Álgebra lineal II Examen Parcial 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra lineal II Examen Parcial 3"

Transcripción

1 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 04 Nick Gill Instrucciones: Puede usar cualesquiera de las proposiciones vistas en las lecciones incluidos los ejercicios. Escriba cuidadosamente y muy claramente las proposiciones que usa. () Sea A la matriz real siguiente: 4 4 ; 4 E la base canónica de R ; f : V V R una forma bilineal tal que [f] E = A. (a) Encontrar una matriz ortogonal P tal que P t AP = P AP sea diagonal. (b) Calcular A, usando esta forma diagonal D = P t AP. (c) Calcular la inercia de A y encontrar una base B tal que [f] B sea una matriz diagonal con todas las entradas en el conjunto {, 0, }. (a) El polinomio característico de A es P A (λ) = (λ + 4)(λ 5). Los espacios propios son: V 4 = (,, ) ; V 5 = (, 0, ), (,, 0). Aplicamos Gram-Schmidt a estas dos bases y obtenemos V 4 = (/, /, /) ; V 5 = λ(, 0, ), (,, ). Entonces podemos tomar P = 0 y obtenemos que P T AP = (b) Now we observe that A = P DP t where D is the diagonal matrix above and so A = P D P T = (c) La inercia de {n, n 0, n + } = {, 0, }. Se define S = y observamos que S T P T AP S = Entonces podemos tomar B, la base cuyos elementos son las columnas de P S..

2 () Sea F = Z/7Z, sea V = F y defina f : V V F, (x, y) y T x. 0 4 (a) Probar que f es bilineal, no-degenerada y reflexiva. (b) Sea W = (, 0, ) y calcular W. (c) Decimos que un subespacio de V es isotrópico con respecto a la forma f si, para todo u, u U, se tiene que f(u, u ) = 0. Probar que el polinomio g(x) = x + x + F[x] es irreducible y probar que, si U es un subespacio isotrópico de V con respecto a la f, entonces dim(u). (a) Sea A la matiz en la pregunta. Entonces f(x, y) = y T A X y la forma de la función implica directamente que f es bilineal. Además A es invertible, entonces f es nodegenerada. Al final, A es simétrica, entonces f es simétrica y entonces f es refléxiva. (b) W es igual al núcleo de la matriz [ ] = [ 4 ]. 0 4 Por lo tanto, W = (5,, 0), (, 0, ). (c) Se puede verificar que g(x) = x + x + no tiene raices en F, entonces g es irreducible. Supóngase que U es un subespacio isótropico de dimensón mayor que. En particular U intersecta el subespacio X = (0,, 0), (0, 0, ) no-trivialmente. Sea x X U\{0}. Entonces x = (0, x, x ) y f(x, x) = 0. Obtenemos que x + x x + x = 0. Si x 0, obtenemos que ( x x ) + x x + = 0 y tenemos una contradicción del hecho que f es irreducible. Entonces x = 0. Pero en este caso x = 0 también y x = 0, una contradicción. Entonces dim(u).

3 () Sea A M n (C) y sean λ,..., λ n los valores propios de A, repetidos según su multiplicidad. Demostrar la desigualdad: tr(a A) λ + + λ n, con igualdad si y solo si A es una matriz normal. Sea V = C n con el producto interno canónico y T : V V el operador tal que [T ] E = A. Por un teorema de lecciones, sabemos que hay una base ortonormal B tal que [T ] B es triangular superior. Equivalentamente, hay una matriz unitaria P tal que P AP es triangular. Ahora (P AP ) = P A P una matriz inferior. Pero observe que tr(a A) = tr(p A AP ) y P A AP = (P A P ) (P AP ), ahora calculación directa confirma que n n () tr(p A AP ) = B ij j= donde B ij is the (i, j)-iésima entrada de P AP. Pero, ya que P AP es triangular, sabemos que la lista de las entradas B, B,..., B nn es igual a lista de valores propios λ,..., λ n (podemos reordenar si necesario). La desigualdad sigue. Si A es normal, podemos escoger P tal que P AP es diagonal. Ahora cuando i j tenemos B ij = 0 y () nos da la igualdad que buscamos. Por fin, supóngase que tenemos igualdad. Entonces () es verdadero todavía y concluimos que cuando i j tenemos B ij = 0. Entonces P AP es diagonal y, por un teorema de lecciones, A es normal. i=

4 4 (4) Sea [ ] A =, una matriz real. Se define la curva cuadrática C f := {(x, y) R x + xy y + 6x + y + 8 = 0}. (a) Encontrar una matriz ortogonal P tal que P T AP sea diagonal. (b) Encontrar un movimiento rigido T de R (con respecto al producto interno canónico) tal que T (C f ) tenga la forma {(x, y) R ax + by + c = 0} para algunos números reales fijados a, b, c R. (c) Escribir T como una composición de una trasladación y una isometría y dibujar la curva C f. (a) Los valores propios de A son ± 5. Podemos calcular vectores propios unitarios correspondientes y obtenemos que (b) Escribe P = [ 0 ] f(x) = x T Ax + [ 6 ] x + 8 y define T : R R tal que T (x) = P x. Entonces define f (x) = (f T (x)) = 5 x 5 y + 0x + 8. Ahore define T : R R tal que T (x) = x + v con v = ( 0 5, 0). Entonces define f (x) = (f T (x)) = 5 x 5 y + 4 Ahora (T T )(C f ) = {x R f (x) = 0} como necesitamos. (c) Por construcción T = T T y T es una isometría, T una trasladación. Un dibujo:

5 5 (5) Sea F un cuerpo de característica diferente de ; V es un espacio vectorial sobre F de dimensión ; f : V [ V ] F es una forma alternante no-degenerada; 0 J = M(, F). 0 (a) Demostrar que hay una base {v, w} de V tal que f(v, v) = f(w, w) = 0, f(v, w) =, f(w, v) =. (b) Demostrar que el grupo de isometrías I f es isomorfo al grupo de matrices Sp (F) := {X GL(, F) X T J X = J }. (en donde la operación de grupo de Sp (F) es el producto de matrices). (c) Demostrar que Sp (F) = {X GL(, F) det(x) = }. (a) Ya que f es no-degenerada, hay vectores v y w tal que f(v, w) = a 0. Ahora sea v = a v y, por linealidad f(v, w) =. Ya que una forma alternante es anti-simétrica obtenemos que f(w, v) =. Al final f(v, v) = v(w, w) = 0 por la definición de alternante. (b) Sea B = {w, v} donde v, w son de parte (a). Observe que [f] B = J. Sea X = [T ] B donde T L(V ) y recuerde que T L(V ) es una isometría de f si y solo si f(v, w) = f(t v, T w) para todo v, w V. Entonces T es una isometría si y solo si x T J y = (Xx) T J (Xy) para todo x, y V. Obtenemos inmediatamente que T es una isometría si y solo si J = X T J X. Ahora recuerde que la función φ B : GL(V ) GL(, F), T [T ] B es un isomorfismo. Entonces concluimos que la pre-imagen de Sp (F) bajo φ B es el grupo de isometrías de f y, además, [ que ] este grupo es isomorfo a Sp (F) como necesitamos. a b (c) Sea X = GL(, F). Ahora c d [ X T J X = 0 bc ad ad bc 0 y observe que X T J X = J si y solo si ad bc =. ]

6 6 (6) Sea F un cuerpo de característica diferente de ; M n (F) el espacio vectorial de matrices n n sobre F; S = {X M n (F) X es simétrica}; A = {X M n (F) X es anti-simétrica}; (a) Probar que S y A son subespacios de M n (F) y que M n (F) = S A; (b) Sea V un espacio vectorial finitodimensional sobre F y f : V V F una forma bilineal. Probar que hay únicas formas f S, f A : V V F tal que f S es simétrica, f A es alternante y f(x, y) = f S (x, y) + f A (x, y) para todo x, y V. (a) Sea S, S dos matrices simétricas, c, c bf. Podemos ver facilmente que c S +c S es una matriz simétrica, entonces S es un subespacio de M n (F). Similarmente, A es un subespacio de M n (F). Además observe que dim(s) = n(n+) y dim(a) = n(n ). Entonces dim(s) + dim(a) = n = dim(m n (F) y, para probar que M n (F) = S A, es suficiente probar que S A = {0}. Pero si una matriz X es simétrica y anti-simétrica, es obvio que X = 0. Hemos terminado. (b) Ya que M n (F) = S A, toda matriz X es igual a X S + X A done X S es simétrica y X A as anti-simétrica. Además X S y X A son definido univocamente. Ahora fije una base B de V y sea X = [f] B. Definimos f S una forma tal que [f S ] B = X S y [f A ] = X A. Es claro que f S es simétrica, f A es alternante, y f(x, y) = f S (x, Y ) + f A (x, y) para todo x, y V.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

PAIEP. Complemento Ortogonal

PAIEP. Complemento Ortogonal Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

2. Teorema de las multiplicidades algebraica y geométrica.

2. Teorema de las multiplicidades algebraica y geométrica. Guía. Álgebra III. Examen parcial II. Valores y vectores propios. Forma canónica de Jordan. Teoremas con demostraciones que se pueden incluir en el examen El examen puede incluir una demostración entera

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización.

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización. utovalores y autovectores asociados a un endomor smo f Diagonalización Dado un endomor smo f de un espacio vectorial real V y jada una base B de V obtenemos una única matriz asociada a f respecto de la

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Diagonalización simultánea de formas cuadráticas.

Diagonalización simultánea de formas cuadráticas. Diagonalización simultánea de formas cuadráticas Lucía Contreras Caballero 14-4-2004 Dadas dos formas cuadráticas, si una de ellas es definida positiva, se puede encontrar una base en la que las dos diagonalizan

Más detalles

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 27 Práctica 3 - Transformaciones lineales Ejercicio 1. Determinar cuáles

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

PROGRAMA DE CURSO. Resultados de Aprendizaje

PROGRAMA DE CURSO. Resultados de Aprendizaje PROGRAMA DE CURSO Código Nombre MA1102 Algebra Lineal Nombre en Inglés Linear Algebra SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0 5,0 Requisitos MA1101

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial

Más detalles

ALGEBRA LINEAL. David Delepine, Mauro Napsuciale, Simón Rodríguez

ALGEBRA LINEAL. David Delepine, Mauro Napsuciale, Simón Rodríguez ALGEBRA LINEAL David Delepine, Mauro Napsuciale, Simón Rodríguez 30 de octubre de 2005 Índice general 1. Espacios euclidianos 2 1.1. Productos escalares........................ 2 1.2. Normas y distancias.......................

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

5. Aplicaciones lineales

5. Aplicaciones lineales 5. Aplicaciones lineales Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 5 Aplicaciones lineales 7 5.1 Definición y propiedades..............................

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22 CÓNICAS. CÓNICAS.. Cónicas. Estudio particular. Una cónica se dene como el lugar geométrico de los puntos del plano euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen una ecuación

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

or t o G o n a l i d a d y

or t o G o n a l i d a d y Unidad 6 or t o G o n a l i d a d y o r t o n o r M a l i d a d Objetivos: Al inalizar la unidad, el alumno: Determinará cuándo un conjunto de vectores es ortogonal u ortonormal. Obtendrá las coordenadas

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Examen de Algebra Lineal Final. subespacio. Defina matriz diagonalizable b- Cuáles son las condiciones que debe cumplir A para ser diagonalizable?

Examen de Algebra Lineal Final. subespacio. Defina matriz diagonalizable b- Cuáles son las condiciones que debe cumplir A para ser diagonalizable? 1a- Deina: V espacio vectorial sobre un cuerpo K b- Demuestre: V espacio vectorial sobre K, v1, v,... v r V W = v1, v,..., vr subespacio Si v1 es combinación lineal de v, v,... v r entonces W = v, v,...

Más detalles

Conjuntos de Vectores y Matrices Ortogonales

Conjuntos de Vectores y Matrices Ortogonales Conjuntos de Vectores y Matrices Ortogonales Departamento de Matemáticas, CCIR/ITESM 28 de junio de 2011 Índice 21.1.Introducción............................................... 1 21.2.Producto interno............................................

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales Tema. Transformaciones Lineales TEMA: TRANSFORMACIÓN LINEAL, NÚCLEO Y RECORRIDO Problema : Sean P el espacio vectorial real de los polinomios de grado menor o igual a dos con coeficientes reales y la transformación

Más detalles

4 Aplicaciones lineales

4 Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 Aplicaciones lineales 4. Aplicación lineal Sean V y W dos espacios vectoriales sobre el mismo cuerpo K (en general, R o C. Una aplicación

Más detalles

Tema 5: Espacios Vectoriales Métricos Euclídeos.

Tema 5: Espacios Vectoriales Métricos Euclídeos. Tema 5: Espacios Vectoriales Métricos Euclídeos. Índice 1. Métricas y formas cuadráticas. 1 2. Perpendicularidad: tipos de métricas. 3 3. Norma y ángulos en un EVME. Desigualdad de Schwarz. 4 4. Bases

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ÁLGEBRA LINEAL 0062 Asignatura Clave 0062 2 09 Semestre Créditos Ciencias Básicas Matemáticas Básicas Ingeniería en Computación

Más detalles

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura: 4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,

Más detalles

Segundo parcial Geometría y algebra lineal II

Segundo parcial Geometría y algebra lineal II Segundo parcial Geometría y algebra lineal II HOJA PARA EL ESTUDIANTE 1. Completar los datos personales en la tabla que aparece al dorso. 2. La duración del parcial es de cuatro horas. 1 de diciembre de

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR

TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR Índice 6.1. Formas bilineales....................... 154 6.1.1. Representación matricial de una forma bilineal. 155 6.1.. Formas multilineales reales............

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema : Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 13 de febrero de 2013 JOSÉ GARCÍA-CUERVA (U.A.M.)

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

Cálculo de la matriz asociada a una transformación lineal (ejemplos)

Cálculo de la matriz asociada a una transformación lineal (ejemplos) Cálculo de la matriz asociada a una transformación lineal ejemplos Objetivos Estudiar con ejemplos cómo se calcula la matriz asociada a una transformación lineal Requisitos Transformación lineal, definición

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una

Más detalles

Matrices Particionadas Traza de una Matriz

Matrices Particionadas Traza de una Matriz CAPÍTULO Matrices Particionadas Traza de una Matriz Este capítulo consta de tres secciones Las dos primeras versan sobre matrices particionadas La tercera sección trata sobre la traza de una matriz En

Más detalles

TALLER III Profesor: H. Fabian Ramirez TRANSFORMACIONES LINEALES Y VECTORES PROPIOS. 0 0 λ λ 2 λ λ

TALLER III Profesor: H. Fabian Ramirez TRANSFORMACIONES LINEALES Y VECTORES PROPIOS. 0 0 λ λ 2 λ λ UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas TALLER III Profesor: H. Fabian Ramire TRANSFORMACIONES LINEALES Y VECTORES PROPIOS OBSERVACIÓN: N.A significa Ninguna de las Anteriores..

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal Tema 2- Proyecciones, simetrías y giros ÍNDICE 21 Proyección ortogonal sobre un subespacio El teorema de la proyección ortogonal 22 Simétría ortogonal respecto de un subespacio 23 Matrices de Householder

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles