Borrador 2a Edición - No distribuir

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Borrador 2a Edición - No distribuir"

Transcripción

1 Apédice D Estimació Lieal de Parámetros La siguiete fució geeral es lieal respecto a par parámetros: F = + a f + a 3 f 3 + a 4 f a par f par (D.1) r dode F es la variable depediete que puede ser: y, r, [g(y) g()],, o cualquier CA C B fució que ivolucre las variables medidas e el laboratorio y costates/parámetros coocidos. La úica codició es que dicha fució o debe coteer parámetros descoocidos o a estimar. La fució asociada al parámetro vamos a cosiderarla como f 1 = 1. Este caso particular se icluye porque es muy frecuete e ciética, por ejemplo, = l k, dode k es la costate de velocidad de reacció pero cosideramos a l k, tal cual, como uo de los parámetros. Cada sumado del lado derecho debe cotar co u parámetro y ua fució f j. Preferetemete so fucioes de la(s) variable(s) idepediete(s). Por ejemplo:,, l,, , CA CB, o cualquier fució siempre y cuado o cotega parámetros por estimar. Las fucioes F y f j s puede ser o-lieales; si embargo, la Ecuació D.1 es lieal respecto a los parámetros porque los epoetes de todos los parámetros so 1. Si eistiera u parámetro que está elevado a cualquier otro epoete, por ejemplo, Φ, teemos dos opcioes: 1) defiir u uevo parámetro para que sea lieal, φ 1 = Φ, forzado a que el uevo parámetro sea lieal; y ) la opció recomedada, tratar a Φ, tal cual está escrito, como el parámetro co todo y el epoete. El método por ecelecia para optimizar parámetros co ua sola observació o variable depediete, F, es míimos cuadrados. La fució objetivo para este método cosiste e miimizar la suma del cuadrado de los errores (coocido como residuales e la jerga de estadística y ajuste de parámetros) etre los valores eperimetales de la variable depediete y sus valores estimados a partir de los parámetros a optimizar y de las variables eperimetales. Esto es, ep Fució Objetivo = F.O. = mi (F ep i F est i ) (D.) Borrador a Edició - No distribuir 3

2 4 Apédice D. Estimació Lieal de Parámetros Para u úmero de parámetros igual a par, ecesitamos platear u mismo úmero de ecuacioes y así teer u sistema de par ecuacioes lieales co par icógitas. A estas ecuacioes se les llama ecuacioes ormales porque debe ser ortogoales. La Secció D.1 propoe u procedimieto iformal ágil para geerarlas mietras que el procedimieto formal se eplica e la Secció D.. Auque estudiar la última secció es opcioal, es muy recomedable que el alumo la revise para evitar que esta herramieta se quede como ua caja egra; además, costituye u ilustrativo repaso del Método de Máimos y Míimos. D.1. Método Simplicado El objetivo de esta secció es obteer las ecuacioes ormales y su solució mediate ua secilla receta: 1. Escribir la fució geeral de modo que la variable depediete, F, quede del lado derecho: + a f + a 3 f a par f par = F. Rescribir, e otació matricial, par -veces esta ecuació si igú cambio: 1 f f 3 f par F 1 f f 3 f par a 1 f f 3 f par a 3 = F F 1 f f 3 f par F a par 3. Idetificar las fucioes f j s y multiplicar respectivamete cada ĺıea por cada ua de las par fucioes: 1 f f 3 f par F f f f f 3 f f par a f 3 f f 3 f 3 f 3 f par a 3 = F f F f 3 f par f f par f 3 f par f par a par F f par 4. Agregar sumatorias a cada regló y, e caso de que eista u 1 como fució, remplazar 1 por ep : ep f f3 fpar F f f f f 3 f f par a f3 f f 3 f3 f3 f par a 3 = F f F f3 fpar f f par f3 f par fpar F fpar a par 5. Simplificar cada térmio cuado sea posible, por ejemplo, r C A C A r CA, y evaluar todas las sumatorias; y Borrador a Edició - No distribuir

3 Apédice D. Estimació Lieal de Parámetros 5 6. Fialmete, calcular uméricamete los parámetros óptimos sustituyedo valores y realizado el producto cruz de la iversa de la matriz co el vector que cotiee F : a a 3 a par fpar ep f f3 = f f f f 3 f f par f3 f f 3 f3 f3 f par fpar f f par f3 f par fpar Alguos cometarios sobre el procedimieto aterior: 1 F F f F f3 F fpar Notemos que si dejamos suficiete espacio e el Paso, e esas mismas matrices y vectores se puede realizar los Pasos 3 a 5; Debemos distiguir etre el úmero de datos o eperimetos, ep, asociado al subídice i, y el úmero de parámetros, par, asociado al subídice j; El Paso 6 toma vetaja del álgebra lieal. Si tuviéramos ua simple ecuació algebraica, m = y, co u simple despeje podríamos resolver m = y ; pero esto o es ta simple co matrices y vectores. Cuado se tiee el producto cruz de ua matriz co u vector: X M = Y, el orde y compatibilidad de las dimesioes importa, y la solució del vector M implica ivertir la matriz y realizar u producto cruz: M = X 1 Y ; Las evaluació de las sumatorias y las operacioes matriciales puede realizarse e Ecel o e cualquier otro paquete de matemáticas como MathCad; y Es ecesario geerar gráficos para determiar si el ajuste de parámetros es aceptable. Ejemplo D.1. Obtega la ecuació ormal para ua relació proporcioal y = m y la solució correcta basada e el método de míimos cuadrados. Solució: A pesar de lo secillo, este es u caso de suma importacia por lo que se hace la siguiete aclaració: Frecuetemete co el método itegral o diferecial se realiza ua liealizació y se optimiza los parámetros de y = m + b; si embargo, eiste muchos casos e que la b ivolucra solamete valores coocidos, por ejemplo, para primero y segudo orde co el método itegral b = l C A0 o b = C 1 A0, pero debemos recoocer que e la mayoría de los casos la cocetració iicial, C A0, se midió co mucha certeza. Por lo tato, esas liealizacioes puede y debe simplificarse aú más hasta ua fucioalidad proporcioal, y = m, es decir, sí ua ĺıea recta, pero co la particularidad de que b = 0 porque la recta debe para por el orige, el puto (0, 0). Para los ejemplos típicos Borrador a Edició - No distribuir

4 6 Apédice D. Estimació Lieal de Parámetros de primero y segudo orde co el método itegral se obtiee ua relació proporcioal si y = l(c A /C A0 ) o y = C 1 A C 1 A0, respectivamete. Siguiedo el Método Simplificado geeramos la úica ecuació ormal [ ] [ ] [m] = y y, como la matriz y vectores solamete tiee u elemeto, etoces simplemete correspode a ua ecuació algebraica que despejamos para obteer la solució del parámetro óptimo: y m = (D.3) Como cometario adicioal de eperiecia docete, u alumo si bases sólidas de míimos cuadrados estaría tetado a realizar e simple promedio aritmético de valores de m calculados idividualmete a partir de los putos: m Erróea = ep y i i=i i ep Ejemplo D.. Ecuetre la matriz co las ecuacioes ormales para: r = k C A α C B β C C γ Solució: Lo primero que se debe hacer es idetificar los parámetros y liealizar la ecuació respecto a dichos parámetros. Los parámetros so k, α, β y γ, y la ecuació modificada es log r = log k + α log C A + β log C B + γ log C C Las matriz co las ecuacioes ormales es: ep log CA log CB log CC log CA (log CA ) log k log CA log C B log CA log C C log CB log CA log C B (log CB ) α log CB log C C β log CC log CA log C C log CB log C C (log CC ) γ log r = log r log CA log r log CB log r log CC dode otamos que el parámetro = log k, tal cual. Borrador a Edició - No distribuir

5 Apédice D. Estimació Lieal de Parámetros 7 D.. Ejemplo D.3. Ecuetre la matriz co las ecuacioes ormales para: y = a + b + c l Solució: Los parámetros so a, b y c, y las fucioes so, 1 y l. Las matriz co las ecuacioes ormales es: ep l 1 a l y ep b = y l l (l ) c y l Ejemplo D.4. Ecuetre la matriz co las ecuacioes ormales para: y = l 1 + β β 1 Solució: Los parámetros so β 0 y β 1. Por lo tato, debemos platear dos ecuacioes ormales. Para este problema es fácil irse co la fita y o saber que hacer co el térmio l 1. Pero como sabemos que la fució que llamamos F e la Ecuació D.1 es cualquier fució de variables depedietes y/o idepedietes mietras o cotega parámetros, icluso puede icluir costates siempre y cuado sea coocidas. Etoces hacemos la siguiete modificació: y l 1 = β β 1 Después de este cambio, ya si dudar escribimos la matriz que represeta las ecuacioes ormales: [ ] [ ] [ ] β0 (y l 1 ) = (y 1 l 1 ) Método Formal Escribimos la fució objetivo, la Ecuació D., evaluado F est i co la Ecuació D.1 y escribiedo F ep i simplemete como F i : F.O. = β 1 (F i a f i a f 3 i a par f pari) dode el subídice i está asociado a los eperimetos idividuales y recordamos que hemos establecido por coveiecia que f 1i = 1. Borrador a Edició - No distribuir

6 8 Apédice D. Estimació Lieal de Parámetros Comezamos derivado parcialmete respecto a cada uo de los parámetros que queremos optimizar: F.O. ep = (F i a f i a 3 f 3i a par f pari) ( 1) ep F.O. = (F i a f i a 3 f 3i a par f pari) ( f i ) a ep F.O. = (F i a f i a 3 f 3i a par f pari) ( f 3i ) a 3 F.O. ep = (F i a f i a 3 f 3i a par f pari) ( f pari) a par Recordado uestras bases de máimos y míimos, es codició ecesaria que las derivadas parciales sea iguales a cero para u míimo o máimo; pero, para cofirmar que se trata de u míimo respecto a todos los parámetros evaluamos las segudas derivadas parciales (si todavía haber igualado a cero las primeras derivadas): F.O. ep = 1 > 0 ep F.O. = f i > 0 a ep F.O. = f 3i > 0 a 3 F.O. ep = f pari > 0 a ep Puesto que, al realizar las sumatorias ateriores, las fucioes f j se eleva al cuadrado, es claro que las segudas derivadas so todas positivas y, por lo tato, se comprueba que la solució que se obtega al igualar todas las primeras derivadas parciales a cero será míimo. Regresamos a todas las primeras derivadas y ahora sí las igualamos a cero, pasamos dividiedo el para elimiarlo y reacomodamos para que primero aparezca los sumados Borrador a Edició - No distribuir

7 Apédice D. Estimació Lieal de Parámetros 9 co sigos positivos: ep ( + a f i + a 3 f 3i + + a par f pari F i ) = 0 ep ( f i + a f i + a 3 f i f 3i + + a par f pari f i F i f i ) = 0 ep ( f 3i + a f i f 3i + a 3 f 3i + + a par f pari f 3i F i f 3i ) = 0 ep ( f pari + a f i f pari + a 3 f 3i f pari + + a par f pari F i f pari) = 0 Desarrollamos cada ua de las ecuacioes ateriores para reorgaizarlas; por ejemplo, la primera ecuació al sumar idividualmete los térmios de cada eperimeto: + a f 1 +a 3 f a par f par1 F a f +a 3 f 3 + +a par f par F + + a f 3 +a 3 f a par f par3 F a f ep +a 3 f 3ep + +a par f par ep F ep =0 Los datos e la ecuació origial estaba sumados por regló (eperimeto) pero ahora os aseguramos de sumar cada columa, factorizamos los parámetros y pasamos al lado derecho el último térmio que cotiee F. La primera ecuació reorgaizada queda como: ep ep ep ep ep 1 + a f i + a 3 f 3i + + a par f pari = Repetimos el mismo procedimieto co el resto de las ecuacioes surgidas de igualar las primeras derivadas parciales a cero. Para simplificar la escritura obviamos el subídice i, los ĺımites de las sumatorias y sustituimos 1 por ep. Fialmete, llegamos al sistema de ecuacioes ormales: ep + a f + a 3 f3 + + a par fpar = F f + a f + a 3 f f a par fpar f = F f f3 + a f f 3 + a 3 f3 + + a par fpar f 3 = F f 3 fpar + a f f par + a 3 f3 f par + + a par F i fpar = F f par Borrador a Edició - No distribuir

8 10 Apédice D. Estimació Lieal de Parámetros Al escribir este sistema de ecuacioes algebraicas lieales e forma matricial llegamos al Paso 4 del procedimieto propuesto e la Secció D.1. Por lo tato, queda demostrada la validez y geeralidad de las ecuacioes ormales obteidas co el Método Simplificado. Ejemplo D.5. Obtega formalmete las ecuacioes ormales y la solució óptima para los parámetros de ua ĺıea recta: y = m + b. Solució: Aclarado la omeclatura para esta secció, ( i,y i )s so los datos eperimetales de maera que y calc i = m i + b. Escribimos la Fució Objetivo dada por la Ecuació D.: F.O. = (y i m i b) Derivamos parcialmete respecto a cada uo de los parámetros que queremos optimizar: F.O. m = (y i m i b) ( i ) = (m i + b i i y i ) F.O. = b (y i m i b) ( 1) = (m i + b y i ) Comprobamos mediate las segudas derivadas parciales que, puesto que ambas so positivas, al igualar a cero las primeras derivadas se determiará los parámetros correspodietes a u míimo de la Fució Objetivo: F.O. m = i > 0 F.O. = b 1 > 0 Retomamos las ecuacioes de la primeras derivadas parciales, las igualamos a cero y pasamos dividiedo el para elimiarlo. Ahora desarrollamos las sumatorias e ambas ecuacioes alieado u regló por cada eperimeto: y para la seguda m 1 + b 1 1 y 1 +m + b y +m 3 + b 3 3 y 3 +m + b y = 0 m 1 + b y 1 +m + b y +m 3 + b y 3 Borrador a Edició - No distribuir +m + b y = 0

9 Apédice D. Estimació Lieal de Parámetros 11 Reagrupamos por columa, factorizamos m y b, y pasamos sumatoria de la última columa al lado derecho para obteer las dos ecuacioes ormales: m m i + b i + b i = 1 = i y i Notamos que 1 = y que al realizar la sumatorias para los datos, cada sumatoria tedría u valor fijo. Etoces se tiee u sistema de ecuacioes lieales icógitas: m y b. El sistema escrito e forma matricial es: ( ) ( ) ( ) m = y b y El Paso 6 del Método Simplificado recomieda la iversió y multiplicació de matrices para obteer la solució; si embargo, puesto que ta sólo se trata de dos ecuacioes lieales simultáeas optaremos para calcular m co el Método de Determiates: [ ] y det y m = [ ] det Auque b tambié podría calcularse tambié por determiates, es más secillo despejar de la seguda ecuació ormal ua vez m que ya se evaluó. Etoces los parámetros optimizados por míimos cuadrados para ua ĺıea recta so: y i m = y y ( ) b = y m dode debemos teer muy claro que ( ). c Dr. Ferado Tiscareño Lechuga Departameto de Igeiería Química Istituto Tecológico de Celaya Versió Prelimiar para Seguda Edició del 14 de octubre de 016 Borrador a Edició - No distribuir

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como:

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como: SOLUCIÓN DE ECUACIONES DIFERENCIALES Autor: Keith Gregso Traducció: José Alfredo Carrillo Salazar Muchos sistemas diámicos puede represetarse e térmios de ecuacioes difereciales. Por ejemplo, la tasa de

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

4.4 Sistemas mal condicionados

4.4 Sistemas mal condicionados 7 4.4 Sistemas mal codicioados l resolver u sistema de ecuacioes lieales usado u método directo, es ecesario aalizar si el resultado calculado es cofiable. E esta secció se estudia el caso especial de

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE---M---7 CURSO: Matemática Básica SEMESTRE: Segudo CÓDIGO DEL CURSO: TIPO DE EXAMEN: Tercer exame parcial FECHA

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

TRANSFORMADA RAPIDA DE FOURIER (FFT)

TRANSFORMADA RAPIDA DE FOURIER (FFT) Capítulo 6 TRASORADA RAPIDA DE OURIER (T) Los temas a tratar e el presete capítulo so: 6. Algoritmo T 6. T Iversa. 6.3 Implemetació Televisió Digital 6- La implemetació de la ec. (4.5) ivolucra u úmero

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS SOCIALES Y JURÍDICAS Departameto de Matemáticas (Área de Álgebra) Curso 24/5 PRÁCTICA Nº 4 Sistemas de ecuacioes lieales E esta práctica veremos cómo los determiates

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana Las Matemáticas para la Gestió de Carteras co Riesgo. Carteras compuestas por activos co correlacioes estadísticas arbitrarias. El caso e que se fija el redimieto esperado de la cartera Apellidos, ombre

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia 1 EL RE SIN LAGRIMAS A. Blasco Istituto de Ciecia y Tecología Aimal Uiversidad Politécica de Valecia El Baby model y i = e i y = X + e = 1 + e dode X = 1 es u vector de uos. La matriz de variazas-covariazas

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

IES Fernando de Herrera Curso 2015 / 16 Primer trimestre - Primer examen 1º Bach CT NOMBRE: e x. xy y

IES Fernando de Herrera Curso 2015 / 16 Primer trimestre - Primer examen 1º Bach CT NOMBRE: e x. xy y IES Ferado de Herrera Curso 05 / Primer trimestre - Primer eame º Bach CT NOMBRE: Istruccioes: ) Todos los folios debe teer el ombre estar umerados e la parte superior. ) Todas las respuestas debe estar

Más detalles

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios Tema Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 1.Orde de cotacto.poliomios de Taylor 3.Teorema de Taylor 4.Desarrollo de McLauri 5.Aplicació al cálculo de límites

Más detalles

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la ANEXO B B.. Regresió Se defie como Regresió al estudio de la fuerza, cosistecia o grado de asociació de la correlació de variables idepedietes [6]. B... Regresió Lieal Simple El objeto de u aálisis de

Más detalles

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Ecuacioes Difereciales aboratorio N 1, Series de Fourier Itroducció Para fucioes x,, la serie de Fourier f x cotiuas

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Tema 2 Algebra de matrices

Tema 2 Algebra de matrices Tema lgebra de matrices. Operacioes co matrices. I la matriz idetidad de orde y P Calcula la matriz siedo I P P M La resolució del ejercicio es la siguiete: 9 7 7 I P P P P 9 8 7 M 9 7 M hora resolveremos

Más detalles

f x dx F b F a f x dx F x C f, g f x g x dx g x

f x dx F b F a f x dx F x C f, g f x g x dx g x Tarea. Equatio Chapter Sectio Resuelta. Idica qué tipo de aplicació matemática (fució, operador, fucioal) es cada uo de los siguietes: Respuestas a. Ua itegral defiida b a f d F b F a Toma ua fució y arroja

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

FRACCIONES PARCIALES

FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia FRIONES PRILES E ocasioes es ecesario ivertir el proceso. Para ver cómo fucioa el método de fraccioes parciales, trabajaremos sobre ua fució racioal. Q p f Dode Q

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica.

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica. Métodos Numéricos Métodos aalíticos Solució de ecuacioes difereciales Métodos Numéricos Métodos aalíticos: La solució es ua relació fucioal etre dos variables. No todas las ecuacioes difereciales tiee

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre Cálculo II (5) Semestre - TEMA 6 SERIES DE POTENCIAS Semestre - José Luis Quitero Julio Departameto de Matemática Aplicada UCV FIUCV CÁLCULO II (5) José Luis Quitero Las otas presetadas a cotiuació tiee

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES [6.08] ALGEBRA II Autor: Berardo Ortega Ídice SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS...3 De primer orde co coeficietes costates..3 Sistemas

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video Matemáticas 9 Bimestre: I Número de clase: Clase Actividad Esta clase tiee video Tema: Radicació e los úmeros reales Lea la siguiete iformació. Si es u úmero etero positivo, etoces la raíz -ésima de u

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

2. Estimación de errores de medidas directas

2. Estimación de errores de medidas directas Estimació de errores y forma de expresar los resultados de las prácticas. Error: Defiició E el laboratorio igua medida tiee ifiita precisió. Por ello, ua parte importate del proceso de medida es la estimació

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

CAPITULO 5 OBTENCIÓN DE CINÉTICAS DE REACCIÓN A PARTIR DE DATOS EXPERIMENTALES

CAPITULO 5 OBTENCIÓN DE CINÉTICAS DE REACCIÓN A PARTIR DE DATOS EXPERIMENTALES Obteció de ciéticas de reacció a partir de datos eperimetales IULO 5 OBEIÓ DE IÉIS DE REIÓ RIR DE DOS EXERIMELES 5. IRODUIÓ E los capítulos ateriores hemos visto que la epresió de velocidad de reacció

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014 Cálculo I (Grado e Igeiería Iformática 03-4 Exame fial, eero de 04 PUNTUACIÓN DEL EXAMEN: P. P. P. 3 P. 4 P. 5 P. 6 TOTAL Iicial del primer apellido: NOMBRE: APELLIDOS: D.N.I. O PASAPORTE: FIRMA: Notas

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles