CONJUNTOS FILTRANTES O DIRIGIDOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONJUNTOS FILTRANTES O DIRIGIDOS"

Transcripción

1 CONJUNTOS FILTRNTES O DIRIGIDOS RETÍCULOS Los onjuntos ordendos otdos pueden estudrse omo onjuntos fltrntes on ot superor mínm ot nferor mám. Esto permte defnr los retíulos de orden estleer su equvlen on un estruturón lger sore lees de omposón ntern que nos llev neesrmente los oneptos lásos de retíulos álgers nllos oolenos. Conjuntos fltrntes o drgdos. Semrretíulos: Ide de onjunto fltrnte o drgdo: Defnón : Un onjunto ordendo tl que todo suonjunto del msmo de dos elementos esté otdo superormente mordo se de que es fltrnte superormente. S todo suonjunto de dos elementos de está otdo nferormente mnordo se drá fltrnte nferormente. Un onjunto fltrnte es un onjunto que es fltrnte superormente fltrnte nferormente. fltr _ sup m fltr _ nf m m m fltr fltr _ sup fltr _ nf s m m s s Teorem : Todo suonjunto fnto de un onjunto fltrnte superormente es mordo: {... } n fltr _ sup n... 2 En todo onjunto fltrnte superormente un elemento mml es tmén mámo por onsguente es úno. MRCHEN SEPTIEMBRE 2006

2 Por nduón:. Pr n2 se verf por ser fltrnte_sup: 2.2 Se erto pr nk- vemos que h de ser erto pr nk:... k mordo... k { } k Por onsguente l proposón se verf pr todo suonjunto fnto. 2 Por reduón l surdo: k m m m ml m no m mo n no m n no n m m n m n m no mml fltr Es nmedto que el teorem se verf de form nálog pr onjuntos fltrntes nferormente: fltr _ nf {... n }... n 2 En todo onjunto fltrnte nferormente un elemento mnml es tmén mínmo por onsguente es úno. Semrretíulos: Defnón 2: Un su_semrretíulo es un onjunto ordendo tl que todo pr de elementos del msmo dmte mornte mínmo o supremo que se puede ndr por sup { } Un nf_semrretíulo es un onjunto ordendo tl que todo pr de elementos del msmo dmte un mnornte mámo o ínfmo que ndremos por nf Teorem 2: { } En un sup_semrretíulo todo suonjunto fnto dmte supremo. 2 Pr tod fml de sup_semrretíulos el onjunto produto es tmén un sup_semrretíulo. Por nduón. Se verf pr n2 por defnón de sup_semrretíulo. Se erto pr nk- vemos que entones h de ser erto tmén pr nk: Llmemos sup{... k } se sup{ k }. es mornte del onjunto {... k }. Culquer otro mornte de {... k } es mornte de {... k } sup... es mornte de { } { } k k MRCHEN SEPTIEMBRE

3 2 Se I un fml de sup_semrretíulos llmemos P l onjunto produto rtesno de los elementos de l fml: P. S onsdermos I proemos que el hor dos elementos ulesquer de P I I elemento de P ddo por I donde es d sup r{ } presmente el supremo de { } : Ovmente es. S onsdermos un elemento d de P d d I es tl que d d entones d d de donde tmén d sup r por lo ul d. puesto que es { } Teorem nálogo pr nf_semrretíulos se prue del msmo modo. Defnón 3: Un sup_semrretíulo ompleto es un sup_semrretíulo en el que todo suonjunto del msmo dmte supremo mornte mínmo. Un nf_semrretíulo ompleto es un nf_semrretíulo en el que todo suonjunto del msmo dmte ínfmo mnornte mámo. Ovmente todo sup_semrretíulo ompleto dmte mámo todo nf_semrretíulo ompleto dmte mínmo. Retíulos de orden retíulos lgeros: Retíulos de orden: Defnón 4: Se llm retíulo de órden un onjunto ordendo que es sup_semrretíulo tmén nf_semrretíulo En un retíulo de órden por tnto todo pr de elementos dmte supremo tmén dmte ínfmo lo que nos nd que tmén todo suonjunto fnto dmte tnto supremo omo ínfmo. Teorem 3: Pr dos retíulos de orden ddos el onjunto produto rtesno de mos es tmén un retíulo de orden. Es trvl por el Teorem 2 2. MRCHEN SEPTIEMBRE

4 Defnón 5: Ddo un retíulo de orden un suonjunto S de on el msmo orden ndudo por el retíulo S / S dremos que / S s S es suretíulo del retíulo solo s se verf que pr dos elementos ulesquer de el ínfmo el supremo en son respetvmente el ínfmo el supremo en S: { } nf { } sup r { } sup r { } nf S S Notemos que en generl un suonjunto de un retíulo on su msmo orden ndudo no es un retíulo undo lo es pueden no ser gules los ínfmos supremos de dos elementos ulesquer del retíulo pues se d en generl un stuón del tpo: Defnón 6: { } nf { } sup r { } sup r { } nf S S Un retíulo de orden ompleto es un onjunto que es nf_semrretíulo ompleto tmén es sup_semrretíulo ompleto. Teorem 4: Ddos dos retíulos de orden ompletos el onjunto produto rtesno de mos tmén es retíulo de orden ompleto. Vemos que ulquer suonjunto C del produto rtesno B de dos retíulos de orden ompletos tene ínfmo tene supremo. Sen pues dos retíulos de orden ompletos B se C un suonjunto del msmo on el orden ndudo o se: C B B C / B B { } B por ser ompleto tene ínfmo supremo nálogmente por ser B ompleto tmén B B tene ínfmo supremo: nf sup nf B sup B de lo ul es nmedto que esten ínfmo supremo pr el onjunto C: nf B nf C sup B supc Teorem 5: Todo semrretíulo ompleto se sup_semrretíulo o nf_semrretíulo que teng elemento nulo unversl mínmo mámo es tmén un retíulo de orden ompleto. MRCHEN SEPTIEMBRE

5 Hgmos l demostrón pr un nf_semrretíulo. Se pues un nf_semrretíulo ompleto por lo ul este ínfmo pr ulquer suonjunto de. Llmemos nf. Sen entones nf mn sup. Pr pror que es ompleto strá ver que este sup. Pr ello onsderemos el onjunto X de todos los morntes de. Tl onjunto no es vío pues X. Supongmos que es s el nfmo del onjunto X : s nf X. Esto quere der que ulquer elemento de es menor o gul que ulquer elemento de X es der ulquer elemento de es mnornte de X. O se s s mor de s X s mn X. por lo ul sup s. Retíulos lgeros: Defnón 7: Un retíulo lgero es un onjunto dotdo de dos lees de omposón ntern que tenen ls propeddes sguentes: Son dempotentes: Son onmuttvs: Son sotvs: d Propedd de sorón: Un retíulo lgero dstrutvo es un retíulo lgero en el que ls dos lees de omposón nterns son dstrutvs l un on respeto de l otr. Teorem 6: S el pr es un retíulo de orden entones l tern en donde se h heho ínfmo supremo es un retíulo lgero. Se verf trvlmente tenendo en uent que es es : ínfmo del pr { } supremo del pr { } que. Propedd de Idempoten 2. Propedd Conmuttv 3. Propedd sotv 4. Propedd de sorón MRCHEN SEPTIEMBRE

6 MRCHEN SEPTIEMBRE Teorem 7: En todo retíulo lgero puede defnrse un orden desde sus lees de omposón ntern de form que se un retíulo de orden. S es un retíulo lgero strá defnr el orden de l sguente mner: Ls dos frmones de l dsuntv de l defnón son equvlentes por lo que l defnón es onsstente. L demostrón smól es nmedt desde ls propeddes de sorón de onmuttvdd de ls lees nterns del retíulo: Vemos que se verfn ls propeddes de l relón de orden:. Propedd reflev: 2. Propedd ntsmétr: 3. Propedd trnstv: Vemos fnlmente que pr todo pr de elementos de este el ínfmo tmén este el supremo: Puesto que se tene: Es der: { } r sup nálogmente:

7 MRCHEN SEPTIEMBRE Es der: { } nf Modulrdd dstrutvdd. Complementón: Defnón 8: Un retíulo se de modulr s se verf que Defnón 9: Un retíulo se de dstrutvo s se verf que Defnón 0: Ddo un retíulo on mínmo mn mámo má se llm omplemento de un elemento todo elemento tl que se verf: Defnón : Se llm retíulo omplementro o omplementdo todo retíulo on mínmo mámo tl que todo elemento del msmo tene un omplemento. Teorem 8: En todo retíulo dstrutvo se verf que Teorem 9: En todo retíulo dstrutvo el omplemento de un elemento ulquer s este es úno.

8 Supongmos que el elemento tuver dos omplementos dstntos strí plr el teorem 8: " " " " " Retíulos de Boole. Álgers de Boole. nllos de Boole: Retíulos Álgers de Boole: Defnón 2: Se defne el onepto de retíulo de Boole omo un retíulo de orden que se dstrutvo tmén omplementdo. Un álger de Boole es un 5-pl formd por un onjunto dos lees nterns umplendo ls propeddes de dempoten onmuttvdd sotvdd sorón dstrutvdd fnlmente dos elementos que se denomnn nulo unversl respetvmente pr los ules se umple que Teorem 0: S es un retíulo de Boole entones sendo el mínmo el mámo se tene que l 5-pl v es un Álger de Boole us operones nterns son v. 2 S es un Álger de Boole entones el onjunto ordendo donde es l relón defnd en el desrrollo de l demostrón del teorem 7 es un retíulo de Boole. Por el teorem 6 l tern v es un retíulo lgeráo por ser de Boole tmén es dstrutvo. Por ser omplementdo tendrá mínmo mámo que son el elemento nulo unversl del álger oolen. El omplementro de ulquer elemento será el omplementro en el retíulo de Boole. Luego efetvmente l 5-pl v es un Álger de Boole. 2 S es un álger de Boole por el teorem 7 el onjunto ordendo que se etre del retíulo lgeráo verf tmén l propedd dstrutv on mínmo mámo los elementos respetvmente. El omplementro de será el omlementro en el álger MRCHEN SEPTIEMBRE

9 MRCHEN SEPTIEMBRE de Boole. Por tnto se otene un retíulo de orden dstrutvo omplementdo esto es un retíulo de Boole. Teorem Lees de De Morgn: En todo retíulo de Boole se verfn ls relones: 2 sendo los elementos omplementros de e respetvmente. Se trt de pror que que : 2 nllos de Boole: Teorem 2: Un retíulo de Boole puede ser estruturdo omo un nllo onmuttvo dempotente on elemento undd nllo de Boole. 2 Reípromente todo nllo de Boole nllo onmuttvo dempotente on elemento undd puede ordenrse omo un retíulo de Boole. Trvlmente se puede ompror l verfón de ls propeddes que defnen tl nllo defnendo ls lees dtv multpltv de l form: +. 2 Se otene smsmo un Álger de Boole mednte l sguente defnón de ls lees nterns del Álger prtr de ls lees del nllo de Boole de l form: prtr de un Álger de Boole se otene fálmente l estrutur de retíulo de Boole teorem 0 2.

10 Blogrfí: LBERC P. MRTÍN D.; Métodos mtemátos: Álger Lnel Geometrí Edones lje 200. BURGOS J. De; Álger Lnel Geometrí Crtesn Ed. MGrw Hll DUBREIL P. Y OTROS; Leones de álger modern. Ed. Prnnfo 970 NKOS G. JOYNER D.; Álger Lnel on plones. Edones Thomson 99 PEERMINGET N. GLUDE D.; lgers de Boole teorí métodos de álulo plones. Edtorl Vens Vves 993. ROSEN K.; "Dsrete Mthemts nd ts ppltons ". Ed. MGrw-Hll 99 MRCHEN SEPTIEMBRE

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que:

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que: Prof nre Cmpllo nálss Mtemáto II Integrles oles Consermos un funón f : R R, efn ot en el rento retngulr [, ] [, ] enomnmos [, ] [, ] Gráfmente poemos onserr l sguente stuón: uo z Gráf e f Reoremos qué

Más detalles

Magnitud: es aquello que para existir necesita de las relaciones de igualdad y suma.

Magnitud: es aquello que para existir necesita de las relaciones de igualdad y suma. Álger y Geometrí Anlít Vetores Fultd Regonl L Plt Ing. Vvn CAPPELLO Álger vetorl Este tpo de álger es un neesdd undo se tr on mgntudes: Mgntud: es quello que pr exstr neest de ls relones de guldd y sum.

Más detalles

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando º DE HLLERTO MTRES Y DETERMNNTES Soluones -- DETERMNNTES MTRZ NVERS. lulr el vlor del determnnte. Hllr, en funón de, el vlor del determnnte: en Sndo on votndo nulmos en Sndo ( ( en Sndo ( ( (. Enontrr

Más detalles

Álgebra Booleana y Propiedades

Álgebra Booleana y Propiedades Álger Boolen y Propieddes Se B ={;}. Deinimos l sum y el produto y omplemento pr los elementos de B omo + =. + = + = + =.. = =. =.. = Un vrile es un vrile oolen si sólo tom vlores de B. en onseueni + =

Más detalles

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES FUNDAMENTOS MATEMÁTICOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES CÁLCULO INTEGRAL DE FUNCIONES DE UNA VARIABLE Integrl defnd Dd un funcón f, exste otr F tl que F = f? Integrcón

Más detalles

Teoría y ejercicios de Matemáticas II. Geometría

Teoría y ejercicios de Matemáticas II. Geometría Teorí eeros de Mtemáts II. Geometrí Vetores 4. VECTORES En rsos nterores hemos sto l ent qe tene pr el estdo de l geometrí nlít del plno el onomento del állo etorl En este tem nos ntrodmos en el állo de

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

6. INTERPOLACIÓN POLINOMIAL: SPLINES

6. INTERPOLACIÓN POLINOMIAL: SPLINES 6. INTERPOLACIÓN POLINOMIAL: SPLINES Jorge Edurdo Ortz Trvño jeortzt@unl.edu.o http:/www.doentes.unl.edu.o/jeortzt/ Coeentes de un polnomo de nterpolón Un método dreto pr lulr los oeentes de un polnomo

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

8. 3 2a = 0 a = 3 / 2 3b 4 = 0 b = 4 / 3. Página a) (2, 4) b) (4, 1) c) ( 3, 4) d) (5, 0)

8. 3 2a = 0 a = 3 / 2 3b 4 = 0 b = 4 / 3. Página a) (2, 4) b) (4, 1) c) ( 3, 4) d) (5, 0) TEMA. NÚMEROS COMPLEJOS SOLUCIONES DE LAS ACTIVIDADES Págs. 9 55 Págn 9. S x es un número dferente de 0, x > 0. S x 0, x 0. Por lo tnto, no exste nngún número rel cuyo cudrdo se.. Debe ser menor que 0.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Sstems de Ecucones Lneles www.tgors.es SISTEMS DE ECUCIONES LINELES Estudr un Sstem de Ecucones Lneles S.E.L.) es responder ls pregunts: tene solucón?. s es sí,, cuánts tene cuáles son?. l vst de ests

Más detalles

TEMA 4: Integración múltiple

TEMA 4: Integración múltiple TEMA 4: ntegrión múltiple Cálulo ngeniero de Teleomuniión Cálulo () TEMA 4 ngeniero de Teleomuniión 1 / 32 1 L integrl de Riemnn en R n 2 ntegrl doble ntegrl doble sobre un retángulo ntegrl doble sobre

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

5 Integral doble de Riemann

5 Integral doble de Riemann Miguel eyes, Dpto. de Mtemáti Aplid, FI-UPM 1 5 Integrl doble de iemnn 5.1 Definiión Llmremos retángulo errdo de 2 l produto de dos intervlos errdos y otdos de, es deir = [, b] [, d] = { (x, y) 2 : x b,

Más detalles

MATEMÁTICA 4º. Prof. Sandra Corti

MATEMÁTICA 4º. Prof. Sandra Corti L rdccón de se negtv e índce pr no tene solucón en el conjunto de los números reles ( 4; 25, 16, etc.), y que no exste nngún número rel que elevdo un potenc pr dé por resultdo un número negtvo. Se defne

Más detalles

Operaciones elementales Producto escalar Producto vectorial Rectas Planos SUMA, RESTA Y MULTIPLICIDAD DE VECTORES

Operaciones elementales Producto escalar Producto vectorial Rectas Planos SUMA, RESTA Y MULTIPLICIDAD DE VECTORES Eeros de l prmer Undd Operones elementles Produto eslr Produto vetorl Rets Plnos SUMA RESTA Y MULTIPLICIDAD DE VECTORES En los prolems 6 determne ) ) ) d) y e). 4 6 4. 4. 4 0 0 5 5 5 4. 6 6 6 6 5. 6. 5

Más detalles

TEORÍA DE RENTAS DISCRETAS 1 Rentas Constantes (teoría)

TEORÍA DE RENTAS DISCRETAS 1 Rentas Constantes (teoría) TEORÍA DE RENTAS DISCRETAS 1 Rents Constntes (teorí) Profesor: Jun Antono González Díz Deprtmento Métodos Cuntttvos Unversdd Pblo de Olvde www.clsesunverstrs.com Concepto y clsfccón En generl, un rent

Más detalles

Vectores 4º Año Cód B et i n a C a t t á n eo Matemática N o e m í L a gr ec a Dpto. de Matemática

Vectores 4º Año Cód B et i n a C a t t á n eo Matemática N o e m í L a gr ec a Dpto. de Matemática Vetores Mtemát 4º Año Cód. 4-5 B e t n C t t á n e o N o e m í L g r e Dpto. de Mtemát VECTORES EN EL ESPACIO En Fís muhos son los oneptos, tles omo fuerzs, eloddes, desplzmentos, que no pueden ser determndos

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tem : Sstems de ecucones lneles A Condconmento del prolem. Cá álculo umérco Tem : Resolucón de sstems lneles B Métodos terdos: Jco, Guss-Sedel Reljcón C Métodos drectos: Fctorzcón LU Fctorzcón QR D Sstems

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes.

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes. Tem 6. Itegró 6. Cálulo e prmtvs. 6. Áre e tegrl ef. 6.3 El Teorem fumetl el álulo 6.4 Áre e u regó etre os urvs. 6.5 Cálulo e volúmees. 6.6 Logtu e ro superfe e revoluó. E.U.Polté e Sevll. Fumetos Mtemátos

Más detalles

ESPACIO VECTORIAL. 1. VECTORES EN EL ESPACIO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo).

ESPACIO VECTORIAL. 1. VECTORES EN EL ESPACIO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ESPACIO VECTORIAL. Vetores en el espo. Estrtr de espo etorl. Dependen e ndependen lnel. ses. Prodto eslr 5. Prodto etorl. Prodto mxto. VECTORES EN EL ESPACIO Un etor fo AB es n segmento orentdo qe del

Más detalles

Tema 10: Variables aleatorias

Tema 10: Variables aleatorias Análss de Dtos I Esquem del Tem Tem : Vrbles letors. VARIABLES ALEATORIAS DISCRETAS FUNCIÓN DE PROBABILIDAD, f(x ) FUNCIÓN DE DISTRIBUCIÓN, F(x ) CARACTERÍSTICAS DE LAS VARIABLES DISCRETAS UNA VARIABLE:

Más detalles

CUERPOS. EXTENSIONES DE UN CUERPO

CUERPOS. EXTENSIONES DE UN CUERPO CUERPOS. EXTESIOES DE U CUERPO CARLOS S. CHIEA CUERPOS. EXTESIOES DE U CUERPO.. Cuerpos..2. Subcuerpos. 4.3. Crcterístc de un cuerpo. Subcuerpo prmo. 6.4. Cuerpos fntos. 9.5. Etensones de un cuerpo. 4.6.

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales TEMA : Métodos tertvos de resolucón TEMA. Métodos tertvos de resolucón de Sstems de Ecucones Lneles. Métodos tertvos: ntroduccón Aplcr un método tertvo pr l resolucón de un sstem S A b, consste en trnsformrlo

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

W = dw = F.dl. = F dl cosϕ

W = dw = F.dl. = F dl cosϕ letos Fís pr Cens e Ingenerí CAÍTULO 2.07 INTERCAMBIADO OR UN GAS 1 2.07-1 El trjo en termodnám Es reuente utlzr l expresón trjo termodnámo pr reerrse l trjo relzdo durnte l expnsón o ompresón de un gs.

Más detalles

Programación y Métodos Numéricos: Integración Numérica- Fórmulas de de tipo interpolatorio

Programación y Métodos Numéricos: Integración Numérica- Fórmulas de de tipo interpolatorio Progrmcón y Métodos Numércos: Integrcón Numérc- Fórmuls de de tpo nterpoltoro Prof. Crlos Conde LázroL Prof. Arturo Hdlgo LópezL Prof. Alfredo LópezL Mrzo, 27 Deprtmento de Mtemátc Aplcd y Métodos Informátcos

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1 FISI I P 1 LGER VETORIL 11 Mgntudes físcs Ls mgntudes físcs, son ls propeddes que le crctern los cuerpos o los fenómenos nturles que se pueden medr, E: L longtud, l ms, l velocdd, l tempertur, etc Mentrs

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgntud es culquer cos que puede ser medd medr no es más que comprr un mgntud con otr de l msm espece que se tom como referenc. Ls mgntudes se epresn con un número uns unddes. En lguns ocsones el número

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121 Los números gnros: Clse-15 En hy stucones que no tenen solucón; por ejemplo no exste nngún número cuyo cudrdo se gul -1. Pr dr solucón est stucón recurrremos l conjunto de los números mgnros, donde se

Más detalles

es una función cúbica o de tercer grado que pasa por el origen 0,0 del plano cartesiano.

es una función cúbica o de tercer grado que pasa por el origen 0,0 del plano cartesiano. AREA: MATEMATICAS GUIA DE TRABAJO No. 0 ASIGNATURA: MATEMATICAS PERIODO: II AÑO: 01 DOCENTE: SANDRA MIENA ZANGUÑA RUIZ ESTANDARES: Construyo epresones lgers equvlentes un epresón lger dd. Identfo y utlzo

Más detalles

Procesamiento de Imágenes Satelitales. Clase Teórico

Procesamiento de Imágenes Satelitales. Clase Teórico Proesmento de Imágenes Steltles Clse Teóro ro-prát Nro. Georreferenón L georreferenón de mágenes steltles es el proeso mednte el ul se dot de vldez rtográf un mgen dgtl orrgendo geométrmente l posón de

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

3º Año. Vectores. Matemática

3º Año. Vectores. Matemática 3º Año Cód. 1302-17 P r o f. M ó n i N p o l i t n o P r o f. M. D e l L u j á n M r t í n e z R e v i s i ó n P r o f. P t r i i G o d i n o Dpto. de M temáti 1- INTRODUCCIÓN En diverss oportuniddes nos

Más detalles

D E T E R M I N A N T E S M A T R I Z I N V E R S A

D E T E R M I N A N T E S M A T R I Z I N V E R S A º DE BACHILLERATO DETERMINANTES D E T E R M I N A N T E S ----------- M A T R I Z I N V E R S A DETERMINANTES I. Determites. II. Primers pliioes de los determites. I. Determites.. Defiió álulo de u determite.

Más detalles

4. En los axiomas A3) y A4) observe detenidamente la posición de los cuantificadores existencial y universal, y obtenga conclusiones.

4. En los axiomas A3) y A4) observe detenidamente la posición de los cuantificadores existencial y universal, y obtenga conclusiones. Álgebr II (LM-PM)-.C.E. y T.-UNSE Udd Nº : MTRICES-DETERMINNTES Defó INTRODUCCIÓN ESTRUCTURS LGEBRICS de GRUPO y de CUERPO Se G y se * u operó e G. El pr ( G ) es u grupo s y sólo s: ) * es u ley de omposó

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form

Más detalles

1. Integral sobre regiones elementales.

1. Integral sobre regiones elementales. NTEGRAL MÚLTPLE Así omo l integrl simple resuelve el problem del álulo de áres de regiones plns, l integrl doble es l herrmient nturl pr el álulo de volúmenes en el espio tridimensionl. En ests nots se

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

En este capítulo se describe el problema de máxima cobertura sin capacidad (MCLP) y con

En este capítulo se describe el problema de máxima cobertura sin capacidad (MCLP) y con CAPITULO 3 Descrcón del roblem En este cítulo se descrbe el roblem de mám cobertur sn ccdd (MCLP) con ccdd (CMCLP). Posterormente se resentn los modelos de rogrmcón mtemátc r mbos. 3.1 Descrcón del MCLP

Más detalles

T. P es una partición de T y se P T n sí y sólo sí: una partición medible de T. Se denomina diámetro de un conjunto T i

T. P es una partición de T y se P T n sí y sólo sí: una partición medible de T. Se denomina diámetro de un conjunto T i ANALISIS MAEMÁICO II I.S.F.D. Nº 7 UNIDAD DIDÁCICA Nº: Estuo geerl e ls fuoes e R e R m ese el puto e vst el álulo tegrl erer ño Profesoro e Mtemát INEGRALES DE CAMPOS ESCALARES. Itegrles múltples. Defoes

Más detalles

Integrales múltiples.

Integrales múltiples. Pro. Enrique Mteus Nieves otoro en Euión Mtemáti Integrles múltiples. Introuión. En el primer urso e Funmentos se plnteó el prolem e hllr el áre ompreni entre l grái e un unión positiv y x, el eje OX y

Más detalles

Vicente Meavilla Universidad de Zaragoza - España. (aceito para publicação em maio de 2007) Resumen

Vicente Meavilla Universidad de Zaragoza - España. (aceito para publicação em maio de 2007) Resumen Revst Brsler Leyendo de Hstór Euler: d Mtemát lgunos - Vol. prolems 8 n o 15 (rl/008 onernentes - setemro/008 erts lses ) - pág.9-1 de trángulos Pulção Ofl d Soedde Brsler de Hstór d Mtemát ISSN 1519-955X

Más detalles

Clase 12: Integración de funciones de varias variables con valores reales

Clase 12: Integración de funciones de varias variables con valores reales Clse : Integrión de funiones de vris vribles on vlores reles C.J. Vnegs de junio de 8 eordemos.. L integrl f. fx)dx, pr f represent el áre bjo l gráfi de Similrmente si tenemos un funión de dos vribles:

Más detalles

INTRODUCCION A LAS CATEGORIAS Y FUNTORES

INTRODUCCION A LAS CATEGORIAS Y FUNTORES INTRODUCCIÓN A LAS CATEGORÍAS Y FUNTORES. DEFINICIONES. LOS AXIOMAS DE BIRKOFF-MCLANE 3. ALGUNOS TEOREMAS BÁSICOS MARCHENA ABRIL 00 DIVULGACION DE LA MATEMÁTICA EN LA RED . DEFINICIONES: Deinición.. Se

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR.

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR. Sergio Ynsen Núñez. Se A 8 3 3 Muestre que A es digonlizle sore IR. Soluión: 8 3 3 6 5 3 Los vlores propios de A sony3 A es de y tiene dos vlores propios distintos, por lo tnto es digonlizle sore IR. Otr

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

ANALISIS MATRICIAL DE ESTRUCTURAS POR EL METODO DE LA RIGIDEZ

ANALISIS MATRICIAL DE ESTRUCTURAS POR EL METODO DE LA RIGIDEZ ANAII MATRICIA DE ETRUCTURA POR E METODO DE A RIGIDEZ ETABIIDAD III CAPITUO IV: ANAII MATRICIA DE ETRUCTURA Pág Introduón os métodos lásos de nálss estruturl desrrolldos fnes del sglo XIX, tenen ls ulddes

Más detalles

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio.

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio. . Introuón Equlro Químo ermonám. em 4 El esto e equlro e ls reones químs reversles en sstems y onstntes tene ls sguentes rterísts: ) L omposón e los omponentes e l reón no vrí en el tempo. or eso, es posle

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

RELACIONES Y FUNCIONES CLASE 4

RELACIONES Y FUNCIONES CLASE 4 RELACIONES Y FUNCIONES CLASE 4 CONJUNTO PARCIALMENTE ORDENADO Se R un relión en un onjunto A, y se R un relión de orden pril. El onjunto A on R se llm onjunto prilmente ordendo y se denot omo (A,R). Dd

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE-

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teorí Prof Alón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- 1 Números enteros Un número rel se die entero si es ero o es un número nturl o es el opuesto de un número nturl Si indimos on N l subonjunto

Más detalles

TRANSFORMACIONES LINEALES

TRANSFORMACIONES LINEALES . 7 Cpítulo 5 RANSFORMACIONES LINEALES Mrtínez Hétor Jiro Snri An Mrí Semestre,.7 5.. Introduión Reordemos que un funión : A B es un regl de soiión entre los elementos de A y los elementos de B, tl que

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

Fundamentos matemáticos. Los Postulados de la Mecánica Cuántica.

Fundamentos matemáticos. Los Postulados de la Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Fudmetos mtemátos Los Postuldos de l Meá Cuát FUNDMENTOS MTEMÁTICOS L Meá Cuát se desrroll e espos etorles deomdos espos de Hlert Pr omezr, repsremos reemete ls des fudmetles

Más detalles

EJERCICIOS NÚMEROS COMPLEJOS. 3+4i 20º

EJERCICIOS NÚMEROS COMPLEJOS. 3+4i 20º EJERCICIOS NÚMEROS COMPLEJOS Represent gráfcmente pr: --- -- - -- - - / - Hll ls rones trgonométrcs del ángulo AOB sendo que A es el fjo del complejo ε B el fjo del complejo σ O ˆ â B - ε ; ˆ rg sen ˆ

Más detalles

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor

Más detalles

A LA SOMBRA DE LOS GRUPOS FINITOS

A LA SOMBRA DE LOS GRUPOS FINITOS A LA SOMBRA DE LOS GRUPOS FINITOS L Teorí de los Gruos Fntos recbe l nfluenc drect tnto del Algebr Lnel, como de l Coomologí y l Teorí de Módulos, roducendo nnumerbles lccones tnto sobre l msm Teorí de

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

Práctica 2: Codificación Aritmética.

Práctica 2: Codificación Aritmética. TRANMÓN DE DATO 006/07 Práctc : Codfccón Artmétc. Apelldos, nombre Apelldos, nombre Grupo Puesto Fech 0 Octubre/ Novembre 006 El objetvo de est práctc es ntroducr l lumno en los fundmentos de ls codfccón

Más detalles

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS MATEMÁ TTCAS BÁSICAS SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS Ddos números reles l', b l, b, l Y ' l pr de euiones lx + b,y=l Y x + b y = se denomin un sistem linel de dos euiones en ls dos

Más detalles

MATEMÁTICA DISCRETA. Tema GRAFOS. Introducción

MATEMÁTICA DISCRETA. Tema GRAFOS. Introducción MATEMÁTICA DISCRETA Tem GRAFOS Introduión 1 ÍNDICE 1. INTRODUCCIÓN A LOS GRAFOS. Euler y los puentes de Köniserg. Definiiones y terminologí. Grfo, multigrfo, pseudogrfo, grfo dirigido y on peso, et. Fmilis

Más detalles

MATEMÁTICAS Y CULTURA B O L E T Í N No. 262 COORDINACIÓN DE MATEMÁTICAS

MATEMÁTICAS Y CULTURA B O L E T Í N No. 262 COORDINACIÓN DE MATEMÁTICAS MTEMÁTIC Y CULTUR O L E T Í N..009 No. COORDINCIÓN DE MTEMÁTIC MTEMÁTIC MTEMÁTIC OPERDORE: DJUNTO Y NORML En n espco V con prodcto nterno cd operdor lnel tene n operdor llmdo s djnto tmén lnel qe representmos

Más detalles

1.-Algunas desigualdades básicas.

1.-Algunas desigualdades básicas. Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd

Más detalles

INTEGRALES IMPROPIAS INTEGRALES EN INTERVALOS NO ACOTADOS. (Integral impropia de 1ª especie).

INTEGRALES IMPROPIAS INTEGRALES EN INTERVALOS NO ACOTADOS. (Integral impropia de 1ª especie). Integrles Impropis INTEGRALES IMPROPIAS L integrl f ()d se die impropi si ourre l menos un de ls hipótesis siguientes: º, o mos son infinitos. 2º L funión f() no está otd en el intervlo [,]. Ejemplos:

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

Uno de los problemas que dio origen al concepto de integral definida fue de origen geométrico:

Uno de los problemas que dio origen al concepto de integral definida fue de origen geométrico: Mtemátc II 7 Modulo 5 Integrcón. L ntegrl defnd Uno de los prolems que do orgen l concepto de ntegrl defnd fue de orgen geométrco: Hllr el áre de un regón pln lmtd por l gráfc de un funcón f() postv y

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

TEMA 9: DETERMINANTES

TEMA 9: DETERMINANTES más º llo. Ál Lnl TE : DETERNNTES. DETERNNTE DE UN TRZ UDRD. PROPEDDES DE LOS DETERNNTES. ENOR OPLEENTRO Y DJUNTO DE UN ELEENTO DE UN TRZ UDRD. DESRROLLO DE UN DETERNNTE POR LOS ELEENTOS DE UN LÍNE. ENORES

Más detalles

Programación: el método de bisección

Programación: el método de bisección Progrmión: el método de iseión Este texto fue esrito por Egor Mximenko y Mri de los Angeles Isidro Perez. Ojetivos. Enter l ide del método de iseión, progrmr el método de iseión usndo un ilo while, pror

Más detalles

Seminario de problemas. Curso Soluciones Hoja 18

Seminario de problemas. Curso Soluciones Hoja 18 Seminrio de problems. Curso 015-16. Soluiones Hoj 18 10. Sen, b, y d utro números enteros. Demostrr que el produto de ls seis diferenis b,, d, b, d b, d es múltiplo de 1. Soluión Vemos que diho produto

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

COMPARACIÓN CUANTITATIVA

COMPARACIÓN CUANTITATIVA Cpítulo COMPARACIÓN CUANTITATIVA. NOCIONES BÁSICAS Desde épos remots, l Mtemáti h estdo en l vid del homre. Todo lo que le rode no hí sino onduirlo por un mino inipiente e inevitle de l Mtemáti: Comprr,

Más detalles