Tabla de contenido. Página

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tabla de contenido. Página"

Transcripción

1 Tabla de contenido Página Aplicaciones de las ecuaciones diferenciales 3 Problea de enfriaiento 3 Caída de cuerpos 6 Mezclas o diluciones 0 Trayectorias ortogonales 3 Resuen 6 Bibliografía recoendada 6 Párrafo nexo 6 Autoevaluación forativa 7

2 Copyright 999 FUNDACION UNIVERSITARIA SAN MARTIN Facultad de Ingeniería de Sisteas. Sistea de Educación Abierta y a Distancia. Santa Fe de Bogotá, D.C. Prohibida la reproducción total o parcial sin autorización por escrito del Presidente de la Fundación. La redacción de este fascículo estuvo a cargo de JAIME PRECIADO LOPEZ Sede Santa Fe de Bogotá, D.C. Diseño instruccional y orientación a cargo de MARIANA BAQUERO DE PARRA Diseño gráfico y diagraación a cargo de SANTIAGO BECERRA SAENZ ORLANDO DIAZ CARDENAS Ipreso en: GRAFICAS SAN MARTIN Calle 6A No Tels.: Santa Fe de Bogotá, D.C.

3 Aplicaciones de las ecuaciones diferenciales En este fascículo solucionareos algunos ejeplos, en probleas, donde utilizaos las ecuaciones diferenciales de prier orden; en ellos vereos el uso de éstas y llegareos a su solución con los étodos que heos trabajado. Las aplicaciones que conteplaos aquí corresponden a probleas de enfriaiento, caída de cuerpos, ezclas o diluciones y trayectorias ortogonales. Es de anotar que heos trabajado ya algunas aplicaciones tales coo probleas de creciiento y decreciiento, en el fascículo 8, y los probleas de circuitos en el fascículo 9. Por esta razón se incluyen algunos ejercicios en actividad de estos casos. Al terinar el estudio del presente fascículo, el estudiante: Plantea probleas correctaente epleando ecuaciones diferenciales. Resuelve correctaente ecuaciones diferenciales lineales. Reconoce la iportancia de las ecuaciones diferenciales en la solución de probleas científicos. Problea de enfriaiento La ley de newton sobre enfriaiento establece que la razón a la que un objeto se enfría es proporcional a la diferencial de la teperatura entre el objeto y el edio abiente. Si llaaos T a la teperatura del cuerpo y T la teperatura del edio abiente, entonces el cabio de la 3

4 Isaac Newton (64.77). Publicó en 686 su obra Principios Mateáticos de la Filosofía Natural, donde enuncia las tres Leyes del Moviiento. dt teperatura con respecto al paso del tiepo es y por tanto pode- os forular la Ley de Enfriaiento de Newton coo: dt k T () T Donde k es una constante de proporcionalidad, la ecuación () tabién la podeos escribir coo: dt () kt kt debeos reconocer () coo una ecuación lineal y de esa fora podeos resolverla. Veaos un ejeplo. Ejeplo Un cuerpo sacado de un horno a está a 300 o F es colocado en cuarto que 75 o F ; si la teperatura decae hasta o F cuál será la teperatura al cabo de tres horas?. 00 en edia hora, Podeos aplicar la Ley de Enfriaiento de Newton, si llaaos T ( a la teperatura edida en grados F, a las horas t, entonces debeos resolver la ecuación: dt kt kt De donde dt kt k(75) Sabeos que 4

5 T( 0) 300 T 00 y quereos hallar T (3). Resolvaos nuestra ecuación: dt o o F F kt 75k para esta ecuación lineal el factor de integración es: k e e kt Al ultiplicar nuestra ecuación por el factor de integración y escribirla coo derivadas obteneos: d kt kt e T 75ke Integrando respecto a t e kt T kt 75 ( e c) De donde T 75 ce kt Coo T es función del tiepo podeos escribir T( 75 ce kt Si reeplazaos las condiciones dadas T( 0) 300 o F obteneos ce kt de donde, así, entonces T( 75 5 e kt 5

6 adeás coo o T 00 F entonces de donde, así nuestra ecuación es: T( 75 5 e e k, 75t podeos ahora encontrar la teperatura a las tres horas, haciendo: T( 3) 75 5e T( 3) 8, 6 o F, 75.( 3) Caída de cuerpos Si consideraos un cuerpo de asa cayendo verticalente hacia abajo soetido a la acción única de la gravedad g y a una resistencia del aire proporcional a la velocidad del cuerpo, entonces, si elegios la dirección hacia abajo coo la dirección positiva y suponeos que la asa del cuerpo y el valor de la gravedad peranecen constantes podeos enunciar la segunda ley de Newton para el oviiento así: La cantidad de oviiento o oento lineal frecuenteente representado por la letra p, de un cuerpo de asa y velocidad v está dado por p v. La fuerza neta (total), que actúa sobre un cuerpo es igual a la tasa de cabio en el tiepo de la cantidad de oviiento del cuerpo, para una asa constante; de este odo si llaaos F a la fuerza neta y v a la velocidad del cuerpo de asa en el tiepo t podeos escribir que: dv F Si analizaos las fuerzas que actúan sobre un cuerpo podeos considerar dos, la fuerza debida a la gravedad, dada por g y la fuerza de la resistencia del aire, dada por kv, con k una constante positiva; el 6

7 signo enos indica que esta fuerza se opone a la velocidad, es decir, en dirección negativa coo uestra la figura. Figura. Fuerzas actuando sobre un cuerpo que cae. Por tanto, la fuerza neta que actúa sobre el cuerpo es F g kv Si sustituios en la ecuación para la Segunda ley de Newton teneos: g kv dv De donde dv k v g Esta últia ecuación tabién es una ecuación diferencial lineal; adeás si la resistencia del aire es despejable entonces k 0 y la ecuación se reduce a: dv g si k 0, la velocidad liite v l es definida por veaos un ejeplo de aplicación. v l g k 7

8 Ejeplo Un cuerpo que pesa 64 Newtons se deja caer desde la altura de 00 etros con velocidad inicial s 0. Si suponeos que la resistencia del aire es proporcional a la velocidad del cuerpo y la velocidad líite es s 8, encontraos expresiones para la velocidad del cuerpo y la posición en cualquier instante del tiepo t. Un Newton (N) es la fuerza necesaria para que un cuerpo de un kilograo ( kg) adquiera una aceleración de un etro por segundo cuadrado. s kg N kg. s s De los datos suinistrados en el problea teneos: Peso del cuerpo 64 N g de donde si g 9, 8 s 64N 6, 5kg 9, 8 s entonces Adeás v 8 s k, entonces coo g v l 64 8 g v l así k kg s s con estos valores nuestra ecuación diferencial es dv k v g dv v 9, 8 3 si resolveos esta ecuación lineal obteneos t 3 v 8 ce 8

9 es decir, t 3 v( 8 ce de las condiciones del problea teneos que en t 0 la velocidad es s 0 por tanto así c 8 0 v ( 0) 8 ce. 0 3 por tanto la expresión pedida para la velocidad es v( 8 8 e t 3 Si recordaos que dx v donde x es la posición del objeto, enton- ces x v, por tanto x( 8 8e x( e t 3 t 3 coo en t 0 el cuerpo se encuentra en 0 d x etros, (porque estaos considerando que coienza su oviiento hacia abajo) teneos que: de donde 534 d en cualquier instante del tiepo es: e 3 d ; así la expresión para el cálculo de la posición t 3 x ( e 534 9

10 Mezclas o diluciones Considereos un tanque o recipiente que contiene inicialente v 0 galones de una solución salina (por ejeplo, saluera, agua con sal), supongaos que en el tanque hay a libras de sal disueltas. Otra solución salina que contiene b libras de sal por galón entra al tanque a razón de e galones por inuto; siultáneaente la solución bien ezclada, sale del tanque a una velocidad de f galones por inuto. Quereos encontrar la cantidad de sal que hay en el tanque en cualquier instante t. Llaeos Q a la cantidad de sal (en libras) en cualquier instante del dq tiepo (es decir Q (), así es el cabio de la cantidad de sal que hay en el tanque con respecto al cabio del tiepo; esta cantidad es igual a la razón de entrada de sal enos la razón a la cual sale la sal del tanque, es decir, la razón de entrada es: dq = (razón entrada) (razón de salida) Razón de entrada = lib galón lib b. e be galón in in Para calcular la razón de salida priero calculaos el voluen de solución salina que hay en el tanque en cualquier instante t ; este es el voluen inicial v 0 ás el voluen de la solución salina agregada ft ; entonces el voluen de la solución salina en cualquier instante corresponde a v0 et ft galones. Por tanto, la concentración de sal en el tanque en cualquier instante es: 0

11 v o Q et libras ft galones Coo la solución sale del tanque a razón de f galones por inuto entonces se deduce que la sal sale del tanque a razón de: v entonces: equivalente a Q et lib. f ft galón galón in v 0 0 dq v dq 0 be v f ( e 0 f ( e Q be f ) t f et Q f ) t lib Q ft in () Resolvaos un ejeplo para esta aplicación. Ejeplo En un tanque hay una libra de sal disuelta en 00 galones de agua. Una solución salina que contiene libra de sal por galón entra al tanque a razón de 3 galones por inuto. La solución se antiene totalente agitada y sale del tanque a la isa razón. Encontreos la cantidad de sal que hay en el tanque en cualquier instante t. Para este ejercicio, y de acuerdo con lo planteado teóricaente, podeos decir que: v 0 = 00 galones a = libra b = libra/gal e = 3 galones/in f = 3 galones/in

12 así: dq v o f ( e que para nuestro ejercicio corresponde a: de donde Q be f ) t dq 3 Q ( 3 3) t dq 0, 03Q 3 al resolver esta ecuación lineal obteneos: Q( 00 ce 0, 03t coo en el instante t 0 la cantidad de sal es libra entonces 0, ce de donde c 99 así la cantidad de sal que hay en el tanque en cualquier instante de tiepo es Q( 00 99e 0, 03t Si deseaos por ejeplo saber la cantidad de sal que hay en el tanque a las horas de iniciado nuestro procediiento podeos hacer t 3 y obteneos Q( 3) 00 99e 9, 5libras 0, Si deseaos saber, por ejeplo en que instante habrá en el tanque 5 libras de sal, basta con hacer ( 5 Q y despejar t. de donde e 0, 03t e 0, 03t

13 es decir ó ln, 37horas t , 04 0, 03t 0, 03t Trayectorias ortogonales Se dice que dos curvas C y C que se intersectan en un punto son ortogonales en dicho punto si y sólo si las rectas tangentes a las curvas en el punto encionado son perpendiculares entre si. Recuerda que: dos rectas son perpendiculares si el producto de sus pendientes es.., de donde. Definición Cuando una failia de curvas G ( x, y, c ) 0 cortan ortogonalente a otra failia H ( x, y, c ) 0, se dice que las failias son cada una trayectorias ortogonales de la otra. Las trayectorias ortogonales son encontradas con frecuencia en estudios eteorológicos y en capos eléctricos alrededor de cargas opuestas. dy Recuerda que si dx corresponde a la pendiente de la recta tangente a la curva en y en algún punto x. Si quereos hallar las trayectorias ortogonales de una failia de curvas dy dadas se encuentra priero para la failia dada; esto nos da dx 3

14 dy dy f ( x, y) y resolviendo la ecuación dx dx f ( x, y ) encontraos las trayectorias ortogonales de la failia dada. Ejeplo Halla las trayectorias ortogonales de la failia de curvas y cx. La failia que está dada por F ( x, y, c) y cx consiste en parábolas asiétricas al eje y, con su vértice en el origen. Derivando iplícitaente la ecuación dada con respecto a x obteneos: dy dx cx. Para eliinar c observaos de la ecuación dada que por lo tanto Aquí c y x dy y dx x y F( x, y) se convierte en x dy dx x o xdx ydy 0 y la solución a este ecuación separable es x y k. La figura uestra las failias de curvas ortogonales del ejeplo anterior. 4

15 Figura. Failias ortogonales. 00 o F. Resuelve los siguientes probleas. Un cuerpo a una teperatura desconocida se pone en un refrigerador a una teperatura constante de 0 o F. Si después de 0 inutos la teperatura del cuerpo es 40 o F y después de 40 inutos la teperatura del cuerpo es de 0 o F. Halla la teperatura inicial de éste.. Un cuerpo a una teperatura de 50 o F se pone en un horno cuya teperatura se antiene a 50 o F. Si después de 0 inutos la teperatura del cuerpo es de 75 o F, halla el tiepo requerido por el cuerpo para llegar a una teperatura de 3. Se sabe que la población de un estado crece a una rata proporcional al núero de habitantes que viven actualente en el estado. Si después de 0 años la población se ha triplicado y después de 0 años la población es de habitantes, halla el núero de habitantes que había inicialente en el estado. 4. Un cuerpo de asa se lanza verticalente en el aire con una velocidad inicial v. El cuerpo no encuentra resistencia al aire. o Halla: a. La ecuación del oviiento. b. Una expresión para la velocidad del cuerpo en un oento t. c. El oento t en el cual llega el cuerpo a su altura áxia. d. Una expresión para la posición del cuerpo en un oento t. e. La altura áxia alcanzada por el cuerpo. 5

16 5. Un tanque contiene inicialente 0 galones de agua pura. Para t 0, una solución salina que contiene edia libra de sal por galón se agrega en el tanque a una rata de gal/in., ientras que una solución bien ezclada sale del tanque a la isa rata. Halla: a. La cantidad. b. La concentración de sal en el tanque en cualquier oento t. 6. Halla las trayectorias ortogonales de la failia de curvas x y ce 7. Halla las trayectorias ortogonales de la failia de curvas x y cx En este fascículo heos trabajado algunas de las aplicaciones de las ecuaciones lineales a probleas reales; heos reconocido la iportancia de las ecuaciones diferenciales y su étodo de solución en el planteaiento y búsqueda de respuesta en áreas diversas de la ciencia. Rainville, Earl D. y Otros. Ecuaciones diferenciales. México: Ed. Prentice Hall, octava edición, 997, cap. y Zill, Dennis G. Ecuaciones diferenciales con aplicaciones de odelado. México: Ed. Inter. Thoson Editores, sexta edición, 000, cap. 3. En el fascículo siguiente iniciareos el estudio de las ecuaciones diferenciales de orden superior, Solucionareos ecuaciones diferenciales lineales de segundo orden con coeficientes constantes. Para llevar a cabo este procediiento hareos uso de la llaada ecuación característica o auxiliar de la ecuación diferencial dada. 6

17 Autoevaluaciónforativa Ecuaciones diferenciales - Fascículo No. Nobre Apellidos Fecha Ciudad Seestre Resuelve los siguientes probleas:. Un cuerpo con una asa de 0 slugs se suelta de una altura de pies sin velocidad inicial. El cuerpo encuentra una resistencia del aire proporcional a su velocidad. Si la velocidad líite debe ser de 30 pies / segundo, encuentra a. Una expresión para la velocidad del cuerpo en un oento t. b. Una expresión para la posición del cuerpo en un oento t. c. El tiepo que necesita el cuerpo para alcanzar la velocidad de 60 pies / segundo.. Un tanque contiene inicialente 80 galones de solución salina con edia libra de sal por galón. Para t 0, otra solución salina que contiene libra de sal por galón se agrega en el tanque a una rata de 4 gal./in., ientras que una solución bien ezclada sale del tanque a una rata de 8 gal./in. Halla la cantidad de sal en el tanque cuando éste contiene exactaente 40 galones de solución. 3. Halla las trayectorias ortogonales de la failia de curvas x y c 7

156 Ecuaciones diferenciales

156 Ecuaciones diferenciales 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento

Más detalles

Fuerzas de fricción (o de rozamiento)

Fuerzas de fricción (o de rozamiento) Fuerzas de fricción (o de rozaiento) Si un cuerpo se ueve sobre una superficie áspera o rugosa, encontrará adeás de la resistencia del aire, otra fuerza de resistencia debida a la rugosidad de la superficie.

Más detalles

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas.

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas. Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Carrera: Ingeniería Civil Prier seestre de 013. Solene 1 - Ecuaciones Diferenciales Para cada uno de los siguientes probleas,

Más detalles

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía Trabajo y Energía Trabajo de una Fuerza Es una anera diferente de resolver probleas de dináica en los que la fuerzas son funciones de la posición y no del tiepo. F r Observaciones: Sólo cuenta la coponente

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

Los koalindres colgantes

Los koalindres colgantes CASO 1:_DOS MASAS (UNA POLEA) Antes de estudiar el caso de infinitos koalindres colgando de infinitas poleas, planteaos el caso de dos koalindres colgando de una sola polea Dado que no hay rozaiento, la

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras, Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0

Más detalles

Actividad: Principio de Pascal

Actividad: Principio de Pascal Nivel: 3º edio Subsector: Ciencias físicas Unidad teática: Ver video Pascal Actividad: Qué es un fluido? Noralente, hablaos de tres estados de la aterial: gas, líquido y sólido. Un fluido está forado por

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Movimiento Amortiguado y Forzado

Movimiento Amortiguado y Forzado Moviiento Aortiguado y Forzado Problea 1. Una asa al extreo de un uelle oscila con una aplitud de 5 c y una frecuencia de 1 Hz (ciclos por segundo). Para t = 0, la asa esta en la posición de equilibrio

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

Ejercicios de Cinemática para 4º de E.S.O.

Ejercicios de Cinemática para 4º de E.S.O. Ejercicios de Cineática para 4º de E.S.O. 1. En la figura se uestra la gráfica posición-tiepo para un deterinado oviiento: a) Deterinar el desplazaiento entre los instantes t = 2 s y t = 8 s; b) Calcular

Más detalles

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T 1 Ciencias Básicas Física Prograa Estándar Intensivo Cuaderno Estrategias y Ejercitación Dináica II: ley de gravitación, fuerza de roce CUACES007CB82-A16V1 Estrategias? PSU Pregunta PSU 1. Respecto de

Más detalles

FUERZAS. EFECTOS DE LAS FUERZAS

FUERZAS. EFECTOS DE LAS FUERZAS UERZAS. EECTOS DE LAS UERZAS IES La Magdalena. Avilés. Asturias Observa la iagen que se uestra ás abajo, en ella se puede ver un cuerpo que, inicialente, se ueve hacia la derecha con una velocidad de 5

Más detalles

Ley de Hooke y movimiento armónico simple

Ley de Hooke y movimiento armónico simple Ley de Hooe y oviiento arónico siple Introducción El propósito de este ejercicio es verificar la ley de Hooe cualitativa y cuantitativaente. Usareos un sensor de fuerza y uno de rotación para encontrar

Más detalles

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0.

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0. Matemática IV - 2000953 Taller, Ecuaciones de orden 1 1. Resuelva R: y 2 x = ln y. dy dx = y 3, y(0) = 1. 1 2xy2 2. Determine la solución general de la ecuación (y 4x)dx + (y x)dy = 0. 3. Una persona tiene

Más detalles

tecnun INDICE Volantes de Inercia

tecnun INDICE Volantes de Inercia VOLANTES DE INERCIA INDICE 7. VOLANTES DE INERCIA... 113 7.1 INTRODUCCIÓN.... 113 7. ECUACIÓN DEL MOVIMIENTO.... 113 7.3 CÁLCULO DE UN VOLANTE DE INERCIA.... 116 Eleentos de Máquinas 11 7. VOLANTES DE

Más detalles

Nombre y apellidos. Centro. Ciudad

Nombre y apellidos. Centro. Ciudad C1.- Sobre un cuerpo en reposo, de asa 3 kg, actúa una fuerza de N durante 4 s. El cuerpo está situado sobre una superficie horizontal y la fuerza aplicada es paralela a la isa. Suponiendo un coeficiente

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0103) Movimiento Rectilíneo Vertical. r g. ( ) gt. A( t) g. g r

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0103) Movimiento Rectilíneo Vertical. r g. ( ) gt. A( t) g. g r Física General I Paralelos 5. Profesor RodrigoVergara R 3) Moviiento Rectilíneo Vertical ) Moviiento Vertical con aceleración constante Conocer aplicar las ecuaciones de posición, velocidad aceleración

Más detalles

Introducción a Ecuaciones Diferenciales

Introducción a Ecuaciones Diferenciales Introducción a Ecuaciones Diferenciales Temas Ecuaciones diferenciales que se resuelven directamente aplicando integración. Problemas con condiciones iniciales y soluciones particulares. Problemas aplicados.

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

Capítulo 3. Fundamentos matemáticos del estudio

Capítulo 3. Fundamentos matemáticos del estudio Capítulo 3. Fundaentos ateáticos del estudio 3.1 Ecuación de Darcy La ley de Darcy es el pilar fundaental de la hidrología subterránea. Es una ley experiental obtenida por el ingeniero francés Henry Darcy

Más detalles

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1 Convenio Nº Guía práctica Ley de gravitación y fuerza de roce Ejercicios PSU Para esta guía considere que la agnitud de la aceleración de gravedad (g) es 10 s 2. 1. Un grupo de científicos necesita poner

Más detalles

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA 1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son

Más detalles

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO UNIVERSIDAD CATÓLICA DE VALPARAÍSO INSTITUTO DE FÍSICA OBJETIVO DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO En este experiento se deterinará el coeficiente de viscosidad del aceite de otor. INTRODUCCIÓN

Más detalles

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA 1.- Contestar razonadaente a las siguientes preguntas acerca del oviiento arónico siple (MAS): 1A (0.25 p).- Si el periodo de un MAS es

Más detalles

Tienen resistencia los conductores eléctricos?

Tienen resistencia los conductores eléctricos? Tienen resistencia los conductores eléctricos? Dr. Guillero Becerra Córdova Universidad Autónoa Chapingo Dpto. de Preparatoria Agrícola Área de Física Profesor-Investigador 59595500 ext. 539 E-ail: gllrbecerra@yahoo.co

Más detalles

Problemas de enfriamiento

Problemas de enfriamiento Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante

Más detalles

Movimiento Armónico Forzado

Movimiento Armónico Forzado Moviiento Arónico Forzado Estudieos ahora el oviiento de una asa soetida a una fuerza elástica, en presencia de fuerzas de arrastre y de una fuerza externa que actúa sobre la isa. Asuireos que la fora

Más detalles

OSCILADOR ARMÓNICO ÍNDICE

OSCILADOR ARMÓNICO ÍNDICE ÍNDICE OSCILDOR RMÓNICO 1. Moviiento periódico. Moviiento arónico siple (MS) 3. Cineática del MS 4. uerza y energía del MS 5. Ecuación básica del MS 6. Oscilaciones aortiguadas 7. Oscilaciones forzadas

Más detalles

MODELOS MATEMÁTICOS 2010

MODELOS MATEMÁTICOS 2010 GUIA DE ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS La mayoría de los problemas físicos tiene que ver con relaciones entre las cantidades variables en cuestión. Para resolver los problemas físicos

Más detalles

TEORÍA TTC-002: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA

TEORÍA TTC-002: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA TEORÍA TTC00: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA En este docuento se resuele de fora ás rigurosa la llaada ecuación del telegrafista, en su expresión en tensión, que puede forularse, según ios,

Más detalles

7. Sistemas oscilantes

7. Sistemas oscilantes 7. Sisteas oscilantes En esta sección tratareos sisteas que están soetidos a fuerzas que tratan de antener al sistea en su posición inicial, con lo cual se presentan oscilaciones. Epezareos con un sistea

Más detalles

E k x 24,5 0,15 0,276 J. E kx 24,5 0,075 0,069 J 0,276 J E E E 0,276 0,069 0,207 J

E k x 24,5 0,15 0,276 J. E kx 24,5 0,075 0,069 J 0,276 J E E E 0,276 0,069 0,207 J Moviientos periódicos I 0. Un punto describe una trayectoria circular de de radio con una velocidad de 3 rad/s. Expresar la ecuación del oviiento que resulta al proyectar el punto sobre el diáetro vertical:

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA Definición de ecuación diferencial Una ecuación que relaciona una función desconocida y una o más de sus derivadas se llama ecuación diferencial. Instituto de

Más detalles

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales:

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales: IES Mediterráneo de Málaga Solución Junio Juan Carlos lonso Gianonatti Opción Ejercicio.- Se considera el sistea de ecuaciones lineales: a) Discutir su copatibilidad en función del paráetro b) Resolver

Más detalles

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas)

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas) .6.. Ecuación característica (raíces reales distintas, raíces reales iguales, raíces coplejas conjugadas).6.. Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces coplejas

Más detalles

COLISIONES SERWAY CAPITULO 9

COLISIONES SERWAY CAPITULO 9 COLISIONES SERWAY CAPITULO 9 COLISIONES PERFECTAMENTE INELASTICAS Una colisión inelástica es aquella en la que la energía cinética total del sistea NO es la isa antes y después de la colisión aun cuando

Más detalles

Dinámica en una dimensión I

Dinámica en una dimensión I Capítulo 5. Dináica en una diensión I 1. uerzas de rozaiento Si en una esa horizontal larga arrojaos un bloque de asa con una velocidad inicial v o, llegará a detenerse. Esto significa que ientras se está

Más detalles

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si Tabién se dice que dos núeros x = x 0 e y = y 0, satisfacen a una ecuación de la fora f (x; y), si al sustituir estos núeros en la ecuación, en lugar de las variables x e y, el prier iebro se convierte

Más detalles

FISICA PARA ESTUDIANTES DE CIENCIAS E INGENIERIA PARTE 1 RESNICK HALLIDAY

FISICA PARA ESTUDIANTES DE CIENCIAS E INGENIERIA PARTE 1 RESNICK HALLIDAY FISICA PARA ESUDIANES DE CIENCIAS E INGENIERIA PARE 1 RESNICK HALLIDAY Durante las últias décadas se ha reducido extraordinariaente el tiepo transcurrido entre los descubriientos científicos y sus aplicaciones

Más detalles

3.Sistemas de unidades

3.Sistemas de unidades 3.Sisteas de unidades La Física, siendo una ciencia que ha adoptado el étodo científico coo un soporte para establecer las leyes que rigen los cabios que se presentan, así coo la cuantificación de los

Más detalles

FIZIKA SPANYOL NYELVEN

FIZIKA SPANYOL NYELVEN Fizika spanyol nyelven középszint 0803 ÉRETTSÉGI VIZSGA 009. ájus 13. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los exáenes

Más detalles

ced Au Au Au f Cu Cu Cu f

ced Au Au Au f Cu Cu Cu f Probleas calorietria Ejeplo 1.- 100 g de una aleación de oro y cobre, a la teperatura de 75.5ºC se introducen en un caloríetro con 502 g de agua a 25ºC, la teperatura del equilibrio es de 25.5ºC. Calcular

Más detalles

Circuito magnético de un transformador monofásico. Supongamos un transformador monofásico en vacio como se muestra en la figura 1.

Circuito magnético de un transformador monofásico. Supongamos un transformador monofásico en vacio como se muestra en la figura 1. Circuito agnético de un transforador onofásico Hasta el oento, heos encionado de fora general el funcionaiento y las aplicaciones que tienen los transforadores, adeás de la iportancia que juegan estos

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

Constante de un resorte Por Fernando Vega Salamanca

Constante de un resorte Por Fernando Vega Salamanca Constante de un resorte Por Fernando Vega Salaanca El objetivo es encontrar experientalente la constante de un resorte, para lo cual ostraos varios procediientos..0 Con ayuda de la Ley de Hoo En este apartado

Más detalles

Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial

Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial Determine la solución de las siguientes ecuaciones diferenciales (1 al 60): 3

Más detalles

Clase 1 Ecuaciones Diferenciales: Motivación y Conceptos Preliminares

Clase 1 Ecuaciones Diferenciales: Motivación y Conceptos Preliminares Clase 1 Ecuaciones Diferenciales: Motivación y Conceptos Preliinares L. A. Núñez * Centro de Astrofísica Teórica, Departaento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

La Energía Mecánica. E = m v

La Energía Mecánica. E = m v Energía La Energía Mecánica Direos que la energía de un cuerpo o sistea de cuerpos es la capacidad que tienen para realizar trabajo. Esta definición es iperfecta pero nos alcanza para hacer una priera

Más detalles

BVI_UII Más ejemplos de Solución de ecuaciones del tipo Cauchy-Euler 501

BVI_UII Más ejemplos de Solución de ecuaciones del tipo Cauchy-Euler 501 BVI_UII Más ejeplos de Solución de ecuaciones del tipo Cauchy-Euler Apéndice BVI_UII Más ejeplos de solución de ecuaciones del tipo Cauchy-Euler Coo se vio en la sección.8. Utilizando una sustitución y

Más detalles

Ondas y Rotaciones. Dinámica de las Rotaciones IV

Ondas y Rotaciones. Dinámica de las Rotaciones IV Hoja de Trabajo 4 Ondas y otaciones Dináica de las otaciones V Jaie Feliciano Hernández Universidad Autónoa Metropolitana - ztapalapa Méico, D. F. 5 de agosto de 0 A. ACTVDAD NDVDUA. En esta Hoja de trabajo

Más detalles

Ecuaciones Diferenciales Ordinarias Aplicaciones

Ecuaciones Diferenciales Ordinarias Aplicaciones Ecuaciones Diferenciales Ordinarias Aplicaciones Karina Malla Buchhorsts Departamento de Matemáticas UCN marzo de 013 Índice 1. Aplicaciones: Mecánica. Aplicaciones: razón de cambio 5.1. Mezclas....................................................

Más detalles

LEYES DEL MOVIMIENTO DE NEWTON

LEYES DEL MOVIMIENTO DE NEWTON Universidad de Oriente Núcleo Bolívar Curso Básico Matemática IV Sección: 01 LEYES DEL MOVIMIENTO DE NEWTON Profesor: Bachilleres: Cristian Castillo Javier Abreu C.I: 14.517.875 Jesús Sigala C.I: 17.045.285

Más detalles

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el

Más detalles

Figura 12. Leyes del movimiento Sistema general.

Figura 12. Leyes del movimiento Sistema general. ECUACIONES DE MOVIMIENTO (PRÁCTICA 4: LEYES DEL MOVIMIENTO) Ing. Francisco Franco Web: http://gfranciscofranco.blogspot.co/ Fuente de inforación: Trabajo de grado de Mónica A. Caacho D. y Wilson H. Ibachi

Más detalles

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE 1. INTRODUCCIÓN CINEMÁTICA Y DINÁMICA PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE La ley de Hooe describe fenóenos elásticos coo los que exhiben los resortes. Esta ley afira

Más detalles

CÁLCULO VOLUMEN DE ACUMULACIÓN N DE ACS EN VIVIENDAS. Curso RGdlM

CÁLCULO VOLUMEN DE ACUMULACIÓN N DE ACS EN VIVIENDAS. Curso RGdlM CÁLCULO VOLUMEN DE ACUMULACIÓN N DE ACS EN VIVIENDAS Curso 2007-2008 VOLUMEN ÚTIL de ACUMULACIÓN En un depósito de acuulación se debe avorecer la estratiicación Con ello se consigue suinistrar agua caliente

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

Factor de forma para conducción bidimensional

Factor de forma para conducción bidimensional Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular

Más detalles

2 x. x y &

2 x. x y & Sea y(x) = 3 sen(x) con x(t) = t - 3 a) d y d t no se puede calcular pues depende de la variable x y no de la variable t b) 3 cos (t -3) c) 3 cos (t -3) 4 t 4.- Cuál es la verdadera? e % x a) d x no existe

Más detalles

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969 OLIMPID INTERNCIONL DE FÍSIC Probleas resueltos y coentados por: José Luis Hernández Pérez y gustín Lozano Pradillo III OLIMPID DE FÍSIC CHECOSLOVQUI, 1969 1.- El sistea ecánico de la figura inferior consta

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NATURALES FÍSICA -- 1 -- 13. N.S.Q INSTITUCIÓN EDUCATIA ESCUELA NORMAL SUPERIOR DE QUIBDÓ Moviiento en el plano con aceleración constante, es una etensión de caída libre Analiza: El

Más detalles

CONTROL 2 2ªEVAL 2ºBACH

CONTROL 2 2ªEVAL 2ºBACH COTROL ªEVL ºBCH ISTRUCCIOES Y CRITERIOS GEERLES DE CLIFICCIÓ La prueba consta de una opción, que incluye cuatro preguntas. Se podrá hacer uso de calculadora científica no prograable. CLIFICCIÓ: Cada pregunta

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

PRACTICA TEMA 3. Variable Independiente

PRACTICA TEMA 3. Variable Independiente Ejercicio 1. PRACTICA TEMA 3 a Defina ecuación diferencial. Dé un ejemplo b Dada una ecuación diferencial de primer orden y primer grado definida implícitamente por g(x,y,y') = 0, exprese en forma analítica

Más detalles

FÍSICA APLICADA A FARMACIA. EXAMEN FINAL EXTRAORDINARIO. JUNIO 2014

FÍSICA APLICADA A FARMACIA. EXAMEN FINAL EXTRAORDINARIO. JUNIO 2014 FÍSICA APLICADA A FARMACIA. EXAMEN FINAL EXTRAORDINARIO. JUNIO 20. (2.25 puntos). Se descarga un condensador a través de una resistencia óhica de valor R = (.000.02) 0 6. Con el fin de estudiar cuantitativaente

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

Circuitos de corriente continua y alterna.

Circuitos de corriente continua y alterna. ircuitos de corriente continua y alterna. ircuitos R Este tipo de circuitos presenta una gran analogía con los circuitos R. De no estar presente el inductor, al cerrar el circuito la corriente crece hasta

Más detalles

Procesos en la Atmosfera

Procesos en la Atmosfera Procesos en la Atosfera 1. Enfriaiento isobárico (δq 0, dp=0, dh=δq) Todos estos 2. Adiabaticos (δq =0,dp=0,dh=0) procesos son 3. Pseudoadiabáticos iportantes en las nubes!!! Ejeplos caso (2) Procesos

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Instituto Maria Auxiliadora - Bernal. 4 to.. Año Secundaria Física. Movimiento Rectilíneo Uniforme ( MRU )

Instituto Maria Auxiliadora - Bernal. 4 to.. Año Secundaria Física. Movimiento Rectilíneo Uniforme ( MRU ) Moviiento Rectilíneo Unifore ( MRU ) * Expresar en /seg una velocidad de 25 k/h e 25 K 25.000 v = --------- = --------------- = ----------------- = 6,94 /seg = v t 1 h 3.600 seg * Expresar en k / h una

Más detalles

Intensidad horaria semanal TAD: 6 TI: 6 C: 4

Intensidad horaria semanal TAD: 6 TI: 6 C: 4 UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS Escuela de Física Prograa: Ciclo de Ciencias Básicas de Ingeniería Nobre de la asignatura: FÍSICA III CÓDIGO: 956, 3648 SEMESTRE: IV Requisitos:

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

ANEXO 11 FORMATO DE SÍMBOLOS PARA UNA UNIDAD ESTÁNDAR DE MEDIDA. Sistema Internacional de Unidades

ANEXO 11 FORMATO DE SÍMBOLOS PARA UNA UNIDAD ESTÁNDAR DE MEDIDA. Sistema Internacional de Unidades ANEXO 11 FORMATO DE SÍMBOLOS PARA UNA UNIDAD ESTÁNDAR DE MEDIDA Unidades básicas. Sistea Internacional de Unidades Magnitud Nobre Síbolo Longitud etro Masa kilograo kg Tiepo segundo s Intensidad de corriente

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales VOLUMEN 1 Ecuaciones Diferenciales 11 de Mayo de 2009 cuaciones Diferenciales Introducción Qué es una E. D.? Solución de E. D. Introducción Muchas de las leyes de la naturaleza, en física, química o astronomía,

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevaos un cuerpo una altura h, la fuerza realiza trabajo positivo (counica energía cinética al cuerpo). No podríaos aplicar la definición

Más detalles

Ecuaciones Diferenciales Ordinarias I

Ecuaciones Diferenciales Ordinarias I UG Aplicaciones de las ecuaciones diferenciales Universidad de Guanajuato Sesión 47 APLICACIONES BIOLÓGICAS Crecimiento Biológico: Un problema fundamental en la biología es el crecimiento, sea este el

Más detalles

II Evaluación. Física 11. Sección 01. Semestre A-2004.

II Evaluación. Física 11. Sección 01. Semestre A-2004. II Ealuación. Física. Sección. Seestre A-4..- Un náurago de 7 [N] que lota en el ar, es rescatado por edio de una guaya, desde un helicóptero que se encuentra estacionario a 5 [] sobre el agua. Toando

Más detalles

Variables separables

Variables separables Definición: Variables separables Si el segundo miembro de una ecuación expresada de la forma: puede expresar como una función que depende solamente de x, multiplicada por una función que depende solamente

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTOS EN UNA DIMENSION. Desplazaiento, velocidad y rapidez. Velocidad instantánea

Más detalles

CURSO DE MATEMÁTICA. Repartido Teórico 4

CURSO DE MATEMÁTICA. Repartido Teórico 4 CURSO DE MATEMÁTICA. Repartido Teórico 4 Mariana Pereira Noviembre, 2007 1. Ecuaciones Diferenciales Una ecuación diferencial es una ecuación donde la incógnita es una fución de una variable, y la ecuación

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

3.- Completa la tabla con las valencias y el símbolo o nombre del elemento: (1,5 puntos y -0,25 por error)

3.- Completa la tabla con las valencias y el símbolo o nombre del elemento: (1,5 puntos y -0,25 por error) Exaen de páginas Å Nobre: Curso: º ESO A Exaen 5 (FINAL) Fecha: 6 de Marzo de 07 ª Evaluación.- Si teneos 00 graos de tres sustancias diferentes (A, B y C), cuyas densidades son: d A =, g/l; d B =,8 kg/l;

Más detalles

2.16. FÍSICA RELATIVISTA

2.16. FÍSICA RELATIVISTA 2.16. FÍSICA RELATIVISTA Las ecuaciones del electroagnetiso exhiben características novedosas respecto a la física newtoniana. La fuerza de Lorentz, debido al terino q v B depende del sistea inercial desde

Más detalles

Pauta Certamen N o 1

Pauta Certamen N o 1 Pauta Certaen N o 1 1 er Seestre 2015 Moviiento Oscilatorio, Aortiguado y Forzado, Mecánica de Ondas y Sonido Problea 1 (25 ptos.) El sistea de aortiguación de un auto está diseñado para que no perita

Más detalles

Problemas propuestos sobre Dinámica

Problemas propuestos sobre Dinámica 1 Universidad de ntioquia Instituto de ísica Probleas propuestos sobre Dináica Nota: Si se encuentra algún error en las respuestas, le agradeceos reportarlo a su profesor de Teoría de ísica I. para ser

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES Ecuaciones Diferenciales 1 ECUACIONES DIFERENCIALES Una ecuación diferencial contiene una función desconocida y algunas de sus derivadas. He aquí algunos ejemplos: (1) y ' =

Más detalles

Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD

Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD Dpto. Sisteas Físicos, Quíicos y Naturales- Área de Quíica Física Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD Cuestiones y cálculos previos:

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Dinámica

Movimiento oscilatorio Movimiento armónico simple (MAS) Dinámica Moviiento oscilatorio Dináica IES a Magdalena. Avilés. Asturias a aceleración de un punto que oscila con MAS puede epresarse coo: a A sen ( t) En función del tiepo. a En función de la distancia al origen.

Más detalles