Curvas en el plano y en el espacio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curvas en el plano y en el espacio"

Transcripción

1 Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que puede ser un semirrect o todo R. Esto signific que si α(t) = (x 1 (t),..., x n (t)), entonces ls funciones x i (t) son de clse C. L vrible t recibe el nombre de prámetro de l curv. L imgen α(i) se denomin trz de l curv. Este curso estudiremos únicmente curvs en el plno y en el espcio. Ejemplo No hy que identificr l curv (un plicción) con su trz (un subconjunto del plno o el espcio). Ls dos curvs α(t) = (sen t, cos t) y β(t) = (cos t, sen t), son diferentes y, sin embrgo tienen l mism trz (l circunferenci unidd). (sen t, cos t) (cos t, sen t) Figur 1.1: Dos curvs con un mism trz. 1

2 2 CAPÍTULO 1. CURVAS EN EL PLANO Y EN EL ESPACIO 2. L rect, en su conocid form prmétric, α(t) = (p 1 + tv 1, p 2 + tv 2, p 3 + tv 3 ) 3. Un curv no es necesrimente inyectiv, es decir, puede tener utointersecciones. Así, l curv prmetrizd α(t) = (t 3 4t, t 2 4) line Figur 1.2: Un curv puede tener utointersecciones. 4. Un curv prmetrizd no es, necesrimente diferencible; por ejemplo α(t) = (t, t ), y que t no es diferencible en t =..8 line Figur 1.3: Un curv no es, necesrimente diferencible Sin embrgo hy curvs diferencibles, cuy trz tiene picos ; por ejemplo α(t) = (t 3, t 2 ). line 1 Figur 1.4: -1 Curv diferencible, con specto engñoso Definición (Vector tngente o vector velocidd). Al vector α (t) = (x (t), y (t), z (t)) se le llm vector tngente l curv α, pr t I o vector velocidd. L velocidd es α (t). Llmremos rect tngente l curv α en el punto α(t) l rect que ps por dicho punto y tiene como vector director l vector tngente l curv en tl punto. Observemos que si α (t) = pr lgún t I, entonces no podemos clculr l rect tngente. A los puntos de l curv α cuyo vector tngente es cero, se les llm puntos singulres. En l curv del ejemplo (5) nterior, α() es un punto singulr.

3 1.1. CURVAS PARAMETRIZADAS 3 Definición (Curv regulr). Un curv prmétric diferencible α : I R 3 es un curv regulr si α (t) pr cd t I. Ejercicios Un curv cisoide es l generd por l sum de los vectores de posición de dos curvs fijs. L cisoide de Diocles es l curv generd por l diferenci entre el vector de posición de los puntos de un rect prlel l eje Y que ps por el punto (2, ) y el vector de posición de l circunferenci de rdio centrd en (, ) como muestr l figur. Encuentre un prmetrizción de dich curv. Figur 1.5: Cisoide de Diocles. 2. L epicicloide es l curv pln generd por el movimiento de un punto de un circunferenci que rued, sin deslizmiento, sobre otr circunferenci. q r P (r,) 1,16 cm 1,23 cm Figur 1.6: Epicicloide. ) Determine un prmetrizción de l epicicloide generd por un punto P un circunferenci de rdio r que que gir sobre un circunferenci de rdio r centrd en el origen, suponiendo que l posición inicil de P es (r, ). b) Supong que r = 3 y r = 1. Encuentre los puntos singulres de l curv y represéntel gráficmente.

4 4 CAPÍTULO 1. CURVAS EN EL PLANO Y EN EL ESPACIO 3. L hipocicloide es l curv pln generd por el movimiento de un punto de un circunferenci que rued, sin deslizmiento, por el interior de otr circunferenci. r 1,49 q P (r,) 1,46 Figur 1.7: Hipocicloide. 4. Un punto P de un circunferenci de rdio r en el plno XY que rued, sin deslizmiento sobre el eje X describe un curv que se llm cicloide. Obteng un prmetrizción pr l cicloide suponiendo que l Figur 1.8: Cicloide. circunferenci de rdio r prte de l posición en que su centro es el punto (, r) y que l posición de prtid de P es el origen. 5. L curv de Gergome es l curv determind por l intersección de dos cilindros perpendiculres. Sen los cilindros x 2 + (z 1) 2 = 1 y y 2 + z 2 = 1. Demuestre que α(t) = ( 2 cos t cos 2 t, sen t, cos t), con t ( π 2, π 2 ) es un prmetrizción diferencible, pero prcil de l curv de Gergome de los dos cilindros nteriores, tl que su trz contiene el punto (1,, 1). Encuentre otr prmetrizción diferencible tl que su trz conteng l punto (, 1, ) Reprmetrizciones. Longitud del rco Ejemplo Es fácil ver que ls curvs prmetrizds siguientes tienen como trz l circunferenci de centro el origen y rdio unidd: α(t) = (cos t, sen t), t R β(t) = (cos( t), sen ( t)), t R γ(t) = ( cos(t + π 2 ), sin (t + π 2 )), t R

5 1.2. REPARAMETRIZACIONES. LONGITUD DEL ARCO 5 Definición (Reprmetrizción). Se α : I R 3 un curv prmetrizd diferencible; y g : J I un difeomorfismo. Entonces l plicción β : J R 3 definid como β = α g, es clrmente un curv prmetrizd diferencible que se llm reprmetrizción de l curv α; l plicción g recibe el nombre de cmbio de prámetro Longitud del rco Se α : I R 3 un curv prmetrizd diferencible y un intervlo cerrdo [, b] I. Consideremos un prtición de dicho intervlo P = { = t < t 1 <... < t n = b}; dich prtición determin un líne (curv) poligonl inscrit en l trz de α, cuy longitud no es otr cos que (t ) 2 (t 1 ) (t 3 ) ()= (t ) (b)= (t 4 ) Figur 1.9: Un poligonl inscrit en l curv. l sum de ls longitudes de cd uno de los segmentos que l formn L b (P, α) = α(t k ) α(t k 1 ). Llmremos diámetro de un prtición P P = máx{t k t k 1 : t = 1,..., n}. Proposición Si α : I R 3 es un curv prmetrizd diferencible y [, b] I; entonces lím P L b (α, P ) = b α (t) dt. Demostrción. Vemos que pr cd ε >, existe δ > tl que si P < δ, entonces L (α, P ) α (t) dt < ε Si α(t) = (x(t), y(t), z(t)), entonces α (t) = (x (t)) 2 + (y (t)) 2 + (z (t)) 2 Por otr prte, por el teorem del vlor medio plicdo cd un de ls funciones x, y, z, tenemos que pr cd intervlo de l prtición existen k, b k, c k (t k 1, t k ) tles que x(t k ) x(t k 1 ) = x ( k )(t k t k 1 ) y(t k ) y(t k 1 ) = y (b k )(t k t k 1 ) z(t k ) z(t k 1 ) = z (c k )(t k t k 1 )

6 6 CAPÍTULO 1. CURVAS EN EL PLANO Y EN EL ESPACIO En definitiv tenemos L b (α, P ) = α(t k ) α(t k 1 ) = (x ( k ), y (b k ), z (c k )) (t k t k 1 ) Si hor considermos l integrl y plicmos el teorem del vlor intermedio, existen ξ k (t k 1, t k ), pr cd k = 1,..., n tles que Entonces tenemos b α (t) dt = L (α, P ) α (t) dt = tk t k 1 α (t) dt = α (ξ k ) (t k t k 1 ). (x ( k ), y (b k ), z (c k )) (t k t k 1 ) α (ξ k ) (t k t k 1 ) = ( (x ( k ), y (b k ), z (c k )) x (ξ k ), y (ξ k ), z (ξ k )) ) (t k t k 1 ). (1.1) Ahor podemos considerr l función f(t 1, t 2, t 3 ) = (x (t 1 )) 2 + (y (t 2 )) 2 + (z (t 3 )) 2, definid entre I 3 y R que, es clrmente continu y por tnto, uniformemente continu en el compcto [, b] 3 I 3. Esto signific que ddo ε >, existe δ > tl que si. (t 1, t 2, t 3 ), (t 1, t 2, t 3) [, b] 3 y t i t i < δ pr i = 1, 2, 3, entonces f(t 1, t 2, t 3 ) f(t 1, t 2, t 3) < ε b Por tnto si tommos un prtición P tl que P < δ, ddo que k, b k, c k, ξ k [t k 1, t k ], se cumple l condición nterior pr los puntos ( k, b k, c k ) y (ξ k, ξ k, ξ k ); y teniendo en cuent l iguldd qued Lb (α, P ) b α (t) dt n ε b ( f( k, b k, c k ) f(ξ k, ξ k, ξ k ) )(t k t k 1 ) < (t k t k 1 ) = ε. (1.2) Después de l proposición nterior podemos definir l longitud de un rco de curv del siguiente modo. Definición (Longitud del rco). Dd un curv prmetrizd diferencible α : I R 3 y un intervlo [, b] I, definimos l longitud del rco de curv α([, b]) como L b (α) = b α (t) dt.

7 1.2. REPARAMETRIZACIONES. LONGITUD DEL ARCO Curvs prmetrizds por l longitud del rco Observción Se ve fácilmente que si α (t) = 1 pr todo t I, entonces L t (α) = t, es decir l longitud del rco coincide con con l del segmento [, t]; y recíprocmente, si ocurre esto último, entonces α (t) = 1. Además si =, entonces L t (α) = t. Definición (Curv prmetrizd por l longitud del rco). Se α : I R 3 es un curv prmetrizd diferencible, diremos que dich curv está prmetrizd por l longitud del rco si α (t) = 1. Proposición Tod curv α : I R 3 prmetrizd diferencible y regulr, se puede prmetrizr por l longitud del rco. Demostrción. Ddo t I, podemos definir l función L : I : R como L(t) = L t t (α) = t t α (s) ds; l función α (s) es, en generl, únicmente continu, luego l función L es derivble con L (t) = α (t) ; pero l ser α regulr tenemos que L es de clse C y creciente, por tnto, si J = L(I), L : I J es un biyección y su invers g : J I, es de clse C, es decir, se trt de un difeomorfismo, con lo cul β = α g es un reprmentrizción de α. Vemos que β es un prmetrizción por l longitud del rco. En efecto, observemos que g(l(t)) = t, luego si derivmos g (L(t))L (t) = 1; y por tnto g (L(t)) = 1 L (t) = 1 α (t) Entonces β (s) = α (g(s))g (s) = de donde se deduce que β (s) = 1, con lo que y lo tenemos. Ejemplo α (g(s)) α (g(s)) 1. Se α(θ) = (r cos θ, r sen θ), con r >, entonces α (θ) = ( r sen θ, r cos θ) y, por tnto α (θ) = r. Entonces L(t) = rt, con lo que l invers es g(s) = s r. Entonces ( β(s) = r cos s r, r sen r ) s es un reprmetrizción por l longitud del rco. 2. Consideremos hor l curv α(t) = (t, t 2 ), entonces α (t) = (1, 2t) y por tnto α (t) = 1 + 4t 2. Entonces t L(t) = 1 + 4s2 ds = 1 (2t 4 ln + ) 1 + 4t t 1 + 4t 2, pero no podemos despejr t con lo que no podemos encontrr explícitmente l reprmetrizción por l longitud del rco. Aunque son muchos los csos en los que l prmetrizción por l longitud del rco no se puede encontrr, en nuestro estudio de ls curvs supondremos, csi siempre, que ls curvs vienen prmetrizds por l longitud del rco. Ejercicios Cuáles son los cmbios de prámetro en el ejemplo nterior? Qué ocurre con l velocidd en cd uno de ellos?

8 8 CAPÍTULO 1. CURVAS EN EL PLANO Y EN EL ESPACIO 7. Se β es un reprmetrizción de un curv prmetrizd diferencible α. ) Demuestre que β es regulr si, y sólo si α lo es. b) L rects tngentes en culquier punto coinciden. 8. Explique por qué δ(t) = (cos(t 3 ), sen(t 3 )) no es un reprmetrizción de α(t) = (cos t, sen t), t R. 9. L curv α : R R 3 definid como α(t) = ( e bt cos t, e bt sen t ) con >, b <, se llm espirl logrítmic (un curv curios y con histori). ) Clcule l función longitud del rco, pr t R, reltiv t. b) Reprmetrice est curv por l longitud del rco. c) Estudie su trz. line 1-1 Figur 1.1: Espirl logrítmic Demuestre que l longitud de un curv prmetrizd diferencible es invrinte por movimientos rígidos. 11. Si α : I R 3 es un curv prmetrizd diferencible y [, b]. Demuestre que α(b) α(b) L b (α) (Los segmentos de rect son ls curvs de menor longitud, entre ls que unen dos puntos) 12. Se α : I R 3 un curv prmetrizd diferencible. ) Si α no ps por el origen y α(t ) es el punto de l trz de α más cercno l origen y α (t ), demuestre que los vectores α(t ) y α (t ) son ortogonles. b) Si α (t) es idénticmente nul, que se puede decir sobre α? c) Si α (t) pr todo t I. Demuestre que α(t) es un constte no nul si, y sólo si α(t) y α (t) son ortogonles pr todo t I. 13. Cálcule l longitud de l cicloide correspondiente un rotción complet de l circunferenci. Prmetrice l cicloide por l longitud del rco.

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2 Unidd Integrl de Líne. Integrl de funciones vectoriles Cmpos Vectoriles Denición. Un cmpo vectoril en el plno R es un función F : R R que sign cd vector x D R un único vector F (x) R con F (x) = P (x)i

Más detalles

CURVAS REGULARES. LONGITUD DE ARCO

CURVAS REGULARES. LONGITUD DE ARCO CURVAS REGULARES. LONGITUD DE ARCO CÉSAR ROSALES. CURVAS Y SUPERFICIES Existen vris forms de presentr lo que intuitivmente entendemos por un curv. Vemos un ejemplo. Ddo p 0 R 2 y R > 0, l circunferenci

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

y se dice que dicha aplicación σ = σ(t) es una parametrización de la curva C.

y se dice que dicha aplicación σ = σ(t) es una parametrización de la curva C. Cpítulo I Concepto de curv 1. Curvs regulres Intuitivmente, un curv en R n es un conjunto C R n que puede describirse con un único prámetro que vrí en un intervlo I de l rect rel R. Dich descripción se

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

6. Curvas en el espacio

6. Curvas en el espacio FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 08-2 Bsdo en el punte del rmo Mtemátics Aplicds, de Felipe Álvrez, Jun Diego Dávil, Roberto Cominetti y Héctor

Más detalles

Integrales sobre caminos

Integrales sobre caminos Cpítulo 9 Integrles sobre cminos Hst hor hemos estudido integrción de funciones sobre conjuntos (con volumen) de R n. En este y los próximos cpítulos discutiremos l integrción de funciones sobre cminos

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Integral de ĺınea. Tema Caminos y curvas en IR n.

Integral de ĺınea. Tema Caminos y curvas en IR n. Tem 3 Integrl de ĺıne 3.1 minos y curvs en IR n. Definición 3.1 Se [, b] IR, diremos que α: [, b] IR n es un cmino en IR n si α es continu en [, b]. A los puntos α y αb de IR n los llmremos extremos del

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Teorema del punto fijo Rodrigo Vargas

Teorema del punto fijo Rodrigo Vargas Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo

Más detalles

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar.

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar. Contenidos Tem 1. Geometrí Diferencil Curvs en el espcio Análisis Vectoril y Estdístico Preliminres Operciones con vectores en R 3 Producto esclr Producto Vectoril Deprtmento de Mtemátic Aplicd E.P.S.

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

1 Métodos Matemáticos I. Parte: Integrales de ĺınea y superficie. I.T.I. en Mecánica

1 Métodos Matemáticos I. Parte: Integrales de ĺınea y superficie. I.T.I. en Mecánica 1 Métodos Mtemáticos I Prte II Integrles de ĺıne y superficie Prte: Integrles de ĺıne y superficie I.T.I. en Mecánic 2 Métodos Mtemáticos I : Integrl de ĺıne Tem 3 Integrl de ĺıne 3.1 minos y curvs en

Más detalles

CALCULO VECTORIAL. Campos vectoriales

CALCULO VECTORIAL. Campos vectoriales mpos vectoriles ALULO VETORIAL Un cmpo vectoril o cmpo de vectores es un función que sign un vector un punto del plno o del espcio. Si M y N son funciones de vriles definids en un región R del plno, un

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

1. Introducción: longitud de una curva

1. Introducción: longitud de una curva 1. Introducción: longitud de un curv Integrles de L ide pr clculr l longitud de un curv contenid en el plno o en el espcio consiste en dividirl en segmentos pequeños, escogiendo un fmili finit de puntos

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

es una dirección de movimiento en el tiempo t.

es una dirección de movimiento en el tiempo t. Algunos resultos sobre erivs e funciones vectoriles Definición: Si r(t) es un vector e posición e un prticul que se mueve lo lrgo e un curv suve en el espcio, entonces: ) l veloci es l eriv e l posición

Más detalles

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo 2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teorems de punto fijo Definición 1. Se X un espcio vectoril rel. Se dice que un

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Integrales de ĺınea complejas

Integrales de ĺınea complejas Tem Integrles de ĺıne complejs. Integrles de líne.. Funciones complejs de vrible rel Un función complej de vrible rel llev socid un función vectoril de vrible rel, por lo que ls definiciones y resultdos

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

2 Funciones vectoriales

2 Funciones vectoriales 2 Funciones vectoriles 2.1. Definición, dominio, imgen, gráfic Definición de función Un función de vlor vectoril o simplemente un función vectoril (en R n ) vectoril es un función cuyo dominio es un conjunto

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Teoremas de la Función Inversa y de la Función Impĺıcita

Teoremas de la Función Inversa y de la Función Impĺıcita Teorems de l Función Invers y de l Función Impĺıcit Betriz Porrs 1 Introducción En el cpítulo nterior estudimos lguns propieddes de ls funciones diferencibles que tenín l diferencil nul El desrrollo de

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Teorema de la Función Inversa

Teorema de la Función Inversa Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones

Más detalles

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2 Royl Americn School Profesor An Mendiet Guí de Sustentción Mtemátic 1º medio A Formndo persons: Responsles respetuoss honests y leles 1) Represent en el plno crtesino los siguientes puntos: ) A(-1) d)

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

3 Funciones con valores vectoriales

3 Funciones con valores vectoriales GTP 3. Cálculo II - 20 3. Tryectoris: velocidd y longitud de rco 3 Funciones con vlores vectoriles 3. Tryectoris: velocidd y longitud de rco. Pr cd un de ls siguientes curvs determinr los vectores velocidd

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

EJERCICIOS DE INTEGRACIÓN DEFINIDA

EJERCICIOS DE INTEGRACIÓN DEFINIDA EJERCICIOS DE INTEGRACIÓN DEFINIDA. Definición de función integrble. Primers propieddes. Clculr ls integrles de ls siguientes funciones en los intervlos que se indicn: ) f(x) = [x] en [, n], con n N. b)

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles