Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS"

Transcripción

1 tructura de la Materia Grupo, Seetre 03- Prof. Iidoro García Cruz RCICIOS. La luz aarilla que eite ua lápara de odio tiee ua logitud de oda de 59. Calcular la frecuecia de eta radiació. Repueta: Sabeo que: c Dode c e la cotate de la velocidad de la luz, e la logitud de oda, e la frecuecia. c 3 59? c 3 / U láer produce ua radiació co ua logitud de oda de 640. Calcule la frecuecia de eta radiació. Repueta:? c / Ua etació de radio difude ua radiació electroagética de 3.4 MHz. Coiderar que Mz 6 -. Calcule la logitud de oda de eta radiació.

2 Repueta:? c 3 / MHz MHz Calcule la eergía de u fotó de luz aarilla cuya logitud de oda e 59. Repueta: fotó? Sabeo que: c y que adeá: fotó Cotate de Plack y e la frecuecia. -34 La frecuecia e: c 3 / etoce: ( )[ ] fotó decir que u fotó de eergía radiate proporcioa o geera /fotó, etoce cuata eergía proporcioará u ol de fotoe?.

3 La eergía e eprea e /ol, luego etoce ay que covertir eto a /ol. Para ello coidereo el Nuero de Avogadro, NA fotoe/ol. decir e u ol ay fotoe fotoe 9 ol 3.37 fotó 0975 ol.0975 fotó.03 5 ol 5. U láer eite luz co ua frecuecia de a) Calcule la eergía del fotó de la radiació de ete láer. b) l láer eite ua ráfaga de eergía que cotiee 5 7 fotoe de eta radiació. Calcule la eergía total de eta ráfaga. c) Si el láer eite.3 - de eergía durate la ráfaga. Cuato fotoe eite durate ea ráfaga. Repueta: Sabeo que: 5 ol c y que fotó Cotate de Plack e la frecuecia. ete cao, ya cooceo. -34 toce: 3. ( 4 )[ 4.69 ]

4 3. -9 e la eergía del fotó de la radiació del láer, e decir /fotó. b) Dado que el láer eite ua ráfaga de 5 7 fotoe de eergía, etoce: fotoe 3. 9 fotó ta e la eergía total de ea ráfaga. c) Si el láer eite.3 -, e decir.3 - /fotó, etoce la catidad de fotoe que eite e ráfaga e:.3 / fotó 6 6 fotoe fotoe La radiació de logitud de oda de 4.4, e la logitud de oda á larga que produce la fotodiociació de la olécula de O. a) Cuál e la eergía de u fotó de eta radiació; b) Cuál e la eergía de u ol de fotoe de eta radiació? Repueta: fotó? 4.4 Sabeo que: a) c / 5.4 fotó ( ) foto / fotó.4. /.

5 b) Coo ya teeo la eergía de u fotó podeo ultiplicarla por el NA para coocer la eergía e /ol ( fotoe / ol) / ol / ol / fotó Calcular la logitud de oda de u electró que tiee ua velocidad de /. Coidere que la aa del electró e 9. g. Repueta:? e 9. - g / Co bae al coportaieto dual de la ateria de De Broglie: v g 5.97 g 34 6 ( / ) ( ) 3 3 g 6 ( 5.97 / ) ta el logitud de oda del electró a ua velocidad de /. ta logitud de oda e ecuetra uy próia a la logitud de oda de lo R-X.. Calcule la logitud de oda aociada a lo electroe que e ueve a ua velocidad que e la décia parte de la velocidad de la luz.

6 Repueta:? e 9. - g La décia parte de la velocidad de la luz e: 7 ( ) v 0. 3 / 3 / 9. g ( ) 3 3 g 7 ( / ) p 4.3 p ta el logitud de oda del electró a ua décia de la velocidad de la luz. ta logitud de oda e ecuetra uy próia a la logitud de oda de lo R-Gaa. 9. La deteriació de la poició de u electró co ua preciió de 0.0Å e á que adecuada o etá bie deteriada. eta codicioe calcule la ideteriació de la edida iultáea de la velocidad del electró. Repueta:? v l pricipio de icertidubre de Heieberg dice que: v 4π toce, el oetu o catidad de oviieto del electró e:

7 v 4π v ( ) ( )..56 ( ) v Coo la aa del electró etá bie deteriada, etoce la velocidad erá: v v / v / v / Ua velocidad eore!! v 5795 v 5795 K 3600 / K /.06 K / v.06 K / v La ideteriació de ±. K/ e la velocidad del electró e del io orde o ayor que la propia velocidade típica de éta partícula.

8 . Calcule la logitud de oda aociada: a) a u electró que e ueve a ua velocidad de 6 /; b) a u coce de 00 de aa que e deplaza a la velocidad de 0 K/. Repueta: a) Para el electró? e Sabeo que la dualidad de la partícula de acuerdo a de Broglie: p v 6 p v toce: p a) Para el coce? coce 00 K p v K 3600 toce:

9 p La eor catidad de oviieto (oetu) del electró (v) coparada co la del coce a pear de u ayor velocidad, pero cuya aa e ucíio á pequeña. Y al cotrario la logitud de oda aociada al coce e uco á pequeña, que la del electró.. Grafique la fucioe de oda correpodiete a lo do priero valore de, aí coo u cuadrado. Coidere que la logitud de la caja e de 6Å6. Repueta: Clae (arte, 4/0/3). Calcular la diferecia etre la velocidade peritida, e do ivele eergético coecutivo de: a) u electró cofiado e ua caja uidieioal de u radio de Bor; b) ua bola de billar de 0. de aa oviédoe a lo largo de ua ea de billar de de logitud perpedicularete a la do bada opueta á alejada. Repueta: a) Para el electró: v + L v ( )( ) ( ) k v K

10 b) Para la bola de billar: v ( )( ) ( ) k v K Para el electró, la velocidade peritida etre do ivele coecutivo e uy coiderable, ietra que para la bola de billar e cai depreciable. 3. a) Calcular la diferecia de eergía etre lo do priero ivele correpodiete a u electró cofiado e ua caja uidieioal de u radio de Bor de logitud; b) Cuál ería la frecuecia de la radiació capaz de ecitar al electró dede el prier ivel al egudo? Repueta: + + a) ( ) + L ( ) 4 ( ) 3 [ ( ) + ] ( )

11 b) La frecuecia: Coo la frecuecia e obtiee de: Co ua radiació de eta frecuecia e uficiete para ecitar u electró del ivel uo al ivel do. ta radiació correpode al la regió UV. 4. a) Calcular la diferecia de eergía etre lo priero etado eergético de u electró cofiado e ua caja cúbica de u A; b) Cuál ería la frecuecia de la radiació capaz de ecitar al electró dede el prier ivel al egudo? Repueta: 5. Deterie la logitud de oda de la líea epectral de la erie de Baler del idrógeo correpodiete a la traició de 5 a. Repueta:? Cuado u electró paa de ua órbita a alta a ua órbita á baja ay ua eiió de eergía, o e eite eergía. ta eergía e obtiee a partir de la diferecia de eergía: R i fi.79 i f i H fi

12 .79 5i fi.79 9 ( ) l igo (-) de eta diferecia de eergía, o idica que e eite eergía. ta catidad de eergía e eite coo u fotó de eergía, debido a que la diferecia de eergía etre lo ivele 5 y e igual a la eergía del fotó eitido. Pero lo que o pide e la? frecuecia. decir:, por lo que ate debeo calcula la fotó fotó Y fialete para calcular, aceo: c C to 434 correpode jutaete a ua de la líea del epectro de eiió del Hidrógeo, (color violeta).

13 6. Deterie la eergía ciética del electró ioizado de u ió (catió) de Li + e u etado fudaetal utilizado u fotó de frecuecia de Repueta: Ciética? l catió que e fora e el ió Li+, e decir; Li + Li + + 3e decir, la carga uclear (Z3 + ) y. Sabeo que: Z R toce: H Z R H (.79 ) ( ) Pero eta e la ergía Total para, e decir para el prier ivel. La eergía para u fotó de e: fotó 6 7 ( )[ ] fotó fotó ta e la eergía de. i O etrictaete:

14 / fotó Sabeo que la ergía de Ioizació e la eergía para arracar u electró del úcleo del átoo, e ete cao, el del átoo de Litio. decir, 7 i.96. La eergía adicioal del fotó e traferida coo ergía Ciética al electró, luego etoce: Ciética i 7 7 ( ) Ciética Ciética 7

Evolución del concepto de Átomo (Resumen)

Evolución del concepto de Átomo (Resumen) Evolució del cocepto de Átomo (Resume) Tomposo Propuso u p[átomo co cargad positive distribuida e ua esfera de 0-8 cm de diámetro co pequeñas partículas co carga egativa distribuidas e capas. La teoría

Más detalles

Análisis Espectral: Determinación de la Constante de Rydberg

Análisis Espectral: Determinación de la Constante de Rydberg Aálisis Espectral: Determiació de la Costate de Rydberg Objetivo Estudiar espectros de líeas de emisió de alguos elemetos, usado u espectrómetro de red y determiar la costate de Rydberg. Equipamieto -

Más detalles

Protón Neutrón Electrón

Protón Neutrón Electrón 1 Descubrimieto de las partículas subatómicas Tema 4. Estructura Atómica y Sistema Periódico Electró (Stoey, 1891) Protó (Rutherford, 1911) Neutró (Chadwick, 193) Crookes (1.875). rayos catódicos Viaja

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

TEMA VII: SOLUBILIDAD

TEMA VII: SOLUBILIDAD TEMA VII: SOLUBILIDAD La fuerza que atiee a lo ioe e lo udo de ua red critalia, o uy itea por lo que eto copueto olo erá oluble e diolvete uy polare tale coo el agua, aoiaco líquido, ahídrido ulfuroo...

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2 Etructura de la Materia Grupo 1, Semetre 013- Prof. Iidoro García Cruz EERCICIOS 1. a) Predecir el numero de ubcapa que hay en la cuarta capa, para n4. b) Epecifique la deignación de cada una de ea ubcapa.

Más detalles

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año:

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año: COLEGIO COLOMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS PROGRESIONES/ SECUENCIAS/ SUCESIONES PROFESORES: RAÚL MARTÍNEZ Y JESÚS VARGAS Problema Jua Guillermo ivierte milloe de peo durate año, le pagará a

Más detalles

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza Módulo de Etadítica Tema 7 : Etimació paramétrica e Itervalo de cofiaza Etimació U etimador e ua catidad umérica calculada obre ua muetra y que eperamo que ea ua buea aproximació de cierta catidad co el

Más detalles

Sistema. Asin. Im Re. tan 1. Im : parte imaginaria de G j Re : parte real de G j B

Sistema. Asin. Im Re. tan 1. Im : parte imaginaria de G j Re : parte real de G j B TEORÍA DE CONTROL Tema 7. Aálii de la repueta e frecuecia Itroducció Se deomia repueta e frecuecia a la repueta e etado etable de u itema ujeto a ua eñal iuoidal de amplitud () fija pero a ua frecuecia

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: Prueba de Hipótei (Do Muetra) Ete procedimieto prueba hipótei acerca de cualquiera de lo iguiete parámetro:. la diferecia etre la media μ y μ de do ditribucioe ormale.. el radio de la deviació etádar σ

Más detalles

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos.

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos. Solució Problea xiste varios otajes experietales que perite la deteriació del oeto agético. Aquí discutireos tres de ellos. 1) Atracció frotal etre iaes La figura uestra el otaje experietal que propoeos

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA : CONCEPTOS PREVIOS. INTRODUCCIÓN. Se va a aalizar los itercabios fiacieros cosiderado u abiete de certidubre. El itercabio fiaciero supoe que u agete etrega a otro u capital (o capitales) quedado

Más detalles

En la formulación de Bragg se supone que los diferentes planos cristalinos reflejan especularmente la onda electromagnética.

En la formulación de Bragg se supone que los diferentes planos cristalinos reflejan especularmente la onda electromagnética. 8/03/009 Determiació de estructuras cristalias mediate difracció de Rayos X Para que la difracció de Rayos X sea observable, la logitud de oda de la radiació debe ser meor o del orde de las distacias iteratómicas

Más detalles

CALIENTE AIRE HÚMEDO

CALIENTE AIRE HÚMEDO .- Itroducció.- CALIENTE AIRE HÚMEDO FUEGO AGUA SECO TIERRA FRIO.- Naturaleza eléctrica de la materia.-..- LOS RAYOS CATÓDICOS: La primera evidecia de partículas subatómicas se obtuvo e el estudio de la

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Pruebas de hipótesis para dos muestras.

Pruebas de hipótesis para dos muestras. Prueba de hiótei ara do muetra. Prueba de Hiótei ara do muetra grade, deviacioe etádar de la oblacioe deiguale. La roiedade de la Ditribució Normal o tambié umamete útile cuado queremo ecotrar i do cojuto

Más detalles

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio

Más detalles

0(=&/$6*$6(26$6. i = (3)

0(=&/$6*$6(26$6. i = (3) 0(&/$6$6(26$6,1752'8&&,21 E la erodáca, para poder realzar aál de prera eguda le, e ecearo coocer la propedade terodáca de la utaca de trabajo, coo o, por ejeplo, la eergía tera, la etalpía la etropía.

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

ANEXO. Estudios de Aspectos de. Seguridad Empresarial. Musante,Maricel. Senesi, Fernando

ANEXO. Estudios de Aspectos de. Seguridad Empresarial. Musante,Maricel. Senesi, Fernando AEXO Etudio de Apecto de eguridad Emprearial Muate,Maricel eei, Ferado Idice Cuetioario...3 Repueta...11 Arbol...135 Etaditica...137 Etaditica Greerale...138 Etadítica Biaria...153 Etadítica Combiada...157

Más detalles

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC Laboratorio de Aálii de Circuito Práctica 8 Repueta traitoria de circuito RLC Objetivo Verificar experimetalmete el valor de reitecia que e eceita para que u circuito RLC e erie ea críticamete amortiuado,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquia Eléctrica I - G86 Tema 3. Máquia Aícroa o de Iducció. Problema reuelto Miguel Ágel Rodríguez Pozueta Departameto de Igeiería Eléctrica y Eergé5ca Ete tema e publica bajo Licecia: Crea5ve Commo BY-

Más detalles

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver Págia de Sitema de cotrol 67- Verió 003 Tema Aálii de Repueta e Frecuecia Sub - tema Diagrama Logarítmico, Diagrama de Bode Volver La repueta de u itema, e etado etacioario, ate ua etrada iuoidal e la

Más detalles

Espectros de emisión y absorción.

Espectros de emisión y absorción. Espectros de emisió y absorció. Los espectros de emisió y absorció de luz por los átomos permitiero la justificació y ampliació del modelo cuático. Espectros de emisió: Caletar u gas a alta temperatura

Más detalles

Capítulo V. Teoría cinética elemental de los procesos de transporte

Capítulo V. Teoría cinética elemental de los procesos de transporte Capítulo V. Teoría ciética eleetal de los procesos de trasporte Lecció Gas diluido. Desequilibrio. Colisioes. Recorrido libre edio Lecció Viscosidad y trasporte de oeto. Coeficiete de iscosidad de u gas

Más detalles

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones apítulo 7. Simetría Molecular ) Elemeto y operacioe de imetría.) Defiicioe Se puede obteer mucha iformació cualitativa de la fucioe de oda y propiedade moleculare (epectro, actividad óptica, ) a partir

Más detalles

t-student y F-Snedecor

t-student y F-Snedecor t-studet y F-Sedecor Itroducció La prueba t-studet e utiliza para cotratar hipótei obre media e poblacioe co ditribució ormal. Tambié proporcioa reultado aproimado para lo cotrate de media e muetra uficietemete

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 0: PRUEBA DE CORRELACIÓN DE SPEARMAN. INTRODUCCIÒN: El coefciete de correlació de Spearma e ua

Más detalles

Estructura de los Sólidos

Estructura de los Sólidos Estructura de los Sólidos Materia Codesada: Este termio iclue tato a los sólidos como a los líquidos La gracias esta e que e ambos estados las iteraccioes etre átomos moléculas so suficietemete fuertes

Más detalles

Regla de Tres. Prof. Maria Peiró

Regla de Tres. Prof. Maria Peiró Regla de Tres Prof. Maria Peiró .- Regla de Tres: Es ua fora de resolver probleas que utiliza ua proporció etre tres o ás valores coocidos y u valor descoocido. La Regla de Tres puede ser siple ó copuesta.

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

MACROECONOMÍA III EL MODELO DE SOLOW

MACROECONOMÍA III EL MODELO DE SOLOW MACROECONOMÍA III E MODEO DE SOOW Blaca Sachez-Roble Equema de la preetació. Supueto del modelo. Dicuió 3. Implicacioe 4. co proreo técico Supueto:. Fució de producció: < < (). o idividuo ahorra ua taa

Más detalles

MAZ-222. Máquinas Térmicas

MAZ-222. Máquinas Térmicas MAZ- Máuia érmica Cap. III SEGUNDA LEY DE LA ERMODINÁMICA.. SEGUNDA LEY DE LA ERMODINÁMICA Para la mejor compreió lo proceo termodiámico de u MCI e materializa e la traformació eergética del Calor e rabajo,

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

Al comprobar que esto pasaba en todos los gases, se concluyó que los electrones formaban parte del átomo.

Al comprobar que esto pasaba en todos los gases, se concluyó que los electrones formaban parte del átomo. ESTRUCTURA DEL ÁTOMO Descubrimieto del electró Crookes observó que al itroducir dos electrodos (varillas metálicas) e u tubo de vidrio co u gas a muy baja presió y aplicar etre ellos ua diferecia de potecial

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas.

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas. POLIEDROS Y VOLUMEN POLIEDRO: Cuerpo liitado por cuatro o ás polígoos dode cada polígoo se deoia cara, sus lados so aristas y la itersecció de las aristas se llaa vértices. PRISM: Poliedro liitado por

Más detalles

- A h h+1 n-1 n

- A h h+1 n-1 n 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

Estado Gaseoso. Prf. María Peiró

Estado Gaseoso. Prf. María Peiró Estado Gaseoso rf. María eiró Gas, es u estado de la materia formado por éculas que tiede a expadirse porque se mueve a a velocidad debido a su altísima eergía ciética, mateiedo a espacio etre ellas. ropiedades

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES.

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES. ECTURA 4: INTERVAOS DE CONFIANZA PARA A MEDIA POBACIONA. INTERVAOS DE CONFIANZA ENTRE DOS MEDIAS POBACIONAES. TEMA 8: INTERVAOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION: Actualmete e debe

Más detalles

Electrones en la misma capa tiene el mismo número n. Electrones en una determinada sub-capa tiene el mismo número cuántico L.

Electrones en la misma capa tiene el mismo número n. Electrones en una determinada sub-capa tiene el mismo número cuántico L. Capítulo 9 a tabla periódica Cofiguracioes electróicas Reglas básicas para átomos de muchos electroes: Capas y subcapas. U sistema de partículas es estable cuado su eergía total es míima.. Sólo puede existir

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles

TEMA I: CONCEPTOS FUNDAMENTALES

TEMA I: CONCEPTOS FUNDAMENTALES www.selectividad-cgraada.co TEMA I: CONCETOS FUNDAMENTALES 1.- a) Sabiedo que el peso atóico del hidrógeo es 1,00797g. Calcular la asa e graos de u átoo de hidrógeo. Si el peso atóico del hidrógeo es 1,00797

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Los radicales y su simplificación

Los radicales y su simplificación FAL-0_MAAL1_RadicalesSiplificacio Versió:Septiebre01 Revisor:SadraElviaPérez Losradicalesysusiplificació Por:SadraElviaPérez Tesueafailiarlaexpresióraízcuadrada? Elcoceptoderaízcuadradaserelacioacoelevaruúeroalcuadrado.

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

UNIDAD 2 FUNDAMENTOS DE FÍSICA MODERNA

UNIDAD 2 FUNDAMENTOS DE FÍSICA MODERNA UNIDAD FUNDAMENTOS DE FÍSICA MODERNA 1. Radiació y materia: dualidad oda-corpúsculo. Pricipio de icertidumbre 3. Mecáica odulatoria Alados Arboledas, I.; Liger Pérez, E. (014) Ampliació de Física. FUNDAMENTOS

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Uiversidad del Perú, DECANA DE AMERICA) MEDIDAS DE DISPERSION 14/06/008 Ig. SEMS .3 MEDIDAS DE DISPERSIÓN Todos los valores represetativos discutidos e las seccioes

Más detalles

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN.

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN. PRAA 6: SSEA DE SEUENO. ONROL DE POSÓN. Aigatura: Sitema Lieale. º de geiería e Automática y Electróica ESDE. Departameto de Automática y Electróica uro 6-7 Práctica º 6: Sitema de Seguimieto. otrol de

Más detalles

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO DINÁMIC Y CONTROL DE PROCESOS 4 MODELOS LINELES Y NO LINELES - REPRESENTCIÓN EN VRIBLES DE ESTDO Itrodcció Hemo mecioado qe lo modelo co lo qe amo a trabajar o del tipo de ecacioe matemática má epecíicamete

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

ESTIMACIÓN DE LA VARIANZA POBLACIONAL EN EL MUESTREO EN OCASIONES SUCESIVAS

ESTIMACIÓN DE LA VARIANZA POBLACIONAL EN EL MUESTREO EN OCASIONES SUCESIVAS Metodología de Ecueta I: 575-7803 Vol 6, úm, 00, 9- ETIMACIÓ DE LA VARIAZA POBLACIOAL E EL MUETREO E OCAIOE UCEIVA Amelia V. García Luego Eva M. Arté Rodríguez Imaculada Oña Caado Uiveridad de Almería

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida

PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida PROBLEMAS VISUALES DE FÍSICA PVF3-**. Contracción de vena líquida Fotografía La fotografía repreenta la trayectoria eguida por el agua que ale en dirección orizontal con una velocidad v o. La regla ituada

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

TEORÍA DE DISOLUCIONES Yr 13

TEORÍA DE DISOLUCIONES Yr 13 TEORÍA E ISOLUCIONES Y 13 CONCEPTO E ISOLUCIÓN Ua iolució e ua ezcla hoogéea e o o á utacia. La iolucioe etá foaa po el oluto y el iolvete (oalete el oluto e eo catia que el iolvete). iolució oluto + iolvete

Más detalles

BIBLIOTECA DEL PROFESORADO SOLUCIONARIO. Química BACHILLERATO SERIE INVESTIGA

BIBLIOTECA DEL PROFESORADO SOLUCIONARIO. Química BACHILLERATO SERIE INVESTIGA BAILLERATO SOLUIONARIO Química SERIE INVESTIGA BIBLIOTEA DEL PROFESORADO BIBLIOTEA DEL PROFESORADO Química SERIE INVESTIGA SOLUIONARIO El Solucioario Química, del proyecto Saber hacer, para.º curso de

Más detalles

l 0 + l La energía potencial elástica de un resorte vale:

l 0 + l La energía potencial elástica de un resorte vale: ASOCIACIÓN DE RESORTES..- La fuerza y eergía elátca de u reorte o muelle. U reorte o muelle e u dotvo mecáco que uede comrmre o dlatare y que vuelve a u ocó orgal o atural, emre que el delazameto o ea

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Fenómeno speckle en fibra multimodo y aplicaciones

Fenómeno speckle en fibra multimodo y aplicaciones Feóeo specke e fibra utiodo y apicacioes Mauro LOMER Grupo de Igeiería Fotóica Uiversidad de Catabria oer@uica.es Lia, PUCP Agosto 01 Suario - Itroducció - Specke e fibra utiodo - Utiizació e sesores -

Más detalles

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS Diapoitiva. Cocepto y caracterítica de lo activo fiaciero 2. Reta variable, tipo y criterio de valoració 3. Reta fija, tipo y criterio de valoració 4. Duratió y covexidad de u activo fiaciero de reta fija

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica Óptica geométrica. Objetivos Familiarizar al alumo co coceptos básicos e óptica geométrica, tales como los feómeos de reflexió, refracció o reflexió total. Comprobació de la Ley de Sell. Características

Más detalles

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES.

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES. Uiveridad Lo Ágele de Chimbote LECTURA 05: ITERVALOS DE COFIAZA PARA LA PROPORCIÓ POBLACIOAL. ITERVALOS DE COFIAZA PARA LA DIFERECIA ETRE DOS PROPORCIOES POBLACIOES. TEMA : ITERVALOS DE COFIAZA PARA LA

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Estructura de la materia

Estructura de la materia Estructura de la materia Modelo de Bohr Radiació electromagética logitud de oda λ frecuecia ν ν λ = c dode c es la velocidad de la luz (.998 x 0 8 m /s). Espectro electromagetico Logitud de oda (m) 380

Más detalles

SERIE 2. Interferencia

SERIE 2. Interferencia SERIE 2. Iterferecia 1. E el puto cuya coordeada se toma como z = 0, icide dos odas coheretes proveietes de algú tipo de experimeto de iterferecia: E = A0 cos(kz - ωt) 1 i E = A1 cos(kz - ωt + ϕ) 2 i.

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles