutos) : Ejercicio nº 1 w( α ) = Fecha de Exame: -6-8 5 Mecáica Pime pellido: Matícula: Segudo pellido: Nombe: NO: e el euciado las magitudes vectoiales se escibe e egita (V), auque e la solució Vd. Debe epesetalas co ua flecha ( V ).

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Idice: Señales periódicas. Aálisis de Simetría Simetría Par Simetría Impar Simetría de Media Oda Simetría de Cuarto de Oda Señales Ortogoales Prof. Raquel Frías Aálisis de Señales 1 1. Señales Periódicas

Más detalles

Tema 1. Introducción a las Señales en Tiempo Contínuo y Discreto

Tema 1. Introducción a las Señales en Tiempo Contínuo y Discreto Idice: 6. Señales Discretas 7. Operacioes sobre Señales Discretas Suma de Señales Producto de Señales Escalamieto e Tiempo Escalamieto e Magitud Trasposició ó Reflexió 8. Señales Sigulares Fució Escaló

Más detalles

Capítulo 4. Lazos enganchados en fase. PLL. Aplicaciones de los PLL

Capítulo 4. Lazos enganchados en fase. PLL. Aplicaciones de los PLL Electóica de Comuicacioes Cuso 009/00 Capítulo 4 Lazos egachados e fase. PLL Aplicacioes de los PLL Sítesis de fecuecia Patiedo de u oscilado pató (f 0 ), pemite geea fecuecias elacioadas de la foma f=(/m)f

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

DESCARGA DE UN CONDENSADOR

DESCARGA DE UN CONDENSADOR DEAGA DE UN ONDENADO Objetivo: 1. Apede que e u cicuito de coiete diecta la descaga de u capacito tiee u compotamieto expoecial. INTODUIÓN U cicuito eléctico que se compoe de u codesado y ua esistecia

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Divergencia. Teorema de Gauss Significado físico de la divergencia. Rotacional. Teorema de Stokes Significado físico del rotacional

Divergencia. Teorema de Gauss Significado físico de la divergencia. Rotacional. Teorema de Stokes Significado físico del rotacional I. Fudametos mate 5. Divegecia i y otacioal Gómez, 2/ Dpto. Física Aplicada III (U. Sevilla Campos Electomagéticos Igeieo de Telecomuicació icos. Coodeadas cuvilíeas 2. Sistemas de coodeadas otogoales.

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época.

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época. el blog de mate de aida MATEMÁTICAS I. Númeos complejos. Pág. 1 AMPLIACIÓN DEL CAMPO NUMÉRICO Diofato, u adelatado a su época. Este tiágulo está costuido co ua cueda e la que se ha ealizado doce udos a

Más detalles

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS TRABAJO PRÁCTICO N O. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS PARTE : SEÑALES Recomedacioes geerales: Utilice el comado stem para el graficado de las señales discretas. El uso de plot o se ajusta al

Más detalles

APLICACIÓN DE LAS LEYES DE KIRCHHOFF EN CORRIENTE ALTERNA

APLICACIÓN DE LAS LEYES DE KIRCHHOFF EN CORRIENTE ALTERNA AAÓN DE AS EYES DE KHHOFF EN OENE AENA as leyes de Kichhoff puede aplicase e coiete altea epesetado los valoes da las tesioes, fuezas electomotices e itesidades e foma vectoial. º.- imea ley de Kichhoff:

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen:

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen: CÁLCULO I EXAMEN FINAL 15 de eero de 16 Apellidos: Titulació: Duració del exame: horas 3 Fecha publicació otas: -1-16 Fecha revisió exame: -1-16 Todas las respuestas debe de estar justificadas acompañádolas

Más detalles

ÁLGEBRA,TRABAJO PRÁCTICO UNIDAD TEMÁTICA Nº 2

ÁLGEBRA,TRABAJO PRÁCTICO UNIDAD TEMÁTICA Nº 2 ÁLGEBRA,TRABAJO PRÁCTICO UNIDAD TEMÁTICA Nº Estuctuas Algebaicas Esacios Vectoiales Auto: ZAIA, Alejada Cistia Ficha de Cáteda: Caeas: Cotado Público- Liceciatua e Ciecias Ecoóicas Mateia: Álgeba 018 UCES

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

Práctica de Laboratorio. Respuesta de los Instrumentos de Medida ante Distintas Señales de Tensión y Frecuencia.

Práctica de Laboratorio. Respuesta de los Instrumentos de Medida ante Distintas Señales de Tensión y Frecuencia. Uiversidad Nacioal de Mar del lata. ráctica de Laboratorio ema: Respuesta de los Istrumetos de Medida ate Distitas Señales de esió y Frecuecia. Cátedra: Medidas Eléctricas I 3º año de la carrera de Igeiería

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V Retas Fiacieas. aloació de ua eta 2. ALORACIÓN DE UNA RENTA: ALOR ACTUAL Y ALOR FINAL aloa ua eta e el dieiieto T cosiste e halla la sua del valo iacieo, e dicho dieiieto, de cada uo de los capitales que

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID

UNIVERSIDAD POLITÉCNICA DE MADRID UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ELECTRÓNICA, AUTOMÁTICA E INFORMÁTICA INDUSTRIAL Prácticas de Regulació Automática Práctica 3 Aálisis e el domiio del tiempo de sistemas físicos de primer

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

Principio de multiplicación: Sean A 1, A 2,..., A n, una colección de conjuntos finitos no vacíos, entonces A 1 xa 2 x...xa n = A 1 A 2... A n.

Principio de multiplicación: Sean A 1, A 2,..., A n, una colección de conjuntos finitos no vacíos, entonces A 1 xa 2 x...xa n = A 1 A 2... A n. Matemática Disceta: Método combiatoio MATEMATICA DISCRETA 3 Método Combiatoio 3 Técicas básicas Sea S u cojuto fiito o vacío Se desiga po S el cadial de S (el úmeo de elemetos de S) Picipio de adició:

Más detalles

EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT.

EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT. EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT. ---------------------------------------------------------------------------- La altura de ua ota musical os permite distiguir si u soido es agudo

Más detalles

ARMÓNICOS. 1.-Introducción. 2.-Forma trigonométrica de la Serie de Fourier. 3.-Desarrollo en Serie de Fourier de una función.

ARMÓNICOS. 1.-Introducción. 2.-Forma trigonométrica de la Serie de Fourier. 3.-Desarrollo en Serie de Fourier de una función. ARMÓNICOS.-Itroducció..-Forma trigoométrica de la Serie de Fourier. 3.-Desarrollo e Serie de Fourier de ua fució. 3..-Codicioes de covergecia. 3..-Determiació de los coeficietes. 3.3.-Simetría de las Formas

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

CAPÍTULO 4 MÉTODO DE PERTURBACIONES

CAPÍTULO 4 MÉTODO DE PERTURBACIONES CAPÍTULO : MÉTODO DE PERTURBACIONES 8 CAPÍTULO MÉTODO DE PERTURBACIONES. Resume Se ecueta solució aalítica a la ecuació ifeecial (.5) el pefil e oas e témios e las amplitues e los amóicos, que esulta e

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

Tema 6. Análisis de las Inversiones en Títulos de Renta Fija

Tema 6. Análisis de las Inversiones en Títulos de Renta Fija Tema 6. Aálisis de las Ivesioes e Tíulos de Rea Fija 6.. Valo de u íulo de ea fija 6... Esucua empoal de los ipos de ieés 6..2. Tipos de iesgos 6.2. ocepo de duació 6.3. Esaegias de ivesió e íulos de ea

Más detalles

Electrónica de Potencia (Especialidad de Electricidad)

Electrónica de Potencia (Especialidad de Electricidad) Electróica de Potecia (Especialidad de Electricidad). Itroducció PRÁCICA DEERMINACIÓN DE LA HD Y EL FACOR DE POENCIA MEDIANE PSPICE Y SIMPOWERSYSEM oda fució periódica que cumple ciertas propiedades puede

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Examen de Febrero de 2005 de Cálculo I. Soluciones.

Examen de Febrero de 2005 de Cálculo I. Soluciones. Eame de Febrero de 5 de Cálculo I Solucioes Sea la fució f() = e sh + co domiio R a) Hallar los tres primeros térmios o ulos de su desarrollo de Taylor e = b) Probar que eiste su fució iversa f y calcular

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Lím f(x) Lím f(x) = f(a).

Lím f(x) Lím f(x) = f(a). CÁLCULO DE LÍMITES Y CONTINUIDAD 1. TEOREMA SOBRE LÍMITES Defiició: El límite de ua fució f(), cuado tiede a o es L si y sólo si para todo ε > 0 eiste u δ(ε) > 0 tal que para todo úmero real que perteece

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

1. Diagramas Frecuenciales Respuesta en Frecuencia 2

1. Diagramas Frecuenciales Respuesta en Frecuencia 2 04 a Diagramas Frecueciales.doc 1 1. Diagramas Frecueciales 1. Diagramas Frecueciales 1 1.1.1. Respuesta e Frecuecia 1.. Presetació de la Respuesta e Frecuecia - Diagramas de Bode 8 1..1. Caso Particular:

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales.

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales. Pof. Adea Campillo Aálisis Matemático II Topología elemetal Recodemos cómo se defie u etoo de ceto R adio E = { R / < } Sabemos que ( R : < < < < < Esfea abieta e R Si geealizamos el cocepto de etoo e

Más detalles

Tema 4. Respuesta frente a cargas de impacto, rampas, pulsos y arbitrarias

Tema 4. Respuesta frente a cargas de impacto, rampas, pulsos y arbitrarias Tema 4. Respuesa fee a cagas de impaco, ampas, pulsos y abiaias T.4. Respuesa de sisemas de 1 gado de libead fee a cagas de impaco, e ampa, pulsos y cagas abiaias 4.1 Caga de impaco o e escaló. 4.2 Caga

Más detalles

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α Trasformada Ejemplos Ejemplos de cálculo. Trasformada... Calcular la trasformada, por defiició, idicado la regió de coergecia p u [ ] h h p u cos u Solució: Para calcular la Trasformada por defiició, resulta

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

Capítulo II ASPECTOS GENERALES DE LAS ECUACIONES DIFERENCIALES

Capítulo II ASPECTOS GENERALES DE LAS ECUACIONES DIFERENCIALES Capítulo II ASPECTOS GENERALES DE LAS ECUACIONES DIFERENCIALES.1 ECUACIÓN DIFERENCIAL: Es ua ecuació que cotiee derivadas o difereciales. Ejemplo 1: Las siguietes expresioes costituye ecuacioes difereciales:

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

UNIDAD 10.- DERIVADAS

UNIDAD 10.- DERIVADAS UNIDAD.- DERIVADAS. DERIVADA DE UNA EN UN PUNTO. DERIVADAS LATERALES Defiici.- Se llama derivada de ua fuci f ( e u puto de abscisa al siguiete ite si eiste: f ( f '( sigifica lo mismo. f (. Se suele represetar

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4 E.T.S.I. Idustriales y Telecomuicació Curso 010-011 Tema : Fucioes reales de ua variable real Cálculo de derivadas Calcular la derivada primera de las siguietes fucioes: 1. y 5 1 6 6 y 5 ( ) (6 ) 5 5 5

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

EJERCICIOS RESUELTOS SOBRE SISTEMAS DE 1er y 2do ORDEN

EJERCICIOS RESUELTOS SOBRE SISTEMAS DE 1er y 2do ORDEN EJERCICIOS RESUELTOS SOBRE SISTEMAS DE 1er y do ORDEN A cotiuació se resuelve tres problemas sobre sistemas de primer y segudo orde. El primer problema es sobre sistemas de primer orde co codicioes iiciales

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica.

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica. Métodos Numéricos Métodos aalíticos Solució de ecuacioes difereciales Métodos Numéricos Métodos aalíticos: La solució es ua relació fucioal etre dos variables. No todas las ecuacioes difereciales tiee

Más detalles

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT UIVERSIDAD TÉCICA FEDERICO SATA MARÍA DEPARTAMETO DE ELECTRÓICA LECTURA 5 TRASFORMADA RÁPIDA DE FOURIER FFT CURSO LABORATORIO DE PROCESAMIETO SIGLA ELO 385 DIGITAL DE SEÑALES PROFESOR PABLO LEZAA ILLESCA

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES [6.08] ALGEBRA II Autor: Berardo Ortega Ídice SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS...3 De primer orde co coeficietes costates..3 Sistemas

Más detalles

EXAMEN TEMA 1. Sucesiones, series, dos variables

EXAMEN TEMA 1. Sucesiones, series, dos variables GRUPO Ma 4-5) CÁLCULO Facultad de Iformática UPM) 5-Juio - 05 Tiempo: horas º º 3º 4º 5º suma EXAMEN TEMA. Sucesioes, series, dos variables. ptos.) Determiar el valor que ha de teer a R para que se cumpla

Más detalles

Generadores de onda Práctica # 8

Generadores de onda Práctica # 8 Gruo de iestigació cietífica y microelectróica Geeradores de oda Práctica # 8 Objetios Estudiar alguos circuitos de relajació. Estudiar alicacioes ara geeradores de oda triagular y cuadrada. Equio ecesario

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Ecuacioes Difereciales aboratorio N 1, Series de Fourier Itroducció Para fucioes x,, la serie de Fourier f x cotiuas

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

5 Puntos, rectas y planos en el espacio

5 Puntos, rectas y planos en el espacio 5 Putos, ectas y paos e e espacio Págia 145 Geometía eíptica a) Sea R 1 y R ectas e a geometía eíptica, y S a supeficie esféica. R 1 = π 1 S; R = π S Como os dos paos pasa po e ceto, se cota, uego π 1

Más detalles

CONGRESO INTERNACIONAL DE DISTRIBUCION ELECTRICA CIDEL ARGENTINA 2002

CONGRESO INTERNACIONAL DE DISTRIBUCION ELECTRICA CIDEL ARGENTINA 2002 CONGRESO NTERNACONAL E STRBCON ELERCA CEL ARGENTNA EFEOS E LAS ARMÓNCAS SOBRE EL SEÑO E REES E BAJA TENSÓN Pedo E ssouibeee Gustavo A Babea stituto de vestigacioes Tecológicas Paa Redes y Equipos Elécticos

Más detalles

Polarización. Propagación de la luz en medios anisótropos

Polarización. Propagación de la luz en medios anisótropos Polaizació Popagació de la luz e medios aisótopos Polaizació de ua oda Popiedad de las odas tasvesales: La vibació es pepedicula a la diecció de popagació Se defie la diecció de polaizació como la diecció

Más detalles

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE DEIVACIÓN Y DIFEENCIACIÓN DE FUNCIONES DE UNA VAIABLE EAL. APOXIMACIÓN POLINÓMICA. DESAOLLOS EN SEIE.- Calcular, aplicado la defiició, las derivadas de las siguietes fucioes e el puto : a) f ( ) se( )

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema ta zabal zazu Uivesidad del País Vasco Depatameto de Aquitectua y Tecología de Computadoes upv ehu Tema _ Señales Pocesado digital de image y soido Defiició Clasificació: Aalógicas Digitales. Digitalizació

Más detalles

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores Capíulo Iroducció a la Elecróica de oecia. Iroducció a la Elecróica de oecia. Clasificació de los Coeridores Como su ombre lo idica su fució es coerir ua fuee de ua esió y frecuecia dada a ora de diferees

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Uidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo geeral Coocer e forma itroductoria los coceptos propios de la recurrecia e relació co matemática discreta. Objetivos específicos Coocer

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles de agosto del ESCUELA DE MATEMÁTICA Segudo Eame Parcial Cálculo I PROYECTO MATEM Tiempo Probable: horas Solucioario. Use

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

Nombre del estudiante:

Nombre del estudiante: UNIVERSIDAD DE OSTA RIA ESUELA DE IENIAS DE LA OPUTAIÓN E INFORÁTIA I-0 ESTRUTURAS DISRETAS PROF. KRYSIA DAVIANA RAÍREZ BENAVIDES II Semeste 06 Fecha: /09/06 SOLUIÓN EXAEN PARIAL I Nombe del estudiate:

Más detalles