EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto"

Transcripción

1 EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete (agua destilada) es el ayoritario. La asa de la disolució será la sua de la asa del y la asa del disolvete. Así, cooceos la asa del, pero del disolvete teeos volue. Para pasar de asa volue a asa ecesitaos la desidad ( d ; asa d volue.la desidad volue del agua hay que coocerla (o te la va a dar de dato) y es de 1g/cc. Así, la asa de agua destilada que teeos es de 150 g, co lo cual: asa 2g % asa 100 1,32% es el porcetaje e asa asadisolució 2g + 150g Datos: M(C) 12u; M(H) 1u; M(O) 16u. Solució: Coo siepre, debeos poer qué sabeos y qué os pide para ver cóo puedo relacioarlo. Coozco la cocetració e asa del (glucosa hay que decir que si o se obra el disolvete este siepre es el agua, a eos que se diga lo cotrario), es decir, que por cada asa litro de disolució hay 7,2 graos de glucosa (recuerda: C ) disolució Por otra parte a í e pide calcular la cocetració olar (ol/l) cuya fórula es: oles M Es decir, veos coo la diferecia etre abos datos es que e uo viee disolució la asa y e el otro los oles del y abas agitudes está relacioadas por la asa ecuació ( oles) Así, puedo pasar de asa a oles, dividiedo por la Masa _ olecular asa olecular, e este caso, de la glucosa.

2 Así que, coo tato la cocetració e asa coo la olar so propiedades itesivas (o depede de la catidad de sustacia que tega) supogo que tego u litro de disolució, la cual cotiee, coo heos dicho ates, 7,2 graos de glucosa, los cuales so e oles: M ( C 6 H 12O6 ) 6 12g g g 180g 7,2gglu cos a Así : 0,04oles _ de _ glu cos a _ hay 180g 0,04ol M 0,04M _ es _ la _ cocetració 1Ldisolució Datos: M(Na) 23u; M(Cl) 35,5 u. Solució: Me está pidiedo asa y tego coo dato cocetració olar, cuya fórula es: oles M de tal fora que coo tego el volue de la disolució (200 L 0,2 L) disolució puedo obteer despejado los oles de que cotiee. Coo e pide asa y o oles, debo pasar los oles a asa y esto lo hago co la relació que existe etre abas asa agitudes, segú la fórula: ( oles) Así obtedría: Masa _ olecular M ; NaCl M 2M 0,2L 0,4oles _ de _ NaCl M ( NaCl) 1 23g ,5g 58,5g M ; M 0,4ol 58,5g 23,4g _ de _ NaCl _ cotiee Datos: M(H) 1u; M(S) 32u; M(O) 16 u. Solució: asa Ya heos hechos ejercicios de cocetració e asa C y cocetració disolució oles olar M. Coo puedes observar para el prier caso e da todos los datos, disolució la asa del (60 g) y el volue de la disolució (300 L 0,3L), así que sipleete

3 aplicado la fórula aterior obteeos: C asa disolució 60g 200g / L _ cocetració 0,3L Para el caso de la olar, e vez de poer asa hay que poer oles. Ya sabeos que estas asa dos agitudes está relacioadas de acuerdo co: ( oles), por lo Masa _ olecular que debo hallar priero la asa olecular del ácido sulfúrico (H 2 SO 4 ) y aplicar la fórula. Así, la cocetració olar es: M H SO ) 2 1g g g 98g ( g 0,612ol _ de _ ácido _ sulfúrico 98g 0,612ol M 2,04M 0,3L Datos: M(Ca) 40u; M(Cl) 35,5 u. Solució: Este tipo de ejercicio ya es distito. aos a poer las fórulas de los datos que e da y lo que e pide a ver cóo lo puedo relacioar: Datos : asa _ 18% _ asa asa _ disolució asa _ disolució 1,6 g / L olue _ disolució oles _ Pide _ calcular : M olue _ disolució Coo veos aquí, ecesito coocer los oles de (que es el cloruro de calcio, de fórula CaCl 2 ) y el volue de la disolució. Pero e los datos o e aparece los oles de, auque sí la asa de y ya cooceos que abas agitudes está relacioadas asa segú: ( oles) Por lo que coo puedo calcular fácilete la asa Masa _ olecular olecular si hallo la asa del o hay problea para pasar el dato a oles. Luego el volue de la disolució aparece e la desidad. El problea es que veos que para despejar el volue de la desidad ecesito coocer la asa de la disolució y para hallar la asa de tabié ecesito coocer la asa de la disolució. Cóo resuelvo esto? Pues diciedo que coo todas so propiedades itesivas (o depede de la catidad de sustacia que tega) e iagio que tego u litro de la disolució y hago todos los cálculos e base a

4 esta suposició. Tabié podía haber iagiado que tego 100 g de disolució, pero suele cogerse el volue. Así, ya lo tego todo resuelto y puedo calcular: ddo d ; ddo % asa M ( CaCl M Co _ todos _ estos _ datos : M 1L, así 2 d 1,6 g / L 0L 1600g _ disolució ; ) 1 40g ,5g 111g 288g 2,6ol _ CaCl 111g ddo ddo 2,6ol 1L oluto % asa ddo 18% 1600g 288g _ ( CaCl2 ) 100 2,6M _ es _ la _ cocetració _ olar _ de _ la _ disolució Coo ves, he elegido 1L de disolució para que e el cálculo fial sea ás fácil (divido etre uo) Datos: M(Br) 80g/ol; M(K)39g/ol Solució: es igual al aterior, co los isos pasos. Itétalo hacer tú. Recuerda que la fórula del brouro de potasio es KBr. Solució: Ua vez ás poeos las fórulas de los datos: asa _ 36% peso asa _ disolució asa _ disolució desidad olue _ disolució E abos casos a í e pide hallar el volue de la disolució que cotiee ua catidad de (que es el HCl) Coo veos, si tego la asa del, co la priera fórula puedo hallar la asa de la disolució y co este dato voy a la seguda fórula y despejo el volue de la disolució. Cuado e dice 1 ol de, coo o tego asa debo pasar de oles a asa que ya sé que es co la relació co la asa olecular. E el segudo caso, ya e da la asa directaete 10 g.

5 Caso _1: Así: ; oluto M 1ol 36,5g 36,5g _ de _ HCl M M( HCl) 1 1g ,5g 36,5g asa _ asa _ 36,5g % peso ; asa _ disolució 101,39 g _ disolució asa _ disolució % peso 36% _ disolució _ disolució 0,10139kg d ; _ disolució _ disolució desidad 1,1 kg / L 0,092L 92L _ de _ disolució _ debo _ coger Fíjate e ua cosa, cuado pogo la asa de la disolució fial la paso a kilograos para que las uidades cocuerde (tabié podía haber hecho el cabio de uidades de la desidad de kg/l a g/l) El segudo caso es exactaete igual, lo úico es que o debo pasar ada, ya que e da directaete la asa del. La solució que te debe de dar la tiees arriba. Ejercicio 9.- Se ezcla 5,00 g de cloruro de hidrógeo (HCI) co 35,00 g de agua, forádose ua disolució cuya desidad a 20 C es de 1,060 g/c ³. Calcúlese: a) El tato por cieto e peso. b) La cocetració e graos por litro. c) La olaridad y d) La olalidad.e) Fracció olar Datos:M(H) 1u; M(Cl) 35,5 u; M(O) 16 u. Solució: a) Tato por cieto. Se trata de calcular el úero de graos de por cada cie graos de disolució, asa _ 5g es decir: % asa 12,5% _ e _ HCl Masa _ disolució 5g + 35g b) Graos/litro. Puesto que los datos está referidos a asas y o a volúees, es ecesario recurrir al valor de la desidad y proceder del siguiete odo: 1. Se calcula la asa de u litro de disolució (se supoe, al ser propiedades itesivas) asa volue.desidad 1000 c ³.1,060 g/c ³ g de disolució 2. A partir del valor del tato por cieto e peso se deteria la asa e graos del coteida e la disolució: asa de HCl 12, g/ ,5 g de

6 La catidad resultate represeta la cocetració e graos de (HCI) por litro asa _ 132,5g de disolució. C ( g / L) 132,5g / L _ disolució 1L c) Molaridad. Dado que: olaridad ( de graos de / de graos de su ol)/volue de la disolució e litros ; calculo priero la asa olecular del HCl, calculo cuátos oles so los ateriores graos de y coo sé que tego u litro de disolució ya lo tedría (lo he supuesto ateriorete) M ( HCl) 36,5g HCk M M oluto do d) Molalidad. 132,5g 36,5g 3,63ol 1L 3,63oles 3,63M ( ol / L) De acuerdo co su defiició: kg _ disolvete Seguios co uestra suposició de que teeos 1 L de disolució, para así ya teer calculados los oles de (3,63 ol). Para hallar los kg de disolvete (e este caso, el agua) debo ver los cálculos hechos ateriorete e el apartado a), dode he calculado que teía 1060 g de disolució y de ellos 132,5g era de. Por lo que la diferecia justaete será la asa de disolvete g 132,5 g 927,5g0,9275kg Ya lo tego todo para calcular: 3,63ol kg _ disolvete 0,9275kg 3,93olal e) La fracció olar se defie coo: χ ; χ totales disolvete isolvete otales Ya he calculado ateriorete los oles de (3,63 ol) y la asa del disolvete (927,5g) Para hallar los oles del disolvete (el agua) hallo los oles co la fórula que las relacioa. Luego el úero de oles totales se refiere a la sua de los oles de y disolvete, así:

7 M χ χ ( 2 ddte H O) 18g ddte M 927,5g 18g 51,53ol 3,63ol 0,066 3,63ol + 51,53ol 51,53ol 0,934 3,63ol + 51,53ol Fíjate que la fracció olar o lleva uidades y, adeás, siepre se cuple que la sua de las fraccioes olares es igual a uo, de tal fora que puedes calcular ua y la otra obteerla restádosela a uo.

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal TEMA : DISOLUCIONES Sistema material Sustacias puras Elemeto Compuesto Homogéea Heterogéea coloidal Suspesió 1.- DISOLUCIÓN (CONCEPTO) Es ua mezcla homogéea de dos o mas sustacias químicas tal que el tamaño

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Juio, Ejercicio 4, Opció A Juio, Ejercicio 5, Opció B Reserva 1, Ejercicio 2, Opció B Reserva 2, Ejercicio 5, Opció

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4 ÁRE DE IGEIERÍ QUÍMIC Operacioes Básicas de Trasferecia de Materia Tea 4 Operacioes Básicas de Trasferecia de Materia ITRODUCCIÓ a aoría de las corrietes de u proceso quíico está costituidas por varios

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

Examen 1º Bachillerato QUIMICA Nombre:

Examen 1º Bachillerato QUIMICA Nombre: Exaen 1º Bachillerato QUIICA Nobre: Teoría ( puntos) Respuesta correcta: + 0,75; Respuesta incorrecta: - 0,15; Respuesta no contestada: 0 1. El peso olecular del ácido sulfúrico, HSO4, es: a. 98 g b. 98

Más detalles

Regla de Tres. Prof. Maria Peiró

Regla de Tres. Prof. Maria Peiró Regla de Tres Prof. Maria Peiró .- Regla de Tres: Es ua fora de resolver probleas que utiliza ua proporció etre tres o ás valores coocidos y u valor descoocido. La Regla de Tres puede ser siple ó copuesta.

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS SEGUNDO GRADO SECCIÓN SECUNDARIA ACTIVIDADES PARA DESARROLLAR EN CLASE CURSO 2015-2016

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Forato para prácticas de laboratorio CRRER PLN DE ESTUDIO CLVE SIGNTUR NOMBRE DE L SIGNTUR TRONCO COMÚN 00-447 ESTÁTIC PRÁCTIC NO. LBORTORIO DE CIENCIS BÁSICS DURCIÓN(HORS) EST-08 NOMBRE DE L PRÁCTIC CENTRO

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Tema 9. Combinatoria

Tema 9. Combinatoria Tea 9. Cobiatoria. Defiició de cobiatoria. Estrategias de resolució.. Estrategia del producto y la sua.. Diagraa de árbol. Variacioes y perutacioes.. Variacioes siples u ordiarias.. Perutacioes.. Variacioes

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

TEMA VII: SOLUBILIDAD

TEMA VII: SOLUBILIDAD TEMA VII: SOLUBILIDAD La fuerza que atiee a lo ioe e lo udo de ua red critalia, o uy itea por lo que eto copueto olo erá oluble e diolvete uy polare tale coo el agua, aoiaco líquido, ahídrido ulfuroo...

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

CANTIDAD EN QUÍMICA QCA 07

CANTIDAD EN QUÍMICA QCA 07 .- Razoe: a) Qué volume es mayor el de u mol de itrógeo o el de u mol de oxígeo, ambos medidos e las mismas codicioes de presió y temperatura? b) Qué masa es mayor la de u mol de itrógeo o la de uo de

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD 3 MODELOS DE PROBABILIDAD.- VARIABLES ALEATORIAS DISCRETAS E ocasioes, alguas variables aleatorias sigue distribucioes de probabilidad uy cocretas, coo por ejeplo el estudio a u colectivo ueroso de idividuos

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Figura 6.7: Diagrama de una columna de absorción 32

Figura 6.7: Diagrama de una columna de absorción 32 39 Ua vez calculados los fraccioaietos se chequea la codició (6.6). Para el flujo de vapores, se obtuvo que y, 997, ietras que para el flujo de líquido se obtuvo que i x i 1,. 6.3 La absorció La absorció

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

1. Ajustar las siguientes reacciones redox por el método ión-electrón

1. Ajustar las siguientes reacciones redox por el método ión-electrón . Ajustar las siguietes reaccioes redox por el método ió-electró a. HNO Z Z(NO ) NH NO H O NO 0H 8e NH H O Semireacció de Reducció. [ Z e Z ] Semireacció de Oxidació. NO 0H Z NH Z H O Reacció ióica global.

Más detalles

EJERCICIOS RESUELTOS DISOLUCIONES

EJERCICIOS RESUELTOS DISOLUCIONES EJERCICIOS RESUELTOS DISOLUCIONES 1- Se disuelven 20 g de NaOH en 560 g de agua Calcula a) la concentración de la en % en masa b) su molalidad Ar(Na) 2 Ar(O)16 Ar(H)1 NaOH 20 a) % NaOH % NaOH % NaOH,45

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Modelación conceptual

Modelación conceptual TEMA 2 Modelació coceptual OBJETIVOS ESPECÍFICOS Defiir y aplicar los coceptos fudaetales relacioados co la represetació de la iforació. Describir las características de la odelació coceptual y su relació

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS LECCIÓN 2: Leyes fiacieras clásicas.- Itroducció. El úero de expresioes ateáticas que podría ser leyes fiacieras, por cuplir las propiedades expuestas ateriorete, es uy ueroso.

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA 1 TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA Mario Melo Araya Ex Profesor Uiversidad de Chile melomarioqca@gmail.com Estructuralmete las substacias químicas está costituidas por etidades elemetales

Más detalles

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse.

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse. ANEXO 1. MUESTREO Y TOLERANCIAS DE PRODUCTOS PREMEDIDOS 2. APLICACIÓN El presete reglameto se aplicará para la verificació de los coteidos etos de los productos promedios, etiquetados, co coteido omial

Más detalles

TEORÍA DE DISOLUCIONES Yr 13

TEORÍA DE DISOLUCIONES Yr 13 TEORÍA E ISOLUCIONES Y 13 CONCEPTO E ISOLUCIÓN Ua iolució e ua ezcla hoogéea e o o á utacia. La iolucioe etá foaa po el oluto y el iolvete (oalete el oluto e eo catia que el iolvete). iolució oluto + iolvete

Más detalles

NOMBRE: CURSO: FECHA:

NOMBRE: CURSO: FECHA: AMLIACIÓN co solucioes. EJERCICIO RESUELTO E ua jeriguilla cogemos 3 cm 3 de aire. E ese mometo la presió que ejerce dicho gas es de a. a) Escribe el valor de la presió e atmósferas, e milímetros de mercurio,

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

+6 +4 SO e + 4 H + SO H 2 O

+6 +4 SO e + 4 H + SO H 2 O TEMA 7. INTRODUCCIÓN A LA ELECTROQUÍMICA AJUSTE DE REACCIONES REDOX E3A.S2009 El ácido sulfúrico concentrado reacciona con el brouro de potasio según a reacción: H 2 SO 4 + KBr K 2 SO 4 + Br 2 + SO 2 +

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

EJERCITACIÓN SOLUCIONES I

EJERCITACIÓN SOLUCIONES I Ejercicios sobre soluciones %/, %/v, g/l Reducciones entre %/, %/v, g/l EJERCITACIÓN SOLUCIONES I MOMENCLATURA s : Masa de solución sv : Masa de solvente. s : Masa de soluto δ : Densidad de la solución

Más detalles

Plan de clase (1/2) Contenido: Resolución de problemas que impliquen adición y sustracción de monomios.

Plan de clase (1/2) Contenido: Resolución de problemas que impliquen adición y sustracción de monomios. Pla de clase (1/2) Eje teático: SN y PA Coteido: 8.2.1 Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios seejates,

Más detalles

6. Determinaciones de neutralización

6. Determinaciones de neutralización . Deterinaciones de neutralización En los étodos de análisis expuestos a continuación aparecen los apartados: - Un esquea de la deterinación. - Reactivos utilizados. - Procediiento a seguir. - Reacciones

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

PRÁCTICAS Nº 10 Y 11

PRÁCTICAS Nº 10 Y 11 PRÁCTICA Nº 10 Y 11 CONTRATE DE HIPOTEI E INTERVALO DE CONFIANZA ETADÍTICA E INTRODUCCIÓN A LA ECONOMETRÍA º LADE CURO 008-09 Profesorado: Prof. Dra. Mª Dolores Gozález Galá Prof. M ª Mar Roero Mirada

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

1 Disponemos de un ácido nítrico comercial (HNO3) de densidad 1,15 g/cm 3 y riqueza 25,48% en masa.

1 Disponemos de un ácido nítrico comercial (HNO3) de densidad 1,15 g/cm 3 y riqueza 25,48% en masa. Relación de Problemas Unidades de Concentración 1 Disponemos de un ácido nítrico comercial (HNO3) de densidad 1,15 g/cm 3 y riqueza 25,48% en masa. a) Determina la molaridad del ácido nítrico comercial.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

La ecuación general de los gases es el resumen que engloba a varias leyes que se enunciaron de forma separada:

La ecuación general de los gases es el resumen que engloba a varias leyes que se enunciaron de forma separada: ECUACIÓN GENERAL DE LOS GASES PERFECTOS La ecuacó geeral de los gases es el resue que egloba a varas leyes que se eucaro de fora separada: Ley de Boyle - Marotte: Dce que, s se atee la teperatura costate,

Más detalles

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA ANÁISIS IENSIONA Y SEEJANZA INÁICA PROOIPOS Y OEOS os procediietos aalíticos basados e las ecuacioes geerales de la ecáica de los fluidos, o perite resolver, adecuadaete, todos los probleas que se preseta

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano Área de Mateáticas. Curso 05/06 TEMA 8 Geoetría Aalítica e el Plao Ejercicio º a Escribe la ecuació de la recta r que pasa por los putos. b Obté la ecuació de la recta s que pasa por tiee pediete. c Halla

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eame preseta dos opcioes: A y B. El alumo deberá elegir ua de ellas y cotestar razoadamete a los cuatro ejercicios de que costa dicha opció. Para

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17. EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració

Más detalles

5.- Teoremas de Cauchy y del Residuo

5.- Teoremas de Cauchy y del Residuo 5.- Teoreas de auchy y del esiduo a) Itroducció. b) Putos sigulares aislados. c) esiduo. d) Teorea de auchy. e) esiduos y polos. f) eros de fucioes aalíticas. g) Aplicació de los residuos. a).- Itroducció.

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles