1.4. Sucesión de funciones continuas ( )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.4. Sucesión de funciones continuas ( )"

Transcripción

1 1.4. Sucesión de funciones continus ( ) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D: Pr demostrrlo hemos de probr que, pr todo punto de I, se cumple ε > 0 δ > 0 / 0 < x < δ = f(x) f() < ε. Por l convergenci uniforme de l sucesión {f n } n N en I tenemos que ε > 0 n 0 (ε) / f m (x) f(x) < ε/3, m n 0, x I. Por l continuidd de ls funciones f n en I podemos segurr que, I, ε > 0 δ > 0 / 0 < x < δ = f m (x) f m () < ε/3, m N. Entonces, ddo ε obtenemos n 0 (ε) y elegimos un m culquier (m n 0 ). Tommos hor l función f m y el ε nterior y, fijdo el punto, obtenemos δ. Así pues, ddo ε, existen m, δ tles que se cumplen ls dos condiciones l tiempo, resultndo que, si 0 < x < δ, donde f(x) f() = (f(x) f m (x)) + (f m (x) f m ()) + (f m () f()) f(x) f m (x) + f }{{} m (x) f m () + f }{{} m () f() < ε }{{} 3 + ε 3 + ε 3 = ε. (1) (2) (3) - (1) y (3) son menores que ε/3 por l continuidd uniforme de {f n }. - (2) es menor que ε/3 por l continuidd de f m en.

2 2.5. Serie de funciones continus ( ) Se I = [, b]. Si un serie f n, de funciones continus en I, converge uniformemente F en I, F es continu en I. D: Sbemos que si un sucesión de funciones continus converge uniformemente su función límite f, ést es continu (pdo. 1.4). Entonces, si ls f n son continus en I, l sum prcil F n = n 1 f i es tmbién continu en I, por ser un sum de funciones continus. Como F n converge uniformemente su función sum F en I, F es continu en I Integrción de un serie de funciones ( ) Se I = [, b]. Si un serie f n, de funciones integrbles en I, converge uniformemente F en I, F es integrble en I y su integrl es l sum de l serie de integrles. f i (x) c.u. = F (x) = f i (t)dt c.u. = f i (t)dt, x [, b] Dicho de otr form, si un serie de funciones integrbles, converge uniformemente F, l serie de ls integrles converge uniformemente l integrl de F. D: Lo demostrremos pr el cso de funciones f n continus (por tnto integrbles). Se l serie f n, de f n continus, que converge uniformemente F en I. Tnto F n = n 1 f i como F son funciones continus (pdo. 2.5), luego el resto R n = F F n será tmbién continu y por tnto integrble. Entonces F (t)dt = F n (t)dt + R n (t)dt, x I Al ser F n un sum de funciones integrbles, su integrl será l sum de ls integrles. Escribiendo demás F como sum de l serie, l expresión nterior se convierte en f i (t)dt = n f i (t)dt + R n (t)dt (1) Queremos demostrr que l integrl de l sum de l serie f n es l sum de l serie de ls integrles de ls f n, es decir el límite de l sum prcil, cundo n. Pr ello vemos que l integrl de R n tiende 0 cundo n. En efecto, como F n converge uniformemente F, se cumple con lo que ε n(ε) / R n (t) = F (t) F n (t) < R n (t)dt R n (t)dt < ε b ε b dt = Por lo tnto, tomndo límites en (1) obtenemos ( ) ( x n lím f i (t)dt = lím f i (t)dt + (2) ε (x ) ε b R n (t)dt ) = f i (t)dt

3 Y como el término entre préntesis del primer miembro no depende de n, f i (t)dt = f i (t)dt Not: obsérvese que el n clculdo en (2) depende sólo de ε, por lo que l serie de ls integrles converge uniformemente l integrl de l sum de l serie Derivción de un serie de funciones ( ) Se I = [, b]. Dd un serie f n, de funciones derivbles en I, que converge en un punto de I, tl que f n converge uniformemente en I, entonces f n c. u. en I F, que es derivble en I y su derivd es l sum de l serie de derivds. f n (x 0 ) = F (x 0 ) y f n(x) c.u. = G(x) = f n (x) c.u. = F (x) y F (x) = G(x) D: Lo demostrremos pr el cso de funciones f n con derivd f n continu. Se l serie f n, de f n derivbles, tles que ls f n son continus. Como f n converge uniformemente en I G, ést será continu (pdo. 2.5). Al ser ls f n continus, son integrbles. Entonces, prtir de lo visto en el pdo. 2.6, G es integrble y su integrl es l sum de l serie de ls integrles. Por lo tnto, ddo x 0 I, x I se cumplirá G(t)dt c.u. = x 0 x 0 f n(t)dt = (f n (x) f n (x 0 )) Al ser G integrble, l serie (f n (x) f n (x 0 )) converge (uniformemente) l integrl de G. Por otro ldo, l ser convergente l serie numéric f n (x 0 ), convergerá tmbién l serie sum de mbs f n (x). Llmndo F (x) l sum de est últim, result x 0 G(t)dt = f n (x) f n (x 0 ) = F (x) F (x 0 ) Derivndo hor respecto x y plicndo el Primer Teorem Fundmentl del Cálculo result d x G(t)dt = G(x) = (F (x) F (x 0 )) = F (x) dx x 0 O, lo que es lo mismo ( f n(x) = f n (x) )

4 3.1. Teorem de Cuchy-Hdmrd ( ) Pr tod serie de potencis, existe un r / 0 r (rdio de convergenci) tl que: - Si x < r, l serie es bsolutmente convergente. - Si x > r, l serie no es convergente. D: Vimos en series numérics que l convergenci bsolut es equivlente l incondicionl, por lo que plicmos el criterio de l ríz n-ésim n x n. lím n n x n = lím n n n x n = lím n n x = l x. Si l 0 y l, se cumple: - Si x < 1 l = l x < 1 = n x n convergente = n x n convergente. - Si x > 1 n = l x > 1 = lím n x l n > 1 = n 0 / n n x n > 1 n n 0 = n x n > 1 n n 0, por lo que no se cumple l cond. necesri de convergenci. Si l = 0 = l x < 1 x = r =. Si l = = lím n n x < 1 sólo en x = 0 = r = 0. Es decir, comprobmos que existe un r que cumple l condición del enuncido. Si l = lím n n =, r es nulo; si l es nulo, r vle. En los restntes csos, r = 1 l. Nots: ) Pr x = r, el teorem no firm nd, por lo que l serie puede ser convergente o no y hemos de estudir l serie numéric que result pr x = ±r. b) Se dice que α R, o α, es un límite de oscilción de {α n } si existe lgun subsucesión de {α n } que tiene límite α (o, lo que es equivlente, si en todo entorno de α hy infinitos elementos de {α n }). Esto puede ocurrir, por ejemplo, si α n no tiene un expresión únic, sino que es distinto pr términos pres e impres. Un sucesión de números reles no tiene por qué tener límite, pero siempre tendrá lgún límite de oscilción, finito o infinito (J. Burgos, p. 73). Si demás está cotd, tendrá un límite de oscilción finito (T. de Bolzno-Weierstrss pr sucesiones). En el cso n n, tomremos pr l el myor de esos vlores: l = lím n n (límite superior de oscilción). c) Otr form de clculr l es como lím n+1 n y vle lo mismo. ; pues, si existe lím n+1 n, existe lím n n d) A prtir de este teorem, result que el cmpo de convergenci C de ls series de potencis dopt siempre un de ests cutro forms: ( r, r), ( r, r], [ r, r), [ r, r]. Ejemplos propuestos (con solución). Clculr el cmpo de convergenci de: 1) n!x n ; C = {0}. 2) x n n! ; C = R. 3) 2x+2x x x ; C = ( 1 2, 1 2 ).

5 3.2. Continuidd, derivción e integrción ( ) Se n x n, de rdio de convergenci r > 0, y se S(x) su sum. Se cumple: ) S(x) es continu en todo x ( r, r). b) S(x) es derivble en todo x ( r, r) siendo su derivd S (x) = n n x n 1 c) S(x) es integrble en [0, x], x ( r, r). Su integrl es 0 S(t)dt = n n + 1 xn+1 Es decir, ls series de potencis pueden derivrse e integrrse término término y el rdio de convergenci se mntiene. D: ) Lo demostrremos en dos prtes..1) n x n converge uniformemente en todo compcto [ ρ, ρ] ( r, r). En efecto, l ser 0 < ρ < r, l serie converge bsolutmente pr x = ρ, es decir n ρ n es convergente (T. de Cuchy-Hdmrd). Entonces, x/ x < ρ, se cumple n x n n ρ n, por lo que n x n tiene como myornte un serie numéric de términos positivos convergente. Luego, por el teorem de Weierstrss, es uniformemente convergente en [ ρ, ρ]..2) Pr todo x ( r, r) podemos encontrr un ρ / r < ρ < x < ρ < r (por ej., si x > 0, ρ = (x + r)/2). Como cbmos de ver, l serie n x n converge uniformemente en [ ρ, ρ]. Al ser ls funciones n x n continus x R, l sum S(x) será continu en todo x ( r, r) (ver 2.5. Serie de funciones continus). Not: Como se verá (T. de Abel), si los puntos x = r ó x = r pertenecen l cmpo de convergenci, l serie es uniformemente convergente tmbién en ellos, por lo que S(x) es continu, no sólo en ( r, r), sino en todo su cmpo de convergenci. b) Se l serie de derivds n n x n 1. Como n lím nn = lím n n n n = lím n n vemos que su rdio de convergenci coincide con el de n x n, por lo que convergen uniformemente en los mismos intervlos. Como n x n converge l menos en x = 0 y sus sumndos son funciones derivbles, entonces l sum S(x) de n x n es derivble en ( r, r) y se cumple S (x) = n n x n 1 (ver 2.7. Derivción). c) Se l serie de primitivs n n + 1 xn+1. Como el rdio de convergenci de su serie derivd n x n es r, el suyo será tmbién r (pdo. b). Como n x n converge uniformemente en [0, x], x ( r, r) (pdo..1) y sus sumndos son funciones integrbles, entonces l función sum S(x) es integrble en [0, x], x x ( r, r) y se cumple S(t)dt = n n + 1 xn+1 (ver 2.6. Integrción). 0

6 CÁLCULO INFINITESIMAL 2 Tem IV. Sucesiones y series funcionles Test de Autoevlución (12 minutos) Not: Se mrcrán con V ls firmciones que se consideren corrects y con F ls considerds flss. Se punturán con +1 los ciertos, 1 los fllos y 0 ls respuests en blnco. 1.- En el espcio funcionl F b (I, IR), hemos definido l distnci entre dos funciones como el máximo de sus distncis punto punto. ( ) 2.- Se cumple lím x 1 + nx 2 + x = x. 3.- L sucesión funcionl f n (x) = cos n x, x [0, π 2 ] C. U. f(x) = { 1, x = 0 0, x Se f n definid en I. Si f n (x) tiene como myornte en I un serie numéric de términos positivos, convergente, f n es uniformemente convergente en I. 5.- Se { n x n 2 / n = n (, n impr 2 n 1. Su cmpo de convergenci es 1, n pr 2, 1 ) Se l serie de potencis x x2 2 x3 3 x4 4..., cuy sum vle ln(1 x), x < 1. Se cumple que l serie 1 x x 2 x 3... tiene como sum (x 1) 1, x < Un serie de potencis, su derivd y su primitiv tienen igul cmpo de convergenci. 8.- Se n x n, convergente en C. Se f : IR IR / n x n = f(x) en C. Se dice entonces que n x n es un desrrollo en serie de f(x), x IR. Not (sobre 8):.

7 CÁLCULO INFINITESIMAL 2 Tem IV. Sucesiones y series funcionles Test de Autoevlución (12 minutos) SOLUCIONES 1.- F. Se h definido como el supremo de sus distncis punto punto, el cul existe siempre, por trtrse de funciones cotds (propiedd del supremo), mientrs que el máximo puede no existir. Ej. Si f(x) = 2 x 1, g(x) = 1 y I = [1, ), el conjunto de ls distncis punto punto entre f y g no tiene máximo. El supremo vle 1 y se d cundo x. 2.- V. Pr x 0, el límite vle x. Pr x = 0, vle 0, es decir x F. Pues ls funciones f n son continus y f no lo es (ver pdo 1.4 del progrm). V. Por el criterio de l myornte o teorem de Weierstrss. 5.- V. Los límites de oscilción son 2 y 1 2, por lo que el límite superior de oscilción es 2 y su rdio de convergenci ρ = 2 1. Pero l serie es divergente tnto pr x = 1 2 como pr x = 2 1, por lo que el cmpo de convergenci no incluye los extremos del intervlo. 6.- V. L derivd de f(x) = ln(1 x) es f (x) = 1 (1 x) = (x 1) 1, cuyo desrrollo es l derivd del desrrollo de f, es decir 1 x x 2 x 3... Por lo tnto, est serie tiene como sum (x 1) 1 (ver pdo. 3.2 del progrm). 7.- F. Tienen igul rdio de convergenci (pdo. 3.2). Por ejemplo, l serie de l cuestión nterior tiene rdio r = 1 y C = [ 1, 1) (pues pr x = 1 result l rmónic lternd, cuy sum es S = ln 2). L serie derivd tiene el mismo rdio de convergenci, pero no converge en x = F. n x n es un desrrollo en serie de f(x), x C, no en todo IR.

8 CÁLCULO INFINITESIMAL 2 Tem IV. Sucesiones y series funcionles Cuestión de utoevlución (10 minutos) Cuestión. El desrrollo en serie de l función f(x) = ln(1 + x) es ( 1) n 1 n x n y su rdio de convergenci vle 1. Se pide, utilizndo el segundo Teorem de Abel, obtener l sum de l serie rmónic lternd

9 CÁLCULO INFINITESIMAL 2 Tem IV. Sucesiones y series funcionles Cuestión de utoevlución (10 minutos) Cuestión. El desrrollo en serie de l función f(x) = ln(1 + x) es ( 1) n 1 n x n y su rdio de convergenci vle 1. Se pide, utilizndo el segundo Teorem de Abel, obtener l sum de l serie rmónic lternd Solución. Según el enuncido, l serie dd tiene como sum l función S(x) = ln(1 + x), que es válid pr 1 < x < 1. En los extremos del intervlo de convergenci (x = ±1) puede converger o no y hy que estudirlo en cd cso. Puede comprobrse que pr x = 1 l serie diverge. Pr x = +1, se convierte en l serie numéric lternd , que es convergente, según el teorem de Leibnitz, pero en principio desconocemos su sum. En el segundo teorem de Abel se firm que si un serie de potencis n x n converge pr x = x 0, su sum es un función continu en [0, x 0 ]. Entonces l función S(x) es continu en [0, 1], por lo que l expresión ln(1 + x) es válid tmbién en x = 1 y l sum solicitd vle ln 2, es decir: S(x) continu en x = 1 S(1) = lím x 1 ln(1 + x) = ln(1 + 1) = ln 2

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

EJERCICIOS DE INTEGRALES IMPROPIAS

EJERCICIOS DE INTEGRALES IMPROPIAS EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

Sucesiones de Funciones

Sucesiones de Funciones Cpítulo 9 Sucesiones de Funciones 9.1. Sucesiones de Funciones. En los cpítulos 3 y 4 vimos que un sucesión de números reles es, simplemente, un colección numerble y ordend de números reles. De mner similr,

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones.

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones. Cpítulo 10 Series de Funciones 10.1. Series de Funciones Definición 10.1 Se X R y (f n ) n N un sucesión de funciones reles sobre X. Pr n N definimos S n : X R por S n (x) = f j (x). Llmmos (S n ) n N

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Cálculo integral y series de funciones

Cálculo integral y series de funciones UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Cálculo integrl y series de funciones Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Febrero 2005

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE HUGO BARRANTES TRANSFORMADA DE LAPLACE Mteril complementrio ii Revisión filológic Mrí Benvides González Digrmción Hugo Brrntes Cmpos Encrgdo de cátedr Eugenio Rojs Mor Producción cdémic y sesorí metodológic

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica Métodos Numéricos: Resumen y ejemplos em 3: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Mrzo 8, versión.4 Contenido. Fórmuls de cudrtur.

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

Primer Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 15 de Enero de Soluciones.

Primer Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 15 de Enero de Soluciones. Primer Exmen Prcil de Cálculo. Primer Curso de Ingenieros Industriles. 5 de Enero de 200. Soluciones. Not: El exmen const de ejercicios (E, E2, E3 y E) y un problem (P) que se puntún cd uno de ellos sobre

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

Integración de Funciones de Varias variables

Integración de Funciones de Varias variables Cpítulo 1 Integrción de Funciones de Vris vribles 1. L σ-álgebr de orel 2. L medid de Lebesgue 3. Funciones medibles Un vez estudid l medid de Lebesgue en R n, vmos desrrollr hor l integrción de funciones

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Teoremas de convergencia

Teoremas de convergencia Cpítulo 3 Teorems de convergenci L necesidd de considerr límites de sucesiones o series de funciones es básic en el estudio del nálisis. Por tnto, es nturl preguntrse bjo qué condiciones se tiene que un

Más detalles

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales.

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales. Clse del Miércoles 3 de Junio de 22: Ecuciones Integrles. Introducción En est clse estudiremos ls ecuciones integrles de Fredholm y de Volterr. -+ - Empezremos por considerr l ecución de Fredholm de segund

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

La integral de Riemann

La integral de Riemann Cpítulo 6 L integrl de Riemnn Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cotdo y cerrdo, es decir [, b] con < b R, y l definición que

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Teorema de la Función Inversa

Teorema de la Función Inversa Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones

Más detalles

1. La derivada del producto de funciones derivables

1. La derivada del producto de funciones derivables Cátedr de Mtemátic Mtemátic Fcultd de Arquitectur Universidd de l Repúblic 3 Segundo semestre Hoj 5 Derivd del producto e integrción por prtes Ddo que l derivción y l integrción pueden verse como operciones

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

Teoría de la medida e integral de Lebesgue 1

Teoría de la medida e integral de Lebesgue 1 MATMÁTICA APLICADA II Segundo cutrimestre 2011 Licencitur en Físic, Universidd Ncionl de Rosrio Teorí de l medid e integrl de Lebesgue 1 1. Introducción Un de ls crcterístics más molests de l teorí de

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Integración en el plano complejo

Integración en el plano complejo Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible

Más detalles