Universidad Técnica Federico Santa María

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Técnica Federico Santa María"

Transcripción

1 Unversdd Técnc Federco Snt Mrí Unversdd Técnc Federco Snt Mrí Deprtmento de Informátc ILI-8 Cpítulo 5: Vrles Aletors Dstrucones Estdístc Computconl I Semestre 6 Profesor : Héctor Allende Profesor : Crlos Vlle Ω Espco Muestrl ({no fll}) Vrles Aletors : Ω no fll fll ({fll}) R IR - (]-, ]) I A cd s Ω le corresponde ectmente un vlor (s) IR + Fml de eventos elementles Conjunto Números Reles 3 Vrles Aletors Vrles Aletors Funcón que sgn cd punto del espco muestrl un número rel : Ω R Ω s k A s (s) (s) ; s Ω Ejemplo N : R Ω {fll, no fll} ({ no fll }) ({ fll }) El espco R es el conjunto de TODOS los posle vlores de (s). En certo sentdo podemos consderr R como otro espco muestrl. El espco muestrl orgnl nduce Ω un espco muestr R socdo l Vrle Aletor. Luego un evento A en S nduce un evento en el espco muestrl R. 4

2 Unversdd Técnc Federco Snt Mrí Vrles Aletors Vrle Aletor s k A s (s) (s) ; s Ω R : Ω R (], ]) I Vrle Aletor Dscret Nótese que pr cd pr de números reles y esten los sguentes conjuntos - - ( < < ) ( < ] [ < ) [ ] < ) ] ( > ( Se C I (con C Ω) Soporte contle f:c R ) f ( c ) ) I f ( c ) Usndo l trnsformcon C { c : I N} 7 El concepto de Proldd de ocurrenc de eventos en el espco muestrl Ω se puede plcr eventos en R. Ω Funcón de Proldd f() f : R [, ] (s) ) f() Vrle Aletor Dscret Se un vrle letor S el número de vlores de (esto es su Recorrdo). Es fnto (contle) o. Es contlemente nfnto (denumerle). Entonces llmmos un vrle letor dscret. Esto es, los vlores de (w) pueden ser enumerdos.,, 3,, n, s (s) R En el cso contle l lst es fnt. En el cso denumerle l lst es nfnt contle : Ω R 6 8

3 Unversdd Técnc Federco Snt Mrí Vrle Aletor Dscret C I Se, conjunto de eventos elementles de un fml de eventos del espco muestr; C Ω :C R es un funcón defnd sore el Espco Muestrl, que mpe en el conjunto de los Números Reles los eventos elementles defndos en C { c : I N }, tl que: pc ( ) c ) Se A el evento tl los eventos elementles c C pertnezcn tmén A, esto es c C A. Usndo l trnsformcón : ( c ) A) j { : c C A} f ( c ) j ) 9 Funcón de Cuntí de un v.. dscret ( c ) A) j { : c C A} f ( c Propeddes funcón de cuntí: ) Funcón de Dstrucón ) j ) F ( ) ) f ( ) ) Funcón de Proldd v. dscret Espernz y Vrnz de un v.. dscret A cd resultdo posle se soc un número f ( ) ( s) llmdo l proldd de Los f( ) deen stsfcer: f ( ) f ( ) ) f( ) de un v..d. [ ] E ) Vrnz de un v..d V [ ] ( E[ ]) ) El conjunto de pres (, f( )) se le denomn Funcón de Proldd o Cuntí n P (5) f(5) Funcón de Proldd de ms Funcón de Frecuenc 3

4 Unversdd Técnc Federco Snt Mrí f() Consderemos un solo epermento ε p,7 Dstrucón Bernoull se A un evento socdo con tl epermento. supongmos que A) p; luego A c ) - p Se l v.. (A ) (A c ) ) p ) p Entonces su funcón de cuntí es f() ) p ( p) -, < p < 3 Dstrucón Bnoml Supongmos que de un líne de produccón se etren n pezs con reemplzo, ls cules pueden ser defectuoss o no con un proldd p. : N de pezs defectuoss en ls n etrccones Entonces n k n k k) p ( p) k,,..., n k 5 Dstrucón Bernoull Dstrucón Bnoml Vrle letor dscret Bernoull: : Ω R Sen n repetcones ndependentes del epermento. Ω consste de todos los posles secuencs {,, 3,.., n }, donde cd puede ser un evento A o un evento A c. Esten n de tles secuencs. donde se tenen sólo eventos posles: ( w) ) p ( w) ) p f(),3 Se l vrle letor : número de veces que ocurre el evento A sus posles vlores son:,,, 3,..., n : Vrnz: E [] ( - p ) + * p p V [] ( - p ) ( - p ) + ( - p ) p p ( - p ),,, n 6 p, f() ) n,,,...,n < p < p ( p) n

5 Unversdd Técnc Federco Snt Mrí : Vrnz : Notcón: Dstrucón Bnoml E [] np V [] np (-p) ~ B( n, p) Crcterístcs: Se utlz en el muestreo de un polcón fnt con reemplzo. Tmén cundo l polcón es muy grnde, con o sn reemplzo, y que p se hce reltvmente constnte. Dstrucón Hpergeométrc Surge en polcones que contenen elementos clsfcles en estrtos (con defectos: D ; sn defectos: N - D). Consderemos un lote de tmño N. Se etre un muestr de tmño n sn reemplzo. : N de rtículos defectuosos en l muestr 7 9 Dstrucón Bnoml Dstrucón Bnoml D N D k n k P ( k) N n D N k,,,...,mn{ n, D } E [ ] n V [ ] D( N D)( N n) n N ( N ) Es plcle l muestrer lotes de tmño pequeño en relcón l tmño de l muestr (N n). 8 5

6 Unversdd Técnc Federco Snt Mrí Dstrucón de Posson Supongmos que tenemos un muestr de tmño grnde, pr lo cul l proldd de encontrr un rtículo defectuoso es pequeño p, y por lo tnto np el número totl de rtículos defectuosos en l muestr. Se λ np. Entonces k λ λe k) k,,,... k! : Vrnz: E [] λ V [] λ Cso límte: B( n, p ) con Dstrucón de Posson k n λ λ k) k n n n y p P n k k λ λ ( k) e IN ( k ) k! I ( k ) {,,,..., n} 3 Dstrucón de Posson Construccón de un Modelo Prolístco Ejemplo: Ls pezs l sld de un líne de produccón se clsfcn en defectuoss (D) o no defectuoss (N). Se tom tres pezs letormente y se clsfcn de cuerdo este esquem. El Ω pr este epermento es: Ω {NNN, NND, NDN, DNN, NDD, DND, DDN, DDD} L proldd que un pez se defectuos es p y no cm. Eso mplc que s l polcón es fnt, ls oservcones se hcen con reemplzo Interes el número de pezs D y no el orden en que slen. Se defne un v.. gul l número de pezs defectuoss; luego, {,,, 3). Encontrr (, f( )) 4 6

7 Unversdd Técnc Federco Snt Mrí,5,4,3,, f() Crendo un modelo prolístco (-p) 3 3(-p) p Ω {NNN, NND, NDN, DNN, NDD, DND, DDN, DDD} (NND) (NDN) (DNN) 3(-p) p 3 N) N) D) p 3 3 Vrles Aletors Contnus Cundo el epermento ε se relz sore un espco muestrl Ω que está relcondo con escls ntevlres. tles como medcones de dstncs, volúmenes, pesos, tempos, velocdd, voltjes, ntensdd, cudl, tempertur, etc. Y que los posles vlores de en un ntervlo, < <, son nfntos - no enumerles - no podemos hlr del -ésmo vlor de ; En tles csos se hl de Vrles Aletors Contnus, donde R es un ntervlo o un conjunto de ntervlos; entonces este un funcón contnu especl: f : R R < < + h) f ( ) lm > h h 5 7 F() Funcón de dstrucón v.. dscret F() < Σ f( ) < Σ f( ) < 3 3 Σ f( ) 3 < 4 4 Vrles Aletors Contnus Se un vrle letor contnu. L funcón densdd de proldd (pdf) es un funcón que stsfce: f() A: un evento n Σ f( ) 4 < 5 5 ) f( 5 ) Funcón de Proldd de ms Funcón de Frecuenc 6 f() > ; R, + R f() d A: { < ) A) < < ) f( ) d 8 7

8 Unversdd Técnc Federco Snt Mrí Dstrucones de Proldd Contnus Están defnds por un densdd de v.. f : R R se dce densdd de proldd Funcón de dstrucón cumuld S es un vrle letor, l Funcón de Dstrucón Acumuld mde l proldd de un suceso en un ntervlo de vlores: F( ) ) Propeddes: f() - f()d 9 S es un v.. Dscret F ( ) f ( ) Donde l sum es tomd sore todos los índces que stsfcen S es un v.. Contnu F ( ) f ( t) dt Donde l sumtor es reemplzd por un ntegrcón pr todos los vlores de t 3.. F ( ) ) f ( t) dt 3. F (- ) ; F ( ) 4. F es no decrecente 5. E Propeddes y Defncones P ( ) f ( ) d [ ] R 6. V ( E ) f ( ) d f ( ) d [ ] [ ] R f() A f ( ) d 3 Construccón de Modelos de Proldd F : R R Se es un funcón de dstrucón, entonces: F es no decrecente F es contnu por l derech lm f ( ) y lmf ( ) Luego ] -, ]) F() defne un Proldd Además: ],] ) F() - F() [,] ) F() - F(-) ],[ ) F(-) - F() [,[ ) F(-) - F(-) 3 8

9 Unversdd Técnc Federco Snt Mrí Vrles Aletors Contnus Dstrucón Unforme f(), Se un vrle letor contnu que puede tomr culquer vlor entre ; cuy pdf es: f ( ) Se 3; A: el evento { 4 < < 7 },, mn má Entonces: 7 A) 4 < < 7) 4 9 d A) Funcón de densdd Funcón de Dstrucón es Notcón: Dstrucón Unforme F ( ) f ( ) < < < < + ( ) E[ ] Vrnz V [ ] ~ U (, ) Funcón de densdd L funcón de Dstrucón no tene epresón nlítc. (Usr tls o clculdors) Vrnz Notcón: Dstrucón Norml o Gussn f ( ) µ σ πσ [ ] µ [ ] σ E V ~ N( µ, σ ) e, R

10 Unversdd Técnc Federco Snt Mrí Dstrucón Norml Dstrucón Eponencl Funcón de densdd Funcón de Dstrucón es Vrnz Notcón: λ f ( ) e s, λ > λ V [ ] λ ~ ep( λ) λ F ( ) e E [ ] λ Dstrucón Norml o Gussn Dstrucón Eponencl Estndrzcón Hcendo µ Z N(, ) σ se tene que: z fz( z) e π y F Z (z) se otene de tls!, z R 38 4

11 Unversdd Técnc Federco Snt Mrí Funcón de densdd Funcón de Dstrucón es Vrnz Notcón: Dstrucón de Rylegh f ( ) e α α s F ( ) e α π E[ ] π V [ ] ( ) α ~ R( α) α Funcón de densdd Funcón de Dstrucón es F ( ) e Vrnz Notcón: Dstrucón de Weull f ( ) e s [ ] / Γ +, >, > E / Γ + Γ V + ~ Weull(, ) [ ] 4 43 Dstrucón de Rylegh Dstrucón de Weull 4 44

12 Unversdd Técnc Federco Snt Mrí Funcón de densdd Vrnz Notcón: Dstrucón t-studentt f ( ) ν + ν νπ V ν + Γ E Γ [ ] ν > ν [ ] ν > ν ~t ν + ν Funcón de densdd Funcón de Dstrucón es Vrnz Notcón: Dstrucón Gmm α β e f (, α, β ) I α R α) β + f ( ) F ( ) ) ( t, α, β ) dt E[ ] αβ V [ ] αβ ~ Gmm( α, β ) α, β ) n) y n e y dy n > Dstrucón t-studentt Dstrucón Gmm ~ α, β ) 46 48

13 Unversdd Técnc Federco Snt Mrí Funcón de densdd Funcón de Dstrucón es Vrnz Notcón: Dstrucón Ch-Cudrdo Cudrdo f F ( ) ) ( t, n) dt E [ ] n V [ ] n ~ χ ( n) n /,) f n e n Γ (,n) I () n R+ Funcón de densdd r + s) r f (, r, s) s ( ) I[ ]( ), r) s) Funcón de Dstrucón es Vrnz Notcón: Dstrucón Bet f F ( ) ) ( u, r, s) du E V [ ] [ ] β( r, s) µ [ ] r E r + s rs ( r + s) ( r + s + ) ~ Bet( r, s) β ( r, s) r s ( ) d r + s) r + u) r) r + s + u) 49 5 Dstrucón Ch-Cudrdo Cudrdo Dstrucón Bet 5 5 3

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura:

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura: LONGITUD DE ARCO Clculr l longtud de rco o de un curv dd por un funcón f en un ntervlo x, tene muchs plccones en ls cencs. Es necesro que hgmos un reve estudo del cálculo de ells. Un proxmcón es un líne

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Dstrbucones de probabldad Toda dstrbucón de probabldad es generada por una varable aleatora x, la que puede ser de dos tpos: Varable aleatora dscreta (x). Se le denomna varable porque puede tomar dferentes

Más detalles

La velocidad del viento es un fenómeno aleatorio, su intensidad es muy variable, de modo que es adecuada tratarla en forma estadística.

La velocidad del viento es un fenómeno aleatorio, su intensidad es muy variable, de modo que es adecuada tratarla en forma estadística. 8. ESTADÍSTICA DEL VIENTO L velocdd del vento es n fenómeno letoro, s ntensdd es my vrble, de modo qe es decd trtrl en form estdístc. Un cntdd estdístc de mportnc es el promedo o med rtmétc. S tenemos

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

C Capacitores e inductores. Circuitos de Primer Orden

C Capacitores e inductores. Circuitos de Primer Orden C Cpctores e nductores. Crcutos de Prmer Orden C El crcuto que se muestr en l fgur c h llegdo ls condcones de estdo estle ( l corrente en el cpctor es cero ) con el nterruptor en l poscón. S el nterruptor

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 0-03 FÍSICA C Tercer evlucón SOLUCIÓN Pregunt (5 puntos) Un eser conductor con rdo nteror de 7 cm y rdo exteror de 8 cm

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

Método de mínimos cuadrados para la aproximación de datos experimentales

Método de mínimos cuadrados para la aproximación de datos experimentales Método de ínos cudrdos pr l procón de dtos eperentles Aprocón por rects que psn por el orgen A contnucón, efectureos el cálculo de l pendente de l rect que ps por el orgen que eor se pro un conunto de

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Fundamentos Físicos de la Ingeniería Tercer Examen Parcial / 5 de junio de Figura 1

Fundamentos Físicos de la Ingeniería Tercer Examen Parcial / 5 de junio de Figura 1 Fundmentos Físcos de l ngenerí Tercer Exmen Prcl / 5 de juno de 4. Dsponemos de un esfer conductor, Q Q mc, de rdo, que posee un crg eléctrc Q net Q, de otr esfer conductor, huec, de rdos nteror exteror,

Más detalles

Estadística II. 1. Modelos de distribución de variables aleatorias ADMINISTRACIÓ I DIRECCIÓ D'EMPRESES

Estadística II. 1. Modelos de distribución de variables aleatorias ADMINISTRACIÓ I DIRECCIÓ D'EMPRESES stdístic II. Modelos de distriución de vriles letoris ADMINISTRACIÓ I DIRCCIÓ D'MPRSS stdístic II. Modelos de distriución de vriles letoris I. Vriles Aletoris Discret .. Distriución dicotómic y inomil

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

7. CONDENSADORES CON DIELÉCTRICO

7. CONDENSADORES CON DIELÉCTRICO 7 ONDNSADORS ON DILÉTRIO PROBLMA 46 Dos condensdores de cpcddes gules se crgn en prlelo un dferenc de potencl mednte un terí A contnucón se desconect l terí y se ntroduce en uno de los condensdores un

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA Dr. José A. Peñlbert Unversdd de Puerto Rco en Croln Deprtmento de Cencs Nturles Introduccón Hn surgdo un sere de teorís sobre el funconnmento

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio. Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defncón de pdct escl de ectes. Se denmn pdct escl de ds ectes (, ) y (, ), l núme: cs α y l epesentms p En el pdct escl se mltplcn ds ectes, pe el esltd es n núme (escl). S ls ectes petenecen

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES

Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES 4.1 DEFINICION. Un hipérol es el conjunto de todos los puntos del plno euclideno R~ tles que que l diferenci de sus distncis dos puntos fijos es en vlor soluto un constnte. Así, si F, y F, son dos puntos

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

Propiedades Asintóticas

Propiedades Asintóticas Capítulo 3 Propedades Asntótcas 3.. Dstrbucones Estaconaras Defncón 3. Sea X n, n, una cadena de Markov con espaco de estados E y matrz de transcón P. Sea π(), E, una dstrbucón de probabldad, es decr,

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

AUTOMATAS FINITOS CIENCIAS DE LA COMPUTACION I 2009

AUTOMATAS FINITOS CIENCIAS DE LA COMPUTACION I 2009 AUTOMATAS FINITOS Un utómt finito es un modelo mtemático de un máquin que cept cdens de un lenguje definido sore un lfeto A. Consiste en un conjunto finito de estdos y un conjunto de trnsiciones entre

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio.

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio. . Introuón Equlro Químo ermonám. em 4 El esto e equlro e ls reones químs reversles en sstems y onstntes tene ls sguentes rterísts: ) L omposón e los omponentes e l reón no vrí en el tempo. or eso, es posle

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3 . DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defnón de pdt esl de vetes. Se denmn pdt esl de ds vetes ( ) y ( ) p l núme: s y l epesentms En el pdt esl se mltpln ds vetes pe el esltd es n núme (esl). S ls vetes peteneen l esp vetl

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Φ i. Φ i. di dt. Φ i = Φ. El Transformador Monofásico. Inductancia Propia e Inductancia Mutua. Inductancia Propia e Inductancia Mutua

Φ i. Φ i. di dt. Φ i = Φ. El Transformador Monofásico. Inductancia Propia e Inductancia Mutua. Inductancia Propia e Inductancia Mutua nuctnc Prop e nuctnc Mutu El Trnsformor Monofásco Trnsformores y Máquns Eléctrcs u ( t) e( t) t Flujos socos los onos nuctnc Prop e nuctnc Mutu m spersón M En el ono Cuso por l corrente spersón egún l

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Campo Magnético creado por un Conductor Recto:

Campo Magnético creado por un Conductor Recto: Cmpo Mgnétco credo por un Conductor Recto: fgur 1 Y α X Z Z P r d x Y dx X CAMPO CREADO POR UN CONDUCTOR RECTILÍNEO Pr clculr el cmpo mgnétco en un punto exteror un conductor recto por el cul crcul un

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles