LÍMITE DE UNA FUNCIÓN EN UN PUNTO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LÍMITE DE UNA FUNCIÓN EN UN PUNTO"

Transcripción

1 el blog de mte de id: Límites y cotiuidd. M I pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c giic que tom vlores cd vez más próimos c. Se lee tiede c. Por ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es u secueci de úmeros cd vez más próimos. Escribimos. c giic que tom vlores cd vez más próimos c, pero meores que c. Se lee tiede c por l izquierd. Por ejemplo, l secueci: ;,;,8;,9;,99; Está ormd por úmeros meores que y cd vez más próimos. Escribimos. c giic que tom vlores cd vez más próimos c, pero myores que c. Se lee tiede c por l derech. Por ejemplo, l secueci: ;,;,;,;,; Escribiremos. Si c, etoces tom vlores vribles. Como cosecueci l ució tmbié tom vlores vribles. El comportmieto de cudo c, se epres sí: límite de cudo tiede c por l izquierd c c culquier vlor, por grde que se. Cudo c, tom vlores cd vez más grdes, llegdo superr,9,99 c Cudo c, tom vlores cd vez más egtivos.,9, L Cudo c, tom vlores cd vez más próimos l úmero L. c,9,99,8,98

2 el blog de mte de id: Límites y cotiuidd. M I pág. límite de cudo tiede c por l derech c El giicdo es milr l del y los comportmietos que puede drse so idéticos los que hemos visto pr c. c límite de cudo tiede c c Es el comportmieto de l ució cudo se proim c, importr es por l derech o por l izquierd. Si L, decimos que L. c c Aálogmete, cudo los dos límites lterles so + ó -. Si los dos límites lterles o tom el mismo vlor, se dice que o eiste el. c c LÍMITES EN EL INFINITO Pr epresr que tom vlores cd vez más grdes, poemos +. Se lee tiede más iiito. Por ejemplo, tom los vlores,,,,, decimos que +. límite de cudo tiede más-iiito Cudo +, los vlores de crece cd vez más. Cudo +, los vlores de so cd vez más egtivos. L Cudo +, los vlores de so cd vez más próimos u úmero L.,87,9987, o eiste Cudo +, los vlores de i crece i decrece ideiidmete, i se cerc cd vez más igú úmero. Ls ucioes trigoométrics preset este comportmieto.

3 el blog de mte de id: Límites y cotiuidd. M I pág. límite de cudo tiede meos-iiito El giicdo es milr l del y los comportmietos que puede drse so idéticos los que hemos visto pr +. LÍMITES: CASOS POSIBLES Límites iiitos cudo tiede u úmero iito : Límites iitos e el iiito: L Límites iiitos e el iiito: L

4 el blog de mte de id: Límites y cotiuidd. M I pág. OPERACIONES CON LÍMITES DE FUNCIONES Se y g dos ucioes tles que eist vlor rel o, etoces: y g y c u úmero rel, puede ser u PROPIEDADES FUNCIÓN OPERACIONES g g Sum Adició Opuest g g Diereci g g Producto Multiplicció g g c g c g c c g Ivers Cociete Producto por u úmero Costte g g Multiplicció por u úmero Compuest Compoció g Idetidd Poteci Potecició Ests relcioes so cierts empre que teg setido ls opercioes deiids co úmeros reles o ls deiids l ñdir los elemetos + y -. E cso cotrrio o es poble obteer el límite del primer miembro prtir de los límites del segudo. Cudo esto ocurre se dice que el cálculo del límite o está determido o es idetermido. Est epreó, o giic que el límite o eist o o se pued determir, o que l plicció direct de los teorems tl y como está eucidos es impoble. Los csos de idetermició so los guietes: Rcioles k/, /,, -, / Epoeciles,, Si l clculr u límite se preset lguo de estos csos, coviee trsormr l epreó de l ució e otr equivlete l que sí pued plicrse los teorems de los límites.

5 el blog de mte de id: Límites y cotiuidd. M I pág. CÁLCULO DE LÍMITES A trvés de ls correspodietes gráics, result ácil compreder los límites más secillos: FUNCIÓN CONSTANTE: =K FUNCIÓN IDENTIDAD: = K K ; K K ; K K ; ; FUNCIÓN POTENCIAL DE EXPONENTE NATURAL, є N, ; ; ; FUNCIÓN POTENCIAL DE EXPONENTE ENTERO NEGATIVO, - є Z, co ; ; co ; ; ;

6 el blog de mte de id: Límites y cotiuidd. M I pág. FUNCIÓN EXPONENCIAL, >,, >, < < ; ; ; ; FUNCIÓN LOGARÍTMICA log, > log, >, log, < < log log co ; log ; log log log co ; log ; log Cálculo de límites de u ució e u puto. El límite de u costte, e culquier puto, es ell mism: k k. El límite de u ució poliómic, =P, cudo, coicide co P. P P 8. El límite de u cociete de poliomios, =P/Q, cudo, coicide P/Q P y Q. P P Q Q

7 el blog de mte de id: Límites y cotiuidd. M I pág. 7. Idetermició L idetermició / de ucioes rcioles desprece descompoiedo e ctores el umerdor y el deomidor y mpliicdo. b L idetermició / de ucioes co rdicles desprece multiplicdo y dividiedo l ució por l epreó rdicl cojugd.. Idetermició k/ El cso k/, k, o suele tomrse como idetermido y que el límite, eiste, es empre + ó -. Se clcul los límites lterles; so igules, l ució tiee límite + ó -; e cso cotrrio o eiste el límite. límite el eiste No K. L idetermició - de ucioes rcioles desprece eectudo l operció y reduciedo l diereci u úic epreó. 7. L idetermició se resuelve trsormádols e ls de tipo /. Ejemplos: 7 9 ite el eiste No K lím

8 el blog de mte de id: Límites y cotiuidd. M I pág. 8 Cálculo de límites e el iiito. El límite de u poliomio cudo es ó - segú que el go del coeiciete del térmio de myor grdo se potivo o egtivo. Ejemplos: b c. Idetermició d 8 o eiste L idetermició desprece dividiedo umerdor y deomidor por l myor poteci de. Podemos dr l guiete regl pr hllr límites + de ucioes rcioles: P Q b m P Q b gr do gr do gr do de de de P P P gr do gr do gr do de de de Q Q Q Tmbié podemos resolverlos tomdo úicmete los térmios de myor grdo tto del umerdor como del deomidor. b m b Ejemplos 7 m

9 el blog de mte de id: Límites y cotiuidd. M I pág. 9. L idetermició - L idetermició - de ucioes co rdicles desprece multiplicdo y dividiedo l ució por l epreó rdicl cojugd. b L idetermició - de ucioes rcioles desprece eectudo l operció y reduciedo l diereci u úic epreó.. L idetermició se resuelve trsormádol e u del tipo.. Límites cudo - Se clculrá el límite cudo de l epreó que resulte de cmbir por e l ució. Ejemplos: El úmero e Se. Cuál es el límite de est ució cudo? Clculremos lguos térmios:

10 el blog de mte de id: Límites y cotiuidd. M I pág. X,,78,79,7887,7889 Auque cd térmio clculdo es myor que los teriores, el crecimieto es t leto que es rzoble pesr que es covergete. Su límite es u úmero irrciol y se le ombr co l letr e: e=,788 L epreó del prétes tiede y el epoete tiede. El úmero e prece empre que tegmos u idetermició del tipo. Si como es. y g, etoces: g e g, tto es u úmero rel e e e e ASÍNTOTAS e e e Si, R, l rect =, es u sítot verticl. Pr determir tiede más o meos iiiito, e =, hbrí que clculr los límites lterles y sí determimos l poció de l curv respecto l sítot. E ls ucioes rcioles se busc e los vlores de que so ríces del deomidor. Si b, br, l rect y = b es u sítot horizotl. Cálculo de sítots oblicus: Por ser u sítot oblícu tedrá por ecució y = m +, dode m idic l pediete de l rect y l orded e el orige. m y m,. Los vlores de m y se obtiee clculdo los guietes límites: m y m Pr estudir l poció de l gráic respecto de ls sítots oblicus y horizotles clculmos los límites cudo de l diereci etre l ució y l sítot. Si el resultdo es potivo, l ució está ecim de l sítot, y es egtivo, está debjo. Si u ució tiee u sítot horizotl, etoces o tiee sítot oblicu.

11 el blog de mte de id: Límites y cotiuidd. M I pág. Ejemplos: L sítot verticl de l ució es l rect = L sítot horizotl de l ució es l rect y Poció de l gráic respecto de l sítot: L gráic está debjo L gráic está ecim L sítot oblicu de l ució 8 es l rect y=- 8 8 m 8 Poció de l gráic respecto de l sítot: 8 L gráic está debjo 8 L gráic está ecim

12 el blog de mte de id: Límites y cotiuidd. M I pág. Observcioes práctics cerc de ls sítots horizotles y verticles: - Ls ucioes poliómics tiee rms iiits, pero o tiee sítots horizotles y tmpoco verticles. - Ls rccioes lgebrics tiee sítot horizotl el umerdor y el deomidor tiee el mismo grdo. E ese cso, es l mism sítot por l izquierd que por l derech. - Ls rccioes lgebrics tiee tts sítots verticles como ríces teg el deomidor, slvo que el umerdor teg lgu de ess ríces; e tl cso coviee, previmete, mpliicr l rcció. - Ls epreoes co rdicles puede teer dos sítots horizotles. - E geerl, ls sítots verticles so propis de epreoes que «se hce iiits» pr vlores iitos de. CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO Cotiuidd de u ució e u puto: L ide ituitiv de cotiuidd implic u vrició suve de l ució, sltos bruscos que romp l gráic de l mism. U ució y = es cotiu e u puto = se cumple ls tres codicioes guietes: L ució está deiid e = ; es decir, eiste. b Eiste el límite de l ució e =. c Los dos vlores teriores coicide, es decir,. Si u ució o es cotiu e u puto =, se dice que es discotiu e dicho puto. Algus rzoes por ls que u ució puede ser discotiu e u puto so ls guietes: L cotiuidd o discotiuidd de u ució e u puto eige estr deiid l ució e él. Por ejemplo, l ució = / o es cotiu o discotiu e = y que o está deiid. Si embrgo, vmos hblr de discotiuidd e ese puto. Si os restrigimos los vlores que tom u ució l derech del puto = o l izquierd, se hbl de cotiuidd por l derech o cotiuidd por l izquierd. Discotiuiddes U ució tiee u discotiuidd evitble e u puto cudo eiste límite e él y o coicide co el vlor de l ució e el mismo o o está deiid. El vlor que deberímos dr l ució e dicho puto pr que uer cotiu e él, se llm verddero vlor de l ució e el mismo.

13 el blog de mte de id: Límites y cotiuidd. M I pág. U ució tiee u discotiuidd ievitble e u puto cudo eiste los límites lterles e él y so distitos. El vlor se llm slto de l ució e ese puto, y puede ser iito, es u úmero rel, o iiito. Ejemplos: Qué sucede e =? ; luego eiste. b = ; luego l ució está deiid e =. c Los dos vlores teriores o coicide. Por tto, l ució tiee u discotiuidd evitble e =. Pr que l ució uer cotiu e =, deberí ser =. Podemos redeiir l ució ddo l ució el vlor e =. Qué vlor debemos dr l ució e = pr que se cotiu? L ució o está deiid e =. Vemos cuál es el límite de l ució e = : deberí ser =. Coderemos l ució go de deiid por: g Pr que l ució uer cotiu e =, Qué sucede e =? g y g. Los límites lterles o coicide. Luego l ució tiee u discotiuidd ievitble e el puto = de slto. Fucioes cotius U ució es cotiu e u itervlo cudo lo es e todos y cd uo de los putos del itervlo. Se dice que u ució es cotiu cudo lo es e todos y cd uo de los putos de su domiio de deiició. Ls opercioes co ucioes cotius e = d como resultdo otr ució cotiu e él, empre que teg setido l operció. Etoces: tods ls ucioes elemetles poliómics, rcioles, epoeciles y trigoométrics so cotius e todos los putos dode está deiids. Ls ucioes deiids trozos será cotius e los putos de uió lo so, y cd ució es cotiu e su trozo correspodiete.

Resumen: Límites, Continuidad y Asíntotas

Resumen: Límites, Continuidad y Asíntotas Resue: Líites, Cotiuidd y Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. : *? ** *

Más detalles

UNIDAD 10: DERIVADAS

UNIDAD 10: DERIVADAS I.E.S. Rmó Girldo. TASA DE VARIACIÓN UNIDAD 0: DERIVADAS L rzó de cmbio promedio (o ts de vrició medi) de, es: co respecto e el itervlo Co recueci iteres cosiderr l rzó de cmbio e itervlos cd vez más pequeños.

Más detalles

TEMA 8: LÍMITES Y CONTINUIDAD

TEMA 8: LÍMITES Y CONTINUIDAD 1. LÍMITE DE UNA FUNCIÓN 1.1. Límite fiito de u fució TEMA 8: LÍMITES Y CONTINUIDAD Decimos que: lim f ( x) L, si x / x ' x f ( x') L x Decimos que: lim f ( x) L, si x / x ' x f ( x') L x 1.2. Límite ifiito

Más detalles

RESUMEN FUNCIÓN DERIVADA Y APLICACIONES

RESUMEN FUNCIÓN DERIVADA Y APLICACIONES Mtemátics II Proesor: Mrí José Sáchez Quevedo RESUMEN FUNCIÓN DERIVADA Y APLICACIONES DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se u ució cotiu e =, se deie: ( ) ( ) ( ) lim se le deomi derivd de l ució e el

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA FUNCIÓN DERIVADA Cosideremos, de etrd, u fució f cotiu, Ituitivmete diremos que l fució f es derivble si es de vrició suve, esto es, que o preset cmbios bruscos como picos o cmbios vertigiosos pediete

Más detalles

Tema 1: LÍMITES DE FUNCIONES. CONTINUIDAD.

Tema 1: LÍMITES DE FUNCIONES. CONTINUIDAD. Te : ÍITES DE FUNCIONES. CONTINUIDAD. AT II. ÍITE DE UNA FUNCIÓN EN UN PUNTO. El úero es el líite de l fució f cudo, si l tor vlores de uy próios l vlor o, ls iágees f correspodietes se proi l úero. Defiició:

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

Unidad 12: DERIVADAS

Unidad 12: DERIVADAS Uidd : DERIVADAS Si u ctidd o egtiv uer t pequeñ que resultr meor que culquier otr dd, ciertmete o podrí ser sio cero. A quiees pregut qué es u ctidd iiitmete pequeñ e mtemátics, osotros respodemos que

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES E.T.S.I. Idustriles y Telecomuicció Curso 22-23 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I DEFINICIONES BÁSICAS Existe muchos feómeos que o se comport de mer cotiu, sio que ecesit u determido

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO l blog d mt d id: Límits y cotiuidd. M I pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c sigiic qu tom vlors cd vz más próimos c. S l tid c. Por jmplo: ;,9;,;,;,8;,;,9;,;,999; Es u scuci d úmros cd vz más próimos.

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

Sucesiones de números reales

Sucesiones de números reales Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1 E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de

Más detalles

Repaso: lí mite de una funcio n en un punto o en el infinito

Repaso: lí mite de una funcio n en un punto o en el infinito lsmtemticseu Pedro Cstro Orteg Uidd Límites de ucioes Cotiuidd Mtemátics II - º Bchillerto Repso: lí mite de u ucio e u puto o e el iiito Ddo u úmero rel lee límite de ( ) cudo, recordemos que l epresió

Más detalles

Tema 1 Funciones(I). Definición y límites

Tema 1 Funciones(I). Definición y límites Uidd. Fucioes I.Defiició y Líites Te FucioesI. Defiició y líites. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució ivers. Líite de

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 79 Mtemátics : Series umérics Cpítulo Sucesioes y series de úmeros reles. Sucesioes Defiició 330.- Llmremos sucesió de úmeros reles culquier plicció f: N R y l represetremos por {, dode = f(). Por comodidd,

Más detalles

LÍMITES DE SUCESIONES. EL NÚMERO e

LÍMITES DE SUCESIONES. EL NÚMERO e www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes

Más detalles

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS I.E.S. Rmó Girldo UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. POLINOMIOS Poliomios e u idetermid L epresió lgeric... 0 recie el omre de poliomio e l idetermid. Dode: es u úmero turl.,..., 0 so úmeros

Más detalles

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: Si POTENCIA DE UN NÚMERO N y R, etoces, es igul l producto de veces el úmero rel

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

Resumen: Límites de funciones. Asíntotas

Resumen: Límites de funciones. Asíntotas Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?

Más detalles

el blog de mate de aida CSII: derivadas

el blog de mate de aida CSII: derivadas el blo de mte de id CSII: derivds Pá. TASAS E VARIACIÓN L siuiete tbl orece el úmero de cimietos e cd mes lo lro de u ño e u determid poblció: Meses 7 8 Ncimietos 7 8 8 8 7 Pr sber, por ejemplo, cómo vrido

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

Q, entonces b equivale a un radical. Es decir:

Q, entonces b equivale a un radical. Es decir: UNIDAD : POTENCIACIÓN, RADICACIÓN Y LOGARITMACIÓN. POTENCIACIÓN L potecició se utili pr epresr u producto de fctores igules. Es u operció teátic etre dos térios deoidos se epoete... Eleetos de l potecició

Más detalles

!!!""#""!!! !!!""#""!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2,

!!!#!!! !!!#!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2, Tem Nº ritmétic y álgebr! Obté co l clculdor:, y /y,0 bb ± /y -,0 cc [(--- ---] y /y, dd y ± /y 0,0 ee y /y, f y ± /y 0, gg 0,0 -/ 0,0 00 y ±,00 hh 0, 00 000 /y y ±,0 Epres e form epoecil: dd bb ee cc

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles

Departamento de Matemáticas. IE.S. Ciudad de Arjona 2º Bach Sociales

Departamento de Matemáticas. IE.S. Ciudad de Arjona 2º Bach Sociales Departameto de Matemáticas. IE.S. Ciudad de Arjoa º Bach Sociales. Límites Recordatorio cuado tiede a iiito. Límites de ua ució e u puto.. Límites de ua ució cuado tiede a iiito. Cotiuidad.. Asítotas..

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales.

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales. SUCESIONES Y SERIES Sucesió Es u cojuto ordedo de térmios. Se represet medite u ució cuyo domiio es el cojuto de los úmeros turles. Se expres l ució que geer los térmios de l sucesió como ( ) =. Al térmio

Más detalles

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág el blog de mte de id. Mtemátics Aplicds ls Ciecis Sociles I. Sistems de ecucioes. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,..., es u cojuto de "m" igulddes

Más detalles

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana INVESTIGCIÓN & DESRROLLO No. Vol. : 7 79 ISSN -6 RESUMEN EL ÁLGEBR LINEL Y EL PROBLEM DE MÁXIMOS Y MÍNIMOS Stigo Relos Pco Uiversidd Privd Bolivi srelos@upb.edu Recibido el 5 juio ceptdo pr publicció el

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Repaso 1. de números y de funciones. Tema 7.0. Repaso de números reales y de funciones

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Repaso 1. de números y de funciones. Tema 7.0. Repaso de números reales y de funciones Mtemátics Aplicds ls Ciecis Sociles II Aálisis: Repso de úmeros y de fucioes 89 Tem 70 Repso de úmeros reles y de fucioes El cojuto de los úmeros reles El cojuto de los úmeros reles, R, es el más mplio

Más detalles

1.1 Secuencia de las operaciones

1.1 Secuencia de las operaciones 1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos. Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:

Más detalles

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador.

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador. Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x) Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesió de fucioes cotius (6.1.017) Propiedd: Se {f } u sucesió de fucioes f, defiids e I. Si {f } coverge uiformemete f e I y ls f so cotius e I, etoces f es cotiu e I. Demostrció: Hemos de probr

Más detalles

Tema IV. Sucesiones y Series

Tema IV. Sucesiones y Series 00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites

Más detalles

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización:

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización: GYMNÁZIUM UDĚJOVICKÁ. MTEMÁTICS. EXPRESIONES LGERÁICS..- Técics de fctorizció: No h u orde clro, slvo u primer pso: scr fctor comú después vri técics que depederá de cuál se l epresió que tegmos. Scr fctor

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM Fudció Eductiv de Desrrollo Socil Cetro Itegrl Empresril por Mdurez Lbortorio Le deteidmete, ls propieddes de l potecició Si N es decir Ejemplos: y R, etoces... veces 6 PROPIEDADES DE LA POTENCIACION.

Más detalles

Lí mite de una funció n en un puntó

Lí mite de una funció n en un puntó Uidad 9. Límites, cotiuidad y ramas iiitas Lí mite de ua ució e u putó Matemáticas I - º Bachillerato Para apreder bie el cocepto de límite comezaremos co amiliarizaros co la siguiete termiología. c c

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente. LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis

Más detalles

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS. Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,

Más detalles

Límite de una función en un punto

Límite de una función en un punto Límite de ua ució e u puto Para apreder bie el cocepto de límite comezaremos co amiliarizaros co la siguiete termiología. c ( tiede a c por la izquierda ): toma valores cada vez más cercaos a c, pero meores

Más detalles

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando:

GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando: Liceo Polivlete Arturo Alessdri plm Deprtmeto de Mtemátic Profesor Jet Espios Nivel º medio GUÍA RAICES º MEDIO Objetivo: Utilizr propieddes de ríces pr l multiplicció, sum y rest. Recoocer y plicr rciolizció.

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Métodos analíticos. Métodos Numéricos - Cap. 6. Integración 1/8. Integración - Cuadratura. Fórmulas cerradas de Newton-Cotes. Regla de los Trapecios

Métodos analíticos. Métodos Numéricos - Cap. 6. Integración 1/8. Integración - Cuadratura. Fórmulas cerradas de Newton-Cotes. Regla de los Trapecios Métodos Numéricos - Cp.. tegrció / tegrció - Cudrtur Métodos líticos Métodos uméricos pr estimr el vlor de u itegrl deiid Dode el itervlo de itegrció es iito y : cotiu e. Segú el teorem Fudmetl del Cálculo

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

TEMA 4: LÍMITES Y CONTINUIDAD.

TEMA 4: LÍMITES Y CONTINUIDAD. Profesor: Rf Gozález Jiéez Istituto St Eulli TEMA 4: LÍMITES Y CONTINUIDAD ÍNDICE 4- Líite de u fució e u puto Geerliddes 4- Idetericioes 4- Ideterició del tipo 4- Ideterició del tipo k 4- Ideterició del

Más detalles

ANÁLISIS MATEMÁTICO I. Coordinadora: Mg. Alicia Tinnirello SUCESIONES Y SERIES

ANÁLISIS MATEMÁTICO I. Coordinadora: Mg. Alicia Tinnirello SUCESIONES Y SERIES Cátedr: Crrer: ANÁLISIS MATEMÁTICO I ISI Coordidor: Mg. Alici Tiirello SUCESIONES Y SERIES Práctic del libro Cálculo. Trscedetes Temprs º Ed.- Jmes Stewrt - Ig. Mirt Mechi Ig. Edurdo Ggo Año 0 Sucesioes

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

Operaciones con fracciones

Operaciones con fracciones Uidd. Números reles lsmtemtics.eu Pedro Cstro Orteg mteriles de mtemátics Opercioes co rccioes Mtemátics I - º de Bchillerto Operció Sum c d c d d Rest (diereci) c d c d d Ejemplo 5 5 5 5 5 7 7 7 7 7 OJO!

Más detalles

Resumen Teórico. Curso de Inicio de MATEMÁTICAS. Tema 1: Funciones Elementales Tema 2: Derivación Tema 3: Integración

Resumen Teórico. Curso de Inicio de MATEMÁTICAS. Tema 1: Funciones Elementales Tema 2: Derivación Tema 3: Integración Resume Teórico. Curso de Iicio de MATEMÁTICAS. Tem : Fucioes Elemetles Tem : Derivció Tem 3: Itegrció Pedro Grcí Ferrádez Mª Ágeles Cstro López Curso de Iicio EPS. Mtemátics. Frccioes. Iguldd de dos frccioes:

Más detalles

Límites y continuidad

Límites y continuidad I.E.S. Ramó Giraldo CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- CONCEPTO DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO....- LÍMITES LATERALES: CARACTERIZACIÓN....- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

SOLUCIONARIO. UNIDAD 8: Funciones polinómicas. Interpolación ACTIVIDADES-PÁG y la distancia entre las ciudades es de v

SOLUCIONARIO. UNIDAD 8: Funciones polinómicas. Interpolación ACTIVIDADES-PÁG y la distancia entre las ciudades es de v Mtemátics plicds ls Ciecis Sociles UNIDAD 8: Fucioes poliómics. Iterpolció ACTIVIDADES-PÁG. 64. L epresió lgebric correspodiete l problem es 4 m. t 4 l distci etre ls ciuddes es de v. ) L gráfic es l simétric

Más detalles

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4. Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz

Más detalles

4º ESO Opción A ARITMÉTICA Esquema resumen

4º ESO Opción A ARITMÉTICA Esquema resumen 4º ESO Opció A ARITMÉTICA Esquem resume NÚMEROS Números Nturles ( N ): so los que sirve pr cotr. So,, Números Eteros ( Z ): so los turles y sus simétricos egtivos. So -, -, -, 0,, 4 Números Rcioles ( Q

Más detalles

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8 º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se

Más detalles

SOLUCIONES BLOQUE I:NÚMEROS Ejercicio nº1 Reduce a común denominador y ordena de forma creciente las siguientes fracciones:

SOLUCIONES BLOQUE I:NÚMEROS Ejercicio nº1 Reduce a común denominador y ordena de forma creciente las siguientes fracciones: SOLUCIONES BLOQUE INÚMEROS Ejercicio º Reduce comú deomidor y orde de form creciete ls siguietes frccioes ), y, y 0 0 9 0 9 0 ), y,, b ), 0 y 0,, 0 0 0 0 0 0 0 0 Ejercicio º Iterpret ls siguietes epresioes

Más detalles

TEMA Nº 1: NÚMEROS REALES

TEMA Nº 1: NÚMEROS REALES Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES.

Más detalles

REALES EALES. DEFINICIÓN Y LÍMITES

REALES EALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució

Más detalles

Repaso general de matemáticas básicas

Repaso general de matemáticas básicas Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio

Más detalles

Grado en Ingeniería Mecánica

Grado en Ingeniería Mecánica Tem Grdo e Igeierí Mecáic SERIES NUMÉRICAS Y SERIES DE POTENCIAS CONOCIMIENTOS PREVIOS Pr poder seguir decudmete este tem, se requiere que el lumo repse y pog l dí sus coocimietos e los siguietes coteidos:

Más detalles

UNIDAD 5 Series de Fourier

UNIDAD 5 Series de Fourier Series de Fourier 5. Fucioes ortogoles, cojutos ortogoles y cojutos ortoormles Se dice que dos fucioes f ( x ) y f x so ortogoles e el itervlo < x< si cumple co: f x = Est ide se hce extesiv u cojuto de

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2 Solucioes de ls ctividdes Pági. Los resultdos so ) - ) -, -, π π π 0,. Los resultdos epresdos e otció cietífic so ) ) 0, 0, 0, 0, 0, 0 (0 0 - ),0 0 (,,) 0,0 (0,,) (0-0 ) 0,, 0 0 -, 0 -. Los resultdos so

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia.

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia. Muel José Ferádez, mjfg@uiovi.es CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - TEMA. SUCESIONES Y SERIES.: Sucesioes umérics. Sucesioes de úmeros reles: mootoí, cotció y covergeci. Se llm sucesió de

Más detalles

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7,

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7, NÚMEROS REALES Los úeros reles, so u subcojuto de u cojuto ás grde lldo cojuto de úeros coplejos. El cojuto de úeros reles está fordo por todos los úeros que prece e l rect uéric y su vez está itegrdo

Más detalles

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + )

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + ) LOS NÚMEROS REALES Sistem de úmeros reles Vlor soluto COMPENTECIA: Utilizr rgumetos de l teorí de úmeros pr justificr relcioes que ivolucr los úmeros turles NÚMEROS REALES Recuerde que: REALES (R) IRRACIONALES

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Desigualdades II. Tarea #3 rumbo al nacional de septiembre de 2016 Por: Argel y Fernando. a 1 + a a n n. 1 n. n (f (x 1) + + f (x n ))

Desigualdades II. Tarea #3 rumbo al nacional de septiembre de 2016 Por: Argel y Fernando. a 1 + a a n n. 1 n. n (f (x 1) + + f (x n )) Desigulddes II Tre # rumbo l ciol 8-22 de septiembre de 206 Por: Argel y Ferdo Tchevyshev Se 2 y b b 2 b etoces Ahor les toc demostrrl b + 2 b + + b + 2 + + b + b 2 + + b 2 Jese Se cuerd de l ecució fuciol

Más detalles