FUNCION DE BASE RADIAL Radial Basis Function (RBF)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCION DE BASE RADIAL Radial Basis Function (RBF)"

Transcripción

1 FUNCION DE BASE RADIAL Radal Bass Functon () Característcas generales y dferencas resaltantes con los modelos neuronales multcapas (Bakpropagaton): Broomhead y Lowe, 988, ntroducen un método alternatvo al perceptrón multcapa (MLP) (ej.: backpropagaton) para hacer ajuste a funcones no lneales. Esto es clasfcacón no lneal: las redes. A dferenca de la dsposcón que se tene en la funcones de actvacón que permte construr modelos de entrenamento medante backpropagaton, estas nuevas redes basadas en construyen sus modelos con funcones de actvacón que son dferente tanto en la capa oculta como la de salda. Esto es, una red está dseñada con neuronas en la capa oculta actvadas medante funcones radales de carácter no lneal con sus centros gravtaconales propos y en la capa de salda medante funcones lneales. A dferenca de las MLP, el modelo clásco de las redes está construdo con una arqutectura rígda de tres capas: la de entrada, la oculta y la de salda. (Broomhead y Lowe, 988) En general, una red tene un mejor desempeño con un mayor volumen de datos de entrenamento. La construccón de una red requere de una mayor cantdad de neuronas en los nodos ocultos que en las redes que usan backpropagaton. Aunque las redes no son comúnmente utlzadas en aplcacones que mplquen un alto volumen de patrones de entrenamento, se le reconoce como una red con una alta efcenca en la fase de entrenamento. Método alternatvo para aproxmar funcones y clasfcar patrones. 48

2 COMO FUNCIONA UNA Tal como ya se djo anterormente, una red, a dferenca de una MLP, está conformada de tres capas.. La capa de entrada que srve para los ejemplos o patrones de entrenamento y prueba,. la capa oculta completamente nterconectada entre todos sus nodos con la capa de entrada y actvada a través de la funcón radal (gaussana) y, 3. la capa de salda, tambén completamente nterconectada a la capa oculta y actvada a través de una funcón lneal contnua. El entrenamento, a dferenca de la red usando backpropagaton, es solamente haca delante. De este modo, la salda z de una red, en general, está nfluencada por una transformacón no lneal orgnada en la capa oculta a través de la funcón radal y una lneal en la capa de salda a través de la funcón lneal contnua. x x z x n - Funcón Lneal Contnua x n Funcón Gaussana Topología partcular de la : Los nodos ocultos contenen una funcón base radal, la cual tene como parámetros a centro y ancho. 49

3 Exste un centro para cada funcón radal nvolucrada en la capa oculta. Regularmente, defnen un vector de la msma dmensón del vector de entrada y hay normalmente un centro dferente por cada nodo de la capa oculta. Por otro lado, el ancho es el térmno empleado para dentfcar a la ampltud de la campana de gauss orgnada por la funcón radal. Es decr, la desvacón estándar de la funcón radal. Algunos autores (Lowe, 989) consderan a este ancho como un valor constante para cada una de las funcones radales consderadas en la capa oculta y de este modo, así contrburía a smplfcar los pasos de construccón del modelo de entrenamento de la red. El prmer cálculo efectuado en la capa oculta es hallar en un nodo de la capa oculta la dstanca radal (dstanca eucldana) d entre el vector de entrada x, con n observacones, a ese nodo en partcular y el centro de gravedad c de ese msmo nodo. Es decr: d = x c = ( x c ) + ( x c ) ( x n c ) n Este valor d es un componente de la entrada para actvar la funcón radal G(). Este valor establece la prncpal dferenca con las redes MLP, entre ellas la backpropagaton, quenes ncluyen el producto nterno en sus capas ocultas de las entradas por sus respectvos pesos. En cuanto a la funcón radal G(), sendo una de las más comunes exp(-r ), sendo r el contendo evaluado en cada nodo de la capa oculta. En este caso partcular, el contendo evaluado en cada nodo es la dstanca eucldana d. De ahí la expresón, entonces sería exp(-d ). Una de las dervacones del modelo es emplear el ancho (desvacón estándar) para actvar la funcón G(). En este caso se estaría trabajando con algo como exp( d a ), donde a es el ancho para ese nodo oculto. 50

4 x w G ( ) w x w z x n w n w n - Funcón Lneal Contnua x n Funcón Gaussana G () ( x c ) Entre la capa oculta y la capa de salda se dervan un conjunto de pesos w que se verían afectados de acuerdo al algortmo de aprendzaje. En este caso partcular. sería la combnacón lneal entre los pesos y la resultante de cada funcón radal para determnar la salda z. Tal como hemos vsto con anterordad, sería, z = w G( ), donde G() es la salda de la capa oculta y se corresponde con la funcón radal aplcada a la dstanca eucldana en cada una de las undades ocultas. Del resultado de este tpo de entrenamento podemos observar que:. Los valores de entrada se recomendan que prevamente sean de algún modo transformados a una escala.. En la capa oculta, en la medda que los valores de entrada se parezcan más a un centro su dstanca tenderá a cero y de este modo la funcón gaussana se dspararía a las vecndades de uno. Por otro lado, en la medda que los valores de entrada no se 5

5 parezcan a su centro la dstanca será mayor y la funcón radal parecería tender a cero. Este proceso es una clasfcacón no lneal de las entradas. 3. En la capa de salda del modelo, los valores obtendos en las saldas de la capa oculta serían transformados por la funcón lneal que permte aproxmar los valores z a los valores deseados, medante la combnacón lneal que se sucede en esta capa entre sus pesos y el resultado de aplcar la funcón radal. Es decr, z = w G( ). 4. El tempo de entrenamento es substancalmente nferor al requerdo por otros algortmos. Es una pasada haca adelante en la mayoría de los casos. La dferenca la establece s se ncorpora en la salda del modelo de entrenamento, una supervsón a través del control del error que se produce entre los valores calculados y los observados, conducendo a una retropropagacón del error. 5. Alrededor del algortmo clásco ncado por Broomhead y Lowe, se han mplementado algortmos que contrbuyan a la mejor seleccón de los centros y anchos de las funcones radales. 6. Nuevos cambos ncorporados a las funcones de actvacón de salda orgnan nuevos modelos de entrenamento. Tal es el caso de las redes neuronales GRNN (Generalzed Regresson Neural Network) y PNN (Probablstc Neural Network), PCANN (Prncpal Component Analyss Neural Network). Para una mayor referenca acerca de estas redes les sugero revsar los textos electróncos de Matlab ( y Statstca ( 5

6 ENTRENAMIENTO DE UNA Dferente a las redes supervsadas vstas anterormente, en este caso, suponendo un hperplano defnendo un espaco N-dmensonal, lo que pretende una red es ejecutar una correspondenca no lneal entre los patrones de entrenamento que defnen el espaco de entrada al espaco oculto defndo por la capa oculta y una correspondenca lneal desde este espaco al espaco de salda. Es decr defnr a la salda una superfce que descrba las entradas. En vsta de que esta superfce es desconocda, se acude un proceso de entrenamento usando ejemplos representatvos tanto para la entrada como para la salda. De acuerdo a ello, han surgdo varantes como producto fundamentalmente de las sguentes desventajas: de no conocer los centros (a veces el ancho) para cada funcón radal, de stuacones de sngulardad presentes en la mplementacón del algortmo con problema de dmensonaldad, de un gran volumen de entradas hacendo nmanejable la aplcacón del algortmo. Se presentan problemas de regularzacón (Smon Haykn, 995) De acuerdo a Broomhead y Lowe el proceso de aprendzaje de la red puede ser vsto en dos fases: Fase de Entrenamento: consttuye la optmzacón de un procedmento de ajuste de una superfce que se defne como producto de los ejemplos de entrada-salda presentados a la red. Fase de Generalzacón: una nterpolacón entre los datos o nterpolacón realzada a lo largo de la superfce generada por un procedmento de ajuste de la aproxmacón óptma de la superfce real. De este modo en el sentdo estrcto de nterpolacón, podemos decr que exste una funcón que satsfaga la condcón de nterpolacón F(x )=d, donde x son los puntos que 53

7 descrben la superfce de un espaco N dmensonal y d representa su respuesta. Tal como lo descrbe esta funcón, la nterpolacón estrcta se refere a que la funcón está restrngda a pasar por todos los puntos. Es decr, es la aproxmacón óptma de la superfce real. Clásco. Bajo esta premsa, tenemos que la funcón que puede descrbr dcha nterpolacón, de acuerdo a Powel sgue la sguente forma. N F( x) = w G x donde la funcón F(x) está nvolucrada con la funcón lneal G() y la combnacón lneal con los pesos. En forma matrcal, sería Gw = z Cada elemento g j, = g( x x ), j,=.n j z = [ z, z z 3,, z N ] T w = [w, w, w 3,..,w N ] T Provstos que todas las observacones son dstntas, entonces G se podría decr que es postva defnda y por lo tanto los pesos podrían ser calculados medante la nversa de G. Es decr w = G - z Sn embargo se puede correr el resgo de que la nversa de la matrz de nterpolacón G está próxma a ser sngular. En este caso se procedería medante la teoría de la regularzacón para perturbar la matrz medante G = G + λi. (Smon Haykn, pp. 45) De esta manera sería un aprendzaje drecto, provocando cambo a los pesos que están ubcados entre la capa oculta y la capa de salda. x 54

8 EJEMPLO DE UNA Veamos el ejemplo que está lustrado en la págna 60 del texto de Smon Haykn. El se refere al problema XOR, que de acuerdo a lo que podemos recordar, no pudo ser clasfcado por una TLU. Supongamos que tenemos los sguentes patrones de entrenamento x x z La funcón gaussana es G( x c ) = exp( x c ), =,. Deben exstr dos centros y ellos ya son conocdos. Venen dados por: c = [ ] T, c = [0 0] T. Por las característcas del problema, se asume lo sguente: Los pesos son compartdos por la smetría del problema. La capa de salda ncluye un bas. De este modo la arqutectura de la red es: x w x w - z Entradas Funcón G () + Bas Funcón Lneal 55

9 La relacón entrada-salda está expresada por: donde b es el bas y F(x) es z. F ( x) = w G x t + b Defnamos el problema en forma matrcal como z=gw. Resolvendo medante Matlab tenemos: Resolvendo el problema XOR usando la expresón z=gw. x=[ ; 0 ; 0 0; 0] x = z=[; 0; ; 0] z = 0 0 los centros están dados por c=[ ]; c=[0 0]; La funcón gaussana es exp(-norm(x-c)^) Redefnamos los centros en una matrz 56

10 c=[c;c] c = 0 0 De este modo el cálculo de las funcones radales y las dstancas la vamos a realzar por un procedmento contnuo con dos lazos donde todos los patrones de entrada van a ser revsados. for j=:4 for =: G(j,) = exp(-norm(x(j,:)'-c(,:)')^); end end G G = La matrz amplada ncluyendo el bas es G=[G ones(4,)] G = Ahora debemos resolver el cálculo de los pesos entre la capa oculta y la capa de salda medante la expresón Gw=z. Desde donde w es w=nv(g)z Aquí podremos tener certos problemas con la sngulardad de la matrz G. Para cudarnos, usaremos la seudonversa de la sguente manera w=nv(g'g)g'z. Donde G' es la transpuesta de G. 57

11 w=nv(g'*g)*g'*z w = Procedamos a realzar una prueba para conocer el nvel de error con respecto a los valores deseados. Z_estmado=G*w; Luego los valores de la salda calculados son: Z_estmado Z_estmado = Los valores deseados de la salda son: z z = 0 0 los resultados son exactamente guales. Por tanto la red entrenada para el XOR para los centros dados ncluría los sguentes pesos w w =

12 GENERALIZACION DE UNA Luego de entrenada una red se mde su capacdad de generalzar antes nuevos ejemplos de entrada. Este proceso se le conoce como Interpolacón. 59

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Redes de Neuronas: Preparacón de datos para el aprendzaje y meddas de evaluacón 1. Preparacón de datos Característcas de los datos

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Preguntas y Ejercicios para Evaluación: Tema 5

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Preguntas y Ejercicios para Evaluación: Tema 5 OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Preguntas y Ejerccos para Evaluacón: Tema 5 1. Contestar brevemente a las sguentes cuestones relaconadas con las Redes de Base

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

Redes Neuronales Support Vector Regression

Redes Neuronales Support Vector Regression Redes Neuronales Support Vector Regresson Seres Temporales Máster en Computacón Unverstat Poltècnca de Catalunya Dra. Alca Troncoso Lora Contendo Introduccón Redes Neuronales: Aplcacón Support Vector Regresson:

Más detalles

Extracción de Atributos. Dr. Jesús Ariel Carrasco Ochoa Oficina 8311

Extracción de Atributos. Dr. Jesús Ariel Carrasco Ochoa Oficina 8311 Extraccón de Atrbutos Dr. Jesús Arel Carrasco Ochoa arel@naoep.mx Ofcna 8311 Contendo Introduccón PCA LDA Escalamento multdmensonal Programacón genétca Autoencoders Extraccón de atrbutos Objetvo Preprocesamento

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

ANEXO A: Método de Interpolación de Cokriging Colocado

ANEXO A: Método de Interpolación de Cokriging Colocado ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

6 Minimización del riesgo empírico

6 Minimización del riesgo empírico 6 Mnmzacón del resgo empírco Los algortmos de vectores soporte consttuyen una de las nnovacones crucales en la nvestgacón sobre Aprendzaje Computaconal en la década de los 990. Consttuyen la crstalzacón

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

3.1. Características del comportamiento estratégico Características del comportamiento estratégico

3.1. Características del comportamiento estratégico Características del comportamiento estratégico 3.1. Característcas del Matlde Machado 1 3.1. Característcas del El análss formal de una stuacón de empeza por la formulacón de un juego. Componentes de un juego: Jugadores Estratégas posbles para cada

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Estimación no lineal del estado y los parámetros

Estimación no lineal del estado y los parámetros Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

3.1. Características del comportamiento estratégico Características del comportamiento estratégico

3.1. Características del comportamiento estratégico Características del comportamiento estratégico 3.1. Característcas del Matlde Machado 1 3.1. Característcas del El análss formal de una stuacón de empeza por la formulacón de un juego. Componentes de un juego: Jugadores Estrategas posbles para cada

Más detalles

Jesús García Herrero CLASIFICADORES BAYESIANOS

Jesús García Herrero CLASIFICADORES BAYESIANOS Jesús García Herrero CLASIFICADORES BAYESIANOS En esta clase se presentan los algortmos Análss de Datos para abordar tareas de aprendzaje de modelos predctvos. Se partcularzan las técncas estadístcas vstas

Más detalles

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI)

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) 14.1. La Curva Característca de los ítems (CCI) 14.. Los errores típcos de medda 14.3. La Funcón de Informacón

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Capítulo 2.2: Redes Neuronales Artificiales

Capítulo 2.2: Redes Neuronales Artificiales Capítulo 2.2: Redes euronales Artfcales captulo22 4-3-05 Págna de 3 . eurona natural Hemos vsto que una neurona en el hombre funcona por mpulsos eléctrcos que se generan cuando se cumplen unas determnadas

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO MEF para problemas do orden Problema undmensonal INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO Govann Calderón y Rodolfo Gallo Grupo Cencas de la Computacón Departamento de Matemátcas

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

El diodo Semiconductor

El diodo Semiconductor El dodo Semconductor J.I. Hurcán Unversdad de La Frontera Aprl 9, 2012 Abstract Se plantean procedmentos para analzar crcutos con dodos. Para smpl car el trabajo, el dodo semconductor es reemplazado por

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

ALGUNOS MODELOS DE UNA NEURONA

ALGUNOS MODELOS DE UNA NEURONA ALGUNOS MODELOS DE UNA NEURONA w 1 Μ w 2 w m ADALINE ADAptve Lnear Element Wdrow y Hoff 1960 w 1 Μ w 2 w m El Adalne x 0 x 1 x 2 Μ Μ x m con w 2 w = x = w 1 w m v b m v m = w j x j + b = j= 1 = 0 [ b w

Más detalles

CLAVE - Laboratorio 1: Introducción

CLAVE - Laboratorio 1: Introducción CLAVE - Laboratoro 1: Introduccón ( x )( x ) x ( xy) x y a b a b a a a ( x ) / ( x ) x ( x ) x a b a b a b ab n! n( n 1)( n 2) 1 0! 1 x x x 1 0 1 (1) Smplfque y evalúe las sguentes expresones: a. 10 2

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1 Reconocmento de Locutor basado en Procesamento de Voz ProDVoz Reconocmento de Locutor Introduccón Reconocmento de locutor: Proceso de extraccón automátca de nformacón relatva a la dentdad de la persona

Más detalles

Diagnóstico de Fortalezas y Debilidades Comunales

Diagnóstico de Fortalezas y Debilidades Comunales Dagnóstco de Fortalezas y Debldades Comunales Introduccón Los avances y mayores nveles de desarrollo que el país ha mostrado durante los últmos 15 años, se han traducdo, entre otros aspectos, en un aumento

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

Tema 9: Otros temas de aplicación

Tema 9: Otros temas de aplicación Tema 9: Otros temas de aplcacón. Introduccón Exsten muchos elementos nteresantes y aplcacones del Matlab que no se han comentado a lo largo de los temas. Se nvta al lector a que nvestgue sobre ellos según

Más detalles

CAPÍTULO III ACCIONES. Artículo 9º Clasificación de las acciones. Artículo 10º Valores característicos de las acciones. 10.

CAPÍTULO III ACCIONES. Artículo 9º Clasificación de las acciones. Artículo 10º Valores característicos de las acciones. 10. CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural serán las establecdas por la reglamentacón específca vgente o

Más detalles

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS Capítulo 2: Introduccón al método de los Elementos Fntos 2. CAPÍTULO 2 ITRODUCCIÓ AL MÉTODO DE LOS ELEMETOS FIITOS 2.. ITRODUCCIÓ Vrtualmente cada fenómeno en la naturaleza, sea bológco, geológco o mecánco

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

Tema 3: Procedimientos de Constrastación y Selección de Modelos

Tema 3: Procedimientos de Constrastación y Selección de Modelos Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes

Más detalles

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3 PROCEDIMIENTO DO DESEMPEÑO DEL CONTROL DE FRECUENCIA EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE TÍTULO I Aspectos Generales... 3 TÍTULO II Alcance... 3 TÍTULO III Metodología de Cálculo de FECF... 3 TÍTULO

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

Introducción. Reproducción

Introducción. Reproducción Introduccón Muchos organsmos bológcos poseen sstemas muy sofstcados de reconocmento de patrones (RP). La sofstcacón de estos sstemas se debe a que ofrecen ventajas de tpo evolutvo. Supervvenca Reconocmento

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

Caso de control neuronal adaptable para sistemas multivariados

Caso de control neuronal adaptable para sistemas multivariados TESIS DE PREGRADO Caso de control neuronal adaptable para sstemas multvarados Autor Alejandro Mejía Álvarez Drector Prof. Dr. Ing. Jesús Antono Hernández Rveros PROGRAMA DE INGENIERÍA DE CONTROL UNIVERSIDAD

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMÁTICAS

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMÁTICAS ESCUELA DE POSTGRADO ESCUELA DE INGENIERÍA Y CIENCIAS METODOLOGÍA DE CLASIFICACIÓN DINÁMICA UTILIZANDO SUPPORT VECTOR MACHINE RODRIGO ANTONIO

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

3. Análisis de Factores

3. Análisis de Factores 3. Análss de Factores 3.. Introduccón y objetvos. El análss de factores es un procedmento estadístco que crea un nuevo conjunto de varables no correlaconadas entre sí, llamadas factores subyacentes o factores

Más detalles

PRÁCTICA 4. INDUCCIÓN ELECTROMAGNÉTICA. A. Observación de la fuerza electromotriz inducida por la variación de flujo magnético

PRÁCTICA 4. INDUCCIÓN ELECTROMAGNÉTICA. A. Observación de la fuerza electromotriz inducida por la variación de flujo magnético A. Observacón de la fuerza electromotrz nducda por la varacón de flujo magnétco Objetvo: Observacón de la presenca de fuerza electromotrz en un crcuto que sufre varacones del flujo magnétco y su relacón

Más detalles

Relaciones entre las tablas

Relaciones entre las tablas Relacones entre las tablas Relacones entre las tablas Access 2013 Establecer una relacón entre dos tablas Los dstntos tpos de relacones entre tablas Establecer una relacón entre las tablas de la base de

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales.

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales. Generacón de e Modelos 3D a Partr de e Datos de e Rango de e Vstas Parcales. Santago Salamanca Mño Escuela de Ingenerías Industrales Unversdad de Extremadura (UNED, UCLM, UEX) Introduccón (I) Qué es un

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Modelado de un Robot Industrial KR-5

Modelado de un Robot Industrial KR-5 RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra

Más detalles

4. La Factorización No Negativa de Matrices

4. La Factorización No Negativa de Matrices 4. La Factorzacón No Negatva de Matrces 4.1 Introduccón Un problema bastante extenddo en dferentes técncas de análss de datos consste en encontrar una representacón adecuada de los datos. Un tpo de representacón

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos S 4 v v 5 Introduccón al Método de los Elementos Fntos Parte 4 Estmacón de error en problemas elíptcos Alberto Cardona, Víctor Facnott Cmec-Intec (UNL/Concet), Santa Fe, Argentna Estmacón de error en problemas

Más detalles

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria Economía Industral Tema. La demanda de la ndustra Objetvo del tema Entender el modelo económco de comportamento del consumdor, fnalmente resumdo en la funcón de demanda. Comprender el carácter abstracto

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 21. Redes Neuronales. 2

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 21. Redes Neuronales. 2 Procesamento Dgtal de Imágenes Pablo Roncaglolo B. Nº Redes Neuronales prb@7 Redes Neuronales Báscas Células de McCulloch&Ptts El Perceptrón ADALINE El Perceptrón n Multcapa prb@7 Celulas de McCulloch-Ptts

Más detalles

MDE.Representación superficie

MDE.Representación superficie MDE.Representacón superfce Representacón superfce a partr de datos (observacones). Problema : Cómo crear superfces dscretas y contnuas para representar la varacones de altura en el espaco?. Construccón

Más detalles

) para toda permutación (p p 1 p

) para toda permutación (p p 1 p 09 Elena J. Martínez do cuat. 004 Análss de la varanza de dos factores El problema anteror consderaba la comparacón de muestras para detectar dferencas entre las respectvas poblacones. En el modelo de

Más detalles

Submicrométricas Ópticas

Submicrométricas Ópticas Estmacón n de la Dstrbucón n de Tamaños de Partículas Submcrométrcas de Látex L por Técncas T Óptcas Lus M. Guglotta, Georgna S. Stegmayer, Jorge R. Vega Santa Fe (ARGENTINA) Septembre de 007 Unversdad

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles