MECÁNICA DE LOS FLUIDOS I, Ingeniería Aeronáutica. Transformación de Joukovsky. z a1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MECÁNICA DE LOS FLUIDOS I, Ingeniería Aeronáutica. Transformación de Joukovsky. z a1"

Transcripción

1 MECÁNICA DE LOS FLUIDOS I, Ingenerí Aeronáut Trnsformón de Joukovsky L trnsformón de Joukovsky en el plno omplejo, es l más smple de un onjunto de trnsformones de l form: 3 ' f (... 3 Ests modfn el plno senslemente pr vlores pequeños de, pero su nfluen tende 0 medd que el módulo de ree. L trnsformón de Joukovsky tene l expresón: ' f ( Est onverte un runferen de rdo > en un l form de un perfl erodnámo. Fg. d' L dervd de l trnsformón es d Se oserv que se nul en dos puntos : y -. En éstos, l trnsformón no es onforme, es der, no onserv los ángulos entre dos urvs que psen por esos puntos. Nkol Igorovh Joukovsky (o Zhukovsky, en otr versón odentld de su pelldo, vvó entre 847 y 9. Fue profesor de Meán Anlít en l Unversdd de Mosú. Puló dversos trjos en Mtemáts, Meán y Fludodnám. Sus prnples ontruones l Aerodnám son: l trnsformón onforme de Joukovsky, los perfles Joukovsky, y l ondón hoy onod omo de Kutt- Joukovsky, sore l rulón que gener un perfl en movmento.

2 Un trnsformón onforme en todo el plno, pld un runferen, no podrí generr un perfl on un orde de fug fldo, porque ulquer quere en l urv volrí l onservón de ángulos que mpone l ondón de onforme. Pero en este so, s uno de los puntos de l runferen es ±, en l mgen de ese punto puede preer un quere en l urv: ese punto se trnsform en el orde de fug del perfl. En el ejemplo de l fgur, es el punto -. Como el punto qued en el nteror del írulo, su mgen qued dentro del perfl, y no fet su form, n el mpo de flujo lrededor del msmo. L trnsformón de ls oordends d: (x y x ' y' x y x y x' x ( x y' y ( x y y ( Ls oordends del írulo orgnl se otenen de l euón del msmo: t l e, on 0 t < π Ls oordends del entro del írulo quedn determnds por su rdo, y el ángulo β que muestr l fgur, de modo que el punto - se l nterseón de l runferen on el eje rel: Se nlrán lgunos sos prtulres. Fg. Trnsformón del írulo entrdo en el orgen:

3 En el so generl, on <, l trnsformón es onforme en todos los puntos del írulo. L euón de este írulo es: y x en o 0, e π < ( S se despejn x e y en funón de x e y (euones ( y onsderndo (, qued: y' x' Es der: y' x' (3 que es l euón de un elpse. Fg. 3 En el so límte en que, el írulo se trnsform en el segmento del eje rel - x. Se oserv que s, los puntos y - perteneen l runferen, y se trnsformn en y - respetvmente. En este so no es plle l euón (3, y que el denomndor del segundo térmno se nul. Pero l trnsformón es muy senll en oordends polres: π < 0 os e e ( e e e e '

4 Al vrr, el segmento es reorrdo dos vees: desde - y vevers. Fg. 4 El entro de l runferen está en (0, y. L euón de l msm es, por lo tnto: x (y y Est runferen se trnsform en el ro de runferen en nddo, entre y -ª, que ru el eje y en y. Los puntos y - en sore l runferen orgnl, y se onverten en los extremos del ro. L euón orrespondente es: x' [y' (y y ] (y y pr y' 0 Fg. 5

5 Tmén quí, el límte pr y 0 es el segmento [-, ]. 3 El entro de l runferen está en (x, 0. (Corresponde l prámetro β 0 L trnsformón d un perfl smétro. El punto - se onverte en el -, que es el orde de fug del perfl. L mgen del punto qued en, en el nteror del perfl. El orde de tque es l mgen del punto - (rue on el eje x, y es ( el punto ' (, sore el eje rel. Es smple demostrr ( que este vlor es myor o gul que, y sólo es gul s. Fg. 6 4 Cso generl: runferen on entro en (x, y Se trnsform en un perfl no smétro. Fg. 7

6 De los ejemplos vstos, se puede nferr que los prámetros que determnn l form del perfl son ls oordends del entro de l runferen. En prtulr: - L oordend x, relond on el oente /, determn el espesor del perfl resultnte. Los sos en que el entro e sore el eje y, on x 0, dn ros sn espesor. - L oordend y, relond on el ángulo β, determn l urvtur de l líne med del perfl. Los sos en que el entro e sore el eje x (β 0 dn perfles smétros, es der, su líne med es un segmento de l ret que onsttyue el eje de smetrí. Construón del perfl Joukowsky: L onstruón del perfl es muy smple on un luldor o plnll de álulo que opere on números omplejos: ddos,, y β, ls oordends del lndro son (fg. t β l e ( e e t, on 0 t < π Se lul l trnsformón: jouk l l y se grf Im( jouk vs Re( jouk, o en gráfo polr, jouk vs rg( jouk (rg rgumento. Un ntgu onstruón gráf, sn lulr omponentes, sgue los sguentes psos : Desde el orgen de oordends (o se mr el punto -. Desde -, on el ángulo β y un dstn, se u el entro del lndro, l que llmremos Q. 3 Con entro Q y rdo, se tr l runferen C, que es l que se quere trnsformr. 4 El segmento oq y el eje y determnn el ángulo δ. 5 Con el msmo ángulo δ meddo desde el eje y h l dreón negtv de x, se tr om, donde M es el punto de nterseón on oq 6 Con entro en M y rdo ( M, se tr l runferen C 7 Pr trr el perfl, se dn vlores desde 0 π. Con, se determn sore C el punto P: re, y on -, sore C qued el punto P: e r 8 L sum vetorl de mos (por el método gráfo del prlelogrmo, d el punto P que pertenee l perfl, y es l mgen de P. Reorrendo todos los vlores de, qued dujdo el perfl Joukowsky Trefft, E. 93: Z. Flugteh. Motorluftshffhrt, vol. 4, p. 30.

7 Fg. 8 L form de este perfl present el extrdos y el ntrdos tngentes en el orde de fug (el perfl tende un espesor nulo llí. Esto es prolemáto tnto desde el punto de vst onstrutvo, omo desde el de ressten estruturl. Por otro ldo, ls rterísts erodnáms tmpoo son uens: el mínmo de presón está muy er del orde de tque, por lo que el flujo dee reorrer grn prte del extrdos on un grdente de presón dverso. Otrs trnsformones onformes genern mejores perfles. Sn emrgo, l trnsformón de Joukowsky se nluye en muhos textos de estudo, por su smpldd, que flt el prendje oneptul, y por ser l prmer explord nlítmente. Crulón y sustentón Se se que l rulón que gener un ostáulo es determnnte en el mpo de flujo en su entorno. En el so prtulr de un lndro emestdo por un orrente U, el vlor de l rulón, Γ, determn l posón de los puntos de remnso sore el msmo, lejándose más del eje de l dreón de l orrente unto myor es l relón Γ / U. En el so de un perfl erodnámo, l ondón de Kutt-Joukowsky estlee que, en flujo potenl: l rulón que gener un perfl erodnámo en un orrente es tl que el punto de remnso posteror onde on el orde de fug

8 Se sury l ondón de flujo potenl, y que ángulos de tque moderdos grndes, l p límte del perfl se desprende, produendo l llmd entrd en pérdd del perfl (que l teorí de flujo potenl no prede, y los álulos on este modelo perden vlde. L justfón mtemát es l sguente: s F es el potenl omplejo del lndro en el plno, l velodd sore el perfl en el plno, otendo por l trnsformón del lndro será: df df d df d' u ' v' ( / ( d' d d' d d Como d /d se nul en -, que pertenee l lndro, l ún form de que l velodd no se nfnt en el orde de fug (mgen de -, es que df/d se nul en -. Es der, que el punto - se un punto de remnso del lndro. Pr un lndro de rdo entrdo en el orgen, on rulón Γ, emestdo por un orrente unforme de ntensdd -U, provenente de l dreón postv del eje rel x, en el plno, el potenl omplejo es: F( U( Γ π S rotmos los ejes, pr trjr en nuestro sstem : ln( Fg. 9 α α e e

9 Por lo tnto: F( U( e α e α Γ π e ln( α df U(e d α e α Γ π En este sstem (orgen en el entro del lndro, ls oordends del punto sngulr de l trnsformón onforme son: e ( πβ e β S hemos df/d 0 en ese punto 0 e Γ π( e α α U(e e β β Se despej Γ: Γ πu (e ( αβ e ( αβ 4πU sen( α β L sustentón del perfl por undd de envergdur, por el teorem de Blsus, tmén onodo omo teorem de Kutt-Joukovsky, es: Y ρuγ 4πρU sen( α β Tmén puede esrrse Y 4πρU sen( α α o, donde α o -β es el ángulo de sustentón nul del perfl. Consderndo que pr perfles de pequeño espesor, l uerd es proxmdmente 4, se puede lulr el oefente de sustentón L Y π sen( α β ρu 4 Se oserv que: Un perfl smétro (β 0 no sustent sn ángulo de tque, pero un perfl smétro puede herlo. L teorí de flujo potenl prede un máxmo de sustentón pr αβ π/. Esto no se umple en l reldd, y que pr ángulos de tque muho menores se produe el

10 desprendmento de l p límte ( entrd en pérdd del perfl y est teorí perde vlde. 3 El álulo del flujo lrededor del perfl prede un fuer resultnte nul en l dreón de l orrente (ressten nul. Esto se dee, nturlmente, que l teorí de flujo potenl gnor los efetos vsosos, y es un lmtón omún todo álulo de perfles sdo en est teorí. Ref: Prndtl L. nd Tetjens O. G., Appled Hydro- nd Aeromehns, Dover Pu. 934

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando º DE HLLERTO MTRES Y DETERMNNTES Soluones -- DETERMNNTES MTRZ NVERS. lulr el vlor del determnnte. Hllr, en funón de, el vlor del determnnte: en Sndo on votndo nulmos en Sndo ( ( en Sndo ( ( (. Enontrr

Más detalles

Procesamiento de Imágenes Satelitales. Clase Teórico

Procesamiento de Imágenes Satelitales. Clase Teórico Proesmento de Imágenes Steltles Clse Teóro ro-prát Nro. Georreferenón L georreferenón de mágenes steltles es el proeso mednte el ul se dot de vldez rtográf un mgen dgtl orrgendo geométrmente l posón de

Más detalles

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121 Los números gnros: Clse-15 En hy stucones que no tenen solucón; por ejemplo no exste nngún número cuyo cudrdo se gul -1. Pr dr solucón est stucón recurrremos l conjunto de los números mgnros, donde se

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

Vectores 4º Año Cód B et i n a C a t t á n eo Matemática N o e m í L a gr ec a Dpto. de Matemática

Vectores 4º Año Cód B et i n a C a t t á n eo Matemática N o e m í L a gr ec a Dpto. de Matemática Vetores Mtemát 4º Año Cód. 4-5 B e t n C t t á n e o N o e m í L g r e Dpto. de Mtemát VECTORES EN EL ESPACIO En Fís muhos son los oneptos, tles omo fuerzs, eloddes, desplzmentos, que no pueden ser determndos

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio.

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio. . Introuón Equlro Químo ermonám. em 4 El esto e equlro e ls reones químs reversles en sstems y onstntes tene ls sguentes rterísts: ) L omposón e los omponentes e l reón no vrí en el tempo. or eso, es posle

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

MATEMÁTICA 4º. Prof. Sandra Corti

MATEMÁTICA 4º. Prof. Sandra Corti L rdccón de se negtv e índce pr no tene solucón en el conjunto de los números reles ( 4; 25, 16, etc.), y que no exste nngún número rel que elevdo un potenc pr dé por resultdo un número negtvo. Se defne

Más detalles

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que:

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que: Prof nre Cmpllo nálss Mtemáto II Integrles oles Consermos un funón f : R R, efn ot en el rento retngulr [, ] [, ] enomnmos [, ] [, ] Gráfmente poemos onserr l sguente stuón: uo z Gráf e f Reoremos qué

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgntud es culquer cos que puede ser medd medr no es más que comprr un mgntud con otr de l msm espece que se tom como referenc. Ls mgntudes se epresn con un número uns unddes. En lguns ocsones el número

Más detalles

ANALISIS MATRICIAL DE ESTRUCTURAS POR EL METODO DE LA RIGIDEZ

ANALISIS MATRICIAL DE ESTRUCTURAS POR EL METODO DE LA RIGIDEZ ANAII MATRICIA DE ETRUCTURA POR E METODO DE A RIGIDEZ ETABIIDAD III CAPITUO IV: ANAII MATRICIA DE ETRUCTURA Pág Introduón os métodos lásos de nálss estruturl desrrolldos fnes del sglo XIX, tenen ls ulddes

Más detalles

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura:

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura: LONGITUD DE ARCO Clculr l longtud de rco o de un curv dd por un funcón f en un ntervlo x, tene muchs plccones en ls cencs. Es necesro que hgmos un reve estudo del cálculo de ells. Un proxmcón es un líne

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

Ejercicios de Práctica 1

Ejercicios de Práctica 1 Insttuto Tenológo e Cost Esuel e Eletrón Crutos Elétros en Corrente Contnu Profesor: Ing. Aníl Coto Cortés I Semestre 009 ) Segur elétr Ejeros e Prát El ño más omún que us l eletr l uerpo humno es l sstem

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{}

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{} Vmos lulr ls siguientes integrles de tryetori ) Se α(t) = (os(t), sin(t)) on t [, π ] y f(x, y) = x + y Sol. Tenemos que f(α(t)) = os(t) + sin(t) por otro ldo α (t) = ( sin(t), os(t) α (t) = ( os(t)) +

Más detalles

Mecanismos de transporte a través de las membranas celulares. Si requieren o no energía. Transporte pasivo. Transporte activo

Mecanismos de transporte a través de las membranas celulares. Si requieren o no energía. Transporte pasivo. Transporte activo Mensmos de trnsporte trvés de ls membrns elulres. S requeren o no energí Trnsporte psvo Dfusón smple. Dfusón fltd. Trnsporte tvo Prmro Seundro Mensmos de trnsporte trvés de ls membrns elulres. S prtpn

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x. INTEGRALES IMPROPIAS Hst hor hemos estudido l integrl de Riemnn de un función f cotd y definid en un intervlo cerrdo y cotdo [, ], con., Ahor generlizmos este concepto.. Integrl de un función cotd, definid

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1 FISI I P 1 LGER VETORIL 11 Mgntudes físcs Ls mgntudes físcs, son ls propeddes que le crctern los cuerpos o los fenómenos nturles que se pueden medr, E: L longtud, l ms, l velocdd, l tempertur, etc Mentrs

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

Ondas y Rotaciones. Dinámica de las Rotaciones V

Ondas y Rotaciones. Dinámica de las Rotaciones V Hoj de Trjo Onds Rotcones Dnámc de ls Rotcones V Jme Felcno Hernández Unversdd Autónom etropoltn - ztplp éco, D. F. de gosto de 0 A. ACTVDAD NDVDUAL. En est Hoj de trjo veremos otro conjunto de prolems

Más detalles

TEORÍA DIFRACCIONAL DE LA FORMACIÓN DE IMÁGENES (II): ANÁLISIS EN FRECUENCIAS DE LOS SISTEMAS ÓPTICOS

TEORÍA DIFRACCIONAL DE LA FORMACIÓN DE IMÁGENES (II): ANÁLISIS EN FRECUENCIAS DE LOS SISTEMAS ÓPTICOS TEORÍA DIFRACCIONAL DE LA FORMACIÓN DE IMÁGENES (II: 1.- Introduccón.- Respuest fecuencl de los sstems coherentes frecuencl de los sstems ncoherentes θ f( Jun Lus Neves Dpto. Óptc. Fc. Cencs Unversdd de

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

REPASAR LOS ANTECEDENTES DE LA MECÁNICA CUÁNTICA:

REPASAR LOS ANTECEDENTES DE LA MECÁNICA CUÁNTICA: REPASAR LOS ANTECEDENTES DE LA MECÁNICA CUÁNTICA: -Rdón del uerpo negro -Efeto fotoelétro -Efeto Compton -El átomo de Bor -Hpótess de De Brogle. -Dfrón de prtíuls. Prnpo de Inertdumbre. Consultr: - Levne,

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

Vectores 4º Año Cód B e t in a C a t t á n e o Matemática N o e m í L a g r e c a Dpto. de Matemática

Vectores 4º Año Cód B e t in a C a t t á n e o Matemática N o e m í L a g r e c a Dpto. de Matemática Vetores Mtemát 4º Año Cód. 44-6 B e t n C t t á n e o N o e m í L g r e Dpto. de M t emát VECTORES EN EL ESPACIO En Fís mhos son los oneptos, tles omo ferzs, eloddes, desplzmentos, qe no peden ser determndos

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

Óvalo dados los dos ejes: óvalo óptimo

Óvalo dados los dos ejes: óvalo óptimo l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente

Más detalles

Disoluciones de electrolitos. Equilibrios iónicos

Disoluciones de electrolitos. Equilibrios iónicos Terodná. Te 5 Doluone de eletrolto. Equlro óno. Introduón Lo eletrolto on quell utn que en doluón, o oo óldo funddo, on pe de trnportr l orrente elétr gr u one. Pr un eletrolto dee uplre l ondón de eletroneutrldd:

Más detalles

Integrales de Fourier

Integrales de Fourier Integrles de Fourier Otro grupo de integrles que pueden ser evluds medinte el Teorem de Residuos son ls integrles de Fourier. Integrles que involucrn funciones rcionles, f(, que stisfcen ls condiciones

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado)

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado) Breve Reso de Geometrí en el Plno Euión Linel (tods ls vriles están elevds l 1ª) Ret Euión Generl de l Ret: A B C = 0 = f ( ) Euión Segmentri de l Ret: = 1 Euiones Cudrátis (or lo menos un vrile elevd

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 2. Espacios Vectoriales TEMA: MATRIZ DE TRANSICIÓN Y VECTOR DE COORDENADAS

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 2. Espacios Vectoriales TEMA: MATRIZ DE TRANSICIÓN Y VECTOR DE COORDENADAS PROLEMS RESUELTOS ÁLGER LINEL Tema. Espaos Vetorales TEM: MTRIZ DE TRNSICIÓN Y VECTOR DE COORDENDS Problema : Sean las bases y de un espao vetoral defndo sobre los números omplejos:, 0,,,, {( ) ( )} (,,

Más detalles

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS Proorionlidd en los triángulos Tles Mtemáti º Año Cód. 104-15 P r o f. J u n C r l o s B u e P r o f. D n i e l C n d i o P r o f. N o e m í L g r e P r o f. M r í d e l L u j á n M r t í n e z Dto. de

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

Universidad Técnica Federico Santa María

Universidad Técnica Federico Santa María Unversdd Técnc Federco Snt Mrí Unversdd Técnc Federco Snt Mrí Deprtmento de Informátc ILI-8 Cpítulo 5: Vrles Aletors Dstrucones Estdístc Computconl I Semestre 6 Profesor : Héctor Allende Profesor : Crlos

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

UNIVERSIDAD SIMON BOLIVAR Abril-Julio 2008 DEPARTAMENTO DE MATEMATICAS PURAS Y APLICADAS MATEMATICA III (MA-1116) PRACTICA 1

UNIVERSIDAD SIMON BOLIVAR Abril-Julio 2008 DEPARTAMENTO DE MATEMATICAS PURAS Y APLICADAS MATEMATICA III (MA-1116) PRACTICA 1 UNIVERSIDD SIMON BOLIVR rl-jlo 8 DEPRTMENTO DE MTEMTICS PURS Y PLICDS MTEMTIC III (M-) PRCTIC Conteno: Mtres. Operones on mtres. Sstems e m eones on n nógnts. Operones elementles e fl. Mtr eslon eslon

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

ENFOQUE MEDIA VARIANZA 1

ENFOQUE MEDIA VARIANZA 1 ENFOQE MEDIA VARIANZA Sndro A. Humn Antono El nfoqu Md-Vrnz nos d qu, bjo runstns spls, un utldd sprd pud sr dsrt n funón l md y l vrnz d los pgos y/o lotrís. Dh rduón s dud sólo n l so n qu l funón d

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes

Más detalles

MALLAS EN CIRCUTOS CC

MALLAS EN CIRCUTOS CC LECCIÓN Nº 03 MALLAS EN CICUTOS CC 1. EDES ELECTICAS Cundo los elementos áscos de un crcuto se conectn pr formr un crcuto, l nterconexón resultnte se descre en térmnos de nodos, cmnos, rms, lzos y mlls.

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles