Sistema de Corrección Atmosférica en Espectro Solar por Métodos Físico-Estadísticos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistema de Corrección Atmosférica en Espectro Solar por Métodos Físico-Estadísticos"

Transcripción

1 Sistm d Corrión Atmosféri n Esptro Solr por Métodos Físio-Estdístios Mrtínz, L., Plà, V. y Arbiol, R. Institut Crtogràfi d Ctluny (ICC) Unitt d Tldtió Pr d Montjuï s/n Brlon E-mil: Plbrs lv: orrión tmosféri, sptro solr, dyni, trnsfrni rditiv, normlizión, multitmporl, suprfiis invrints, MASS, Lndst 7 ETM+. Rsumn: En st trbjo s mustr l Sistm d Corrión Atmosféri ICC, pr snsors d tldtión psiv n l sptro solr, qu rdu l impto d l bsorión gsos, l disprsión d Rylight, l disprsión d Mi y l fto d dyni qu l tmósfr produ n l mdid rdiométri. El método físio s bs n simulions d trnsfrni rditiv, no stá rstringido un pltform onrt y su disño prmit ontmplr l impto d l gomtrí d iluminión y obsrvión, l stdo d l tmósfr, y l topogrfí. L orrión físi s omplmnt mdint un prodiminto d normlizión stdísti bsdo n l rdiomtrí d suprfiis invrints qu posibilit l gnrión d sris multitmporls d imágns ompnsds. El Sistm s h implmntdo pr l orrión d sris d imágns pnromátis Lndst 7 ETM+, mplndo dtos tmosférios dl modlo d prdiión mtorológi MASS. El fto d l orrión tmosféri s nliz sobr suprfiis invrints dtrminds sobr l trnsformión Tssld Cp. L dsviión udráti mdi d l rfltividd d ls suprfiis invrints s rdujo l mitd l plir l método propusto, rspto l rfltividd sin orrgir. 1.Introduión Los snsors d tldtión n l sptro solr midn básimnt l rdini dl Sol rfljd por l sistm suprfii-tmósfr, pusto qu n l rngo sptrl d stos snsors ls misions térmis d l Tirr son dspribls. Ests imágns prsntn divrss distorsions gométris y rdiométris. L orrión d ls distorsions rdiométris s nsri pr modlr dudmnt prámtros físios rlists y onsistnts, bordr studios multitmporls o on imágns d difrnts snsors. L rdini mdid por l snsor dpnd d l rfltividd d l suprfii obsrvd y l gomtrí d iluminión. Est mdid stá prturbd por dos fnómnos tmosférios: l bsorión gsos, y l disprsión por moléuls gsoss y rosols, dnominds disprsión d Rylight y Mi, rsptivmnt. L bsorión s un intrión inlásti y, por tnto, d rátr disrto on l longitud d ond. L disprsión s un intrión lásti d rátr ontinuo on l longitud d ond, qu modifi l dirión d propgión d l rdiión ltromgnéti. D st form l disprsión s rsponsbl dl fto d dyni, por l qu l mdid rdiométri dl ár otd por un píxl s v ontmind por l rdiión qu s propg dsd l ntorno d diho ár, s dir, dsd los píxls próximos. Pr obtnr mdids d l rdini tldtión libr d ftos tmosférios s h dsrrolldo un Sistm d Corrión Atmosféri d Esptro Solr bsdo n un método físio on dtos tmosférios sínronos, sguido d un método d normlizión prtir d suprfiis invrints. Diho método s d rátr modulr y dptbl ulquir tipo d snsor y pltform d sptro solr, y prmit l inorporión d dtos sínronos l imgn pr l obtnión d rfltividds bsoluts mdint simulions d trnsfrni rditiv o l uso d vlors stándr n usni d stos. Un vz rlizd l orrión tmosféri bsolut d d imgn, prmit l dpurdo d un sri multitmporl mdint un método d normlizión stdísti.

2 2. Mtodologí dl Sistm 2.1 El método físio El método físio s pli ls rdinis mdids por l snsor o rdini Top Of Atmosphr (TOA), pr obtnr l rfltividd orrgid o rfltividd Bottom Of Atmosphr (BOA). L rdini mdid por l snsor L, pud rlionrs on l rfltividd xtrtrrstr quivlnt, o rfltividd TOA, omo dond: E s s l irdini solr xtrtrrstr. µ s s l osno dl ángulo nitl solr. π L µ Pro, tnindo n unt los fnómnos d intrión on l tmósfr dsritos y sgún Stnz [2], s posibl notr l rdini solr qu lnz un snsor d tldtión obsrvndo un suprfii horizontl omo s E S ( 1 S) + B /( S) L L A / 1 + dond: s l rfltividd orrgid d l suprfii obsrvd. < > s l rfltividd orrgid dl ntorno n l qu s nuntr l suprfii obsrvd. S s l lbdo sfério d l tmósfr. L s l rdini rtrodisprsd por l tmósfr hi l snsor. A y B dn unt dl fto tmosfério sobr l rdiión dirt y difus, rsptivmnt. Así l rfltividd orrgid d l suprfii obsrvd, srá pr d píxl ( L L )( 1 S) Los prámtros A, B, S y L rtrizn tnto l gomtrí y posiión n l tmósfr d snsor y ár obsrvd, omo ls ondiions tmosféris n ls qu s rliz l mdid. Su vlor no dpnd ni d l rfltividd d l suprfii obsrvd ni d l d su ntorno. Así pus, su álulo s rliz prtir d ls mgnituds L g o rdini qu lnz l snsor dsd l suprfii obsrvd, y L p o rdini qu lnz l snsor dsd l ntorno d l suprfii obsrvd y por l tmósfr, qu pr un mdio d rfltividd uniform s notn omo A B L g A L B + L p 1 S 1 S Ambs mgnituds L g y L p pudn obtnrs mdint ódigos d trnsfrni rditiv funionndo n modo dirto, sindo l obtnión dl vlor d A, B, S y L trivil mdint l rsoluión d sistms d uions. En dih simulión d trnsfrni rditiv s dond s introdun l orrión los dtos gométrios y tmosférios sinrónios l obtnión d l imgn. L mgnitud < > o rfltividd orrgid dl mdio n l qu s nuntr l suprfii obsrvd s obtndrá trtndo l onjunto d píxls qu onstituyn l ntorno o vindd, omo un nuvo píxl situdo n un ntorno uniform d rfltividd. Su vlor vndrá ddo por L L A + B + S < > ( L L ) Así l álulo d l rfltividd orrgid pr d píxl s rliz n un prodiminto d dos psos, qu prmit ruprr ontrst prdido dbido l fto d dyni l inorporr n l prodiminto l fto d l rfltividd dl ntorno dl píxl.

3 2.2 El método stdístio En un sri d imágns orrgids bsolutmnt on l método físio s pud plir d mnr gnrl un método d normlizión sobr suprfiis invrints, pus s h limindo los ftors qu limitn l uso d diho método stdístio. Est prodiminto homogniz l rfltividd d sris multitmporls orrigindo dsviions d l rtrizión tmosféri, drivs dl librdo dl snsor, t [3]. A prtir d l rfltividd d dihs zons s luln los ofiints d ssgo y gnni qu rlionn ls rfltividds ntr ls imágns d l sri. 3. Apliión y rsultdos El Sistm d Corrión s h dptdo pr orrgir tmosférimnt un sri d 6 imágns pnromátis dl snsor Enhnd Thmti Mppr Plus (ETM+) d l pltform Lndst 7. El frgmnto nlizdo s loliz n l ár mtropolitn d Brlon (Figur 1). L fh d dquisiión d ls imágns s: 23-jul-1999, 09-sp-1999, 30-di-1999, 03-mr-2000, 07-jun-2000 y 11-sp L sri stá orintd gométrimnt n un solo bloqu usndo l método gométrio d Plà y Pons [4], y rtifid por vino más próximo n píxls d 15 mtros. Figur 1: Imgn Lndst 7 ETM+ d Brlon sobr l qu s pli l orrión tmosféri L simulión d trnsfrni rditiv pr l método físio s hn rlizdo prtir dl ódigo ): Sond Simultion of th Stllit Signl in th Solr Sptrum (6S) [5], mplndo simulions d l tmósfr dl modlo Msoslr Atmosphri Simultion Systm (MASS) [6] dl Srvi d Mtorologi d Ctluny (SMC) [7], un modlo limtológio stándr d rosols y un modlo d lvión dl trrno (MET) on l mism rsoluión spil qu l imgn. Ls árs invrints pr l método stdístio s hn sogido prtir d l trnsformión Tssld Cp (TC) pr ETM+ sgún Hung [8]. S hn tomdo un totl d 9 zons qu ontbn on un mplio rngo d vlors d l primr omponnt TC o intnsidd, on los mínimos vlors nontrdos pr l sgund omponnt TC o índi d vrdor. Sobr lls s hn rlizdo rgrsions linls on r 2 suprior 0.98 pr l normlizión stdísti rspto l primr imgn d l sri orrspondint 23-jul-1999 (Figur 2).

4 N ormlizión stdísti 11-st-2000 rspto 23-jul-1999 Rfltividd 11-sp (Rfltividd 23-jul-1999 ) r Rfltividd BOA método físio 11-sp Rfltividd BOA método físio 23-jul-1999 Figur 2: Ejmplo dl método d normlizión stdísti pr l imgn d 11-sp-2000 Como mustr l Tbl 1, l rfltividd TOA d ls árs stblids omo invrints mustrn un dsviión udráti mdi n su rfltividd d y si s pli l método físio s obtin un dsviión udráti mdi d Cundo dspués dl método físio s pli l sri l método stdístio, l rfltividd orrgid d dihs árs rdu su dsviión udráti mdi L rduión d l dsviión udráti mdi logrd on l método físio no s muy lvd. Pro db tnrs n unt qu st proso d obtnión d rfltividds BOA port l imgn otro bnfiio qu s l ruprión d ontrst. Método d orrión tmosféri plido l rfltividd Dsviión udráti mdi d l rfltividd orrgid n árs invrints Ninguno (TOA) Físio Físio + Estdístio Tbl 1: Dsviión udráti mdi d l rfltividd orrgid n árs invrints 4.Conlusions. En st trbjo s h prsntdo l Sistm d Corrión Atmosféri ICC pr snsors d tldtión n l sptro solr, bsdo n l ontnión d un método físio, on simulions d trnsfrni rditiv, más un método stdístio, on rgrsions linls. S h dsrito su mtodologí bási y su pliión un so prátio: un sri d imágns pnromátis Lndst ETM+ dl ár d Brlon. S hn sliondo árs invrints uy rfltividd TOA prsntb un dsviión udráti mdi d Trs l pliión dl método físio l dsviión udráti mdi d l rfltividd BOA r d y s rdujo trs l pliión onsutiv dl método físio y dl método stdístio. Estos rsultdos son stisftorios, más tnindo n unt qu ls zons invrints s nuntrn n un ntorno urbno y, por tnto, son susptibls d prsntr ltrions rdiométris por l fto d ls sombrs. Agrdimintos Los utors dsn xprsr su grtitud Elisu Villr Ribs y Abdlmlik Sirouni dl SMC, por los dtos dl modlo mtorológio MASS.

5 Rfrnis [1] Hung, C., L. Yng, C. Homr, B. Wyli, J. Voglmn nd T. DFli, "At-Stllit Rfltn: A First Ordr Normliztion of Lndst & ETM+ Imgs". USGS. [2] Stnz, K., Willims, D.J. 1997, Rtrivl of Surf Rfltn from Hiprsptrl Dt Using Look-up Tbl Approh. Cndin Journl of Rmot Snsing, Vol 23, nº4, [3] Cslls, V. y Lópz, M.J. (1989): An ltrntiv simpl pproh to stimt tmosphri orrtion in multitmporl studis, Intrntionl Journl of Rmot Snging, vol. 10, pp [4] Plà V. y Pons X. (1995): Inorportion of rlif in polynomil-bsd gomtri orrtions, Photogrmmtri Enginring nd Rmot Snsing, vol. 61, pp [5] Vrmont, E., Tnré, D., Duzé, J.L., Hrmn, M. y Morrtt, J.J. (1997): Sond simultion of th stllit signl in th solr sptrum, 6S: n ovrviw. IEEE Trnstions on Gosin nd Rmot Snsing, 35, [6] [7] Codin, B., Arn, M., Young, S. y Rdño, A. (1997): Prdition of Msosl Convtiv Systm ovr Ctloni (Northstrn Spin) with Nstd Numril Modl. Mtor. Atmos. Phys., 62, [8] Hung, C., Wyli, B., Homr, C., Yng, L., nd Zylstr, G., 2002, Drivtion of Tssld p trnsformtion bsd on Lndst 7 t-stllit rfltn: Intrntionl Journl of Rmot Snsing, v. 23, no. 8, p

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004 EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 99- Ptr Slmn Univrsity of Nwcstl, UK pfslmn@yhoo.co.uk Rsumn Introducción

Más detalles

Ie Io. Medidas absolutas y medidas relativas

Ie Io. Medidas absolutas y medidas relativas Mdids soluts y mdids rltivs Cómo otnr un mdi socición? Comprndo dos mdids d frcunci Mdids soluts (Difrnci) Mdids rltivs (Rzón) Supongmos qu un invrsión inicil d Euros s convirt n 2 Euros l co d un ño.

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

ESTIMACIÓN DE ENERGÍA SOLAR GANADA POR VENTANAS MULTIACIMUTALES EN RELACIÓN A SU ORIENTACIÓN Y A SU GEOMETRÍA. SITUACIÓN INVERNAL.

ESTIMACIÓN DE ENERGÍA SOLAR GANADA POR VENTANAS MULTIACIMUTALES EN RELACIÓN A SU ORIENTACIÓN Y A SU GEOMETRÍA. SITUACIÓN INVERNAL. ESTIMACIÓN DE ENERGÍA SOLAR GANADA POR VENTANAS MULTIACIMUTALES EN RELACIÓN A SU ORIENTACIÓN Y A SU GEOMETRÍA. SITUACIÓN INVERNAL. Arq. Gustvo Br (1) ; Dr. Arq. Crolin Gnm (2) ; Ing. Alfrdo Estvs (3) (1,2,3)

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO Rvista Ibroamriana d Ingniría Mánia. Vol. 11, N.º 3, pp. 39-51, 007 DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO BORIS F. VORONIN, JESÚS A. ÁLVAREZ SÁNCHEZ, JOSÉ ANTONIO

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua 3/1/01 Hidrologí Cinci qu studi ls roidds, distribución y circulción dl gu Smn 4 - Procsos d Gnrción d l Prciitción. - Vor d Agu n l Atmósfr. - Agu rciitbl. Mcnismos d Elción d ls Mss d Air Concto gnrl

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

GUÍA DEL USUARIO. Medidor de luz de bolsillo. Modelo LT10

GUÍA DEL USUARIO. Medidor de luz de bolsillo. Modelo LT10 GUÍA DEL USUARIO Mdidor d luz d bolsillo Modlo LT10 Introducción Grcis por slccionr l Modlo LT10 d Extch. Est instrumnto s mbrc compltmnt probdo y clibrdo y con uso propido l provrá muchos ños d srvicio

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado SEGURIDAD INFORMÁTICA M. Kthrin Cncldo Agnd: Introducción l curso Prsntcions Informción dl curso Rgls dl jugo Mnos l obr! ---> Introducción l sguridd informátic INTRODUCCIÓN AL CURSO Acrc d ustds... Acrc

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

INTRODUCCIÓN A LA ELECTROACÚSTICA

INTRODUCCIÓN A LA ELECTROACÚSTICA INTRODUCCIÓN A LA ELECTROACÚSTICA Fdri Miyr. Intrduión L ltrústi s up dl studi, nálisis, disñ y pliins d dispsitivs qu invlurn l nvrsión d nrgí létri n ústi y vivrs, sí m d sus mpnnts sids. Entr ls primrs

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA

REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA Librtd y Ordn REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA Atls d Vinto y Enrgí Eólic d Colombi Librtd y Ordn REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

Calderas murales a gas

Calderas murales a gas Cadras muras a gas Nuva gnración d cadras muras d condnsacion wifi. Con conxión via wifi dsd Smart Phon, Tabt o PC BLUEHELIX TECH WIFI. Intrcambiador d Pacas. Microacumuación Enrgy-ratd Products ata ficincia

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: 15 INSTITUTO NIONL D IINI NRGTI Y NRGIS RNOVLS INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D 13 : 19/3/15 OR: 11:4:58 Descripcion del ur IV rrado laboracion probado G=- del Traslado ntregado

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

Población femenina e hijos nacidos vivos

Población femenina e hijos nacidos vivos FECUNDIDAD L fcundidd hc rfrnci l rsultdo fctivo dl procso d rproducción humn, l cul stá rlciondo con ls condicions ductivs, socils y conómics qu rodn l mujr y su prj. Es por llo qu n st prtdo s incluy

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Curso: Principios de Controladores Lógicos Programables Código: ELE 2317 Tema: Elementos y Sistemas Básicos Lección: 2

Curso: Principios de Controladores Lógicos Programables Código: ELE 2317 Tema: Elementos y Sistemas Básicos Lección: 2 Curso: Prinipios d Controladors Lógios Programals Código: ELE 2317 Tma: Elmntos y Sistmas Básios Lión: 2 Su-Tma: Inputs & Outputs Profsor: Jams Rols INPUTS DE PLC: Los inputs d los PLC son snsors qu dtrminan

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2015-03235 465,00 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Concjalía d Juvntud Mdiant rsolución d la

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Nueva guía de instalación para el temporizador de fácil ajuste. 2 Qué se necesita? 3 Montaje del temporizador en la pared

Nueva guía de instalación para el temporizador de fácil ajuste. 2 Qué se necesita? 3 Montaje del temporizador en la pared Qué s un sistma d rigo automático? Qué s ncsita? Montaj dl tmporizador n la pard Conxión dl cordón d alimntación léctrica Estos accsorios no vinn incluidos con l tmporizador Cabl d control d válvula; para

Más detalles

Respuesta Temporal de Circuitos RLC Serie

Respuesta Temporal de Circuitos RLC Serie spust Tmporl ircuitos L Sri Noctti, Mtís, mtisnoctti@hotmil.com Blnkmnn, Aljnro, ljnroblnkmnn@hotmil.com Lbortorio Físic II Univrsi Fvloro sumn En st inform s nlizrn los istintos tipos rspust los circuitos

Más detalles

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 Chil, agosto d 2005 El prsnt manual rprsnta la visión dl quipo d profsionals prtncints al Proycto FONDEF Aprndindo con

Más detalles

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012 Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial José Luis Zofío Organización Industrial II Licnciatura: Economía (2º smstr) Código 570 Part I: El análisis dl quilibrio parcial Tma 3.El monopolio. 3. Análisis dl quilibrio. 3.2 Discriminación d prcios

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

AMPLIFICADORES CON BJT

AMPLIFICADORES CON BJT AMPFADOS ON BJT FUNONAMNTO D BJT PAA SÑA AMPFADOS ON BJT uando s opla una tnsión altrna a la bas d un transistor apar una tnsión altrna a través dl diodo bas-misor. sta orrt altrna d misor t la misma frunia

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

MONITOREO DE CONTROLADORES PREDICTIVOS.

MONITOREO DE CONTROLADORES PREDICTIVOS. MONITOREO DE CONTROLADORES PREDICTIVOS. Rachid A. Ghraizi, Ernsto Martínz, César d Prada Dpt. Ingniría d Sistmas y Automática Facultad d Cincias, Univrsidad d Valladolid c/ Ral d Burgos s/n, 47, Valladolid,

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

Digitalización de Imagen Muestreo y Cuantización. Función Imagen. Índice. Tipos de Funciones. Función n Imagen 6. Digitalización de Imágenes

Digitalización de Imagen Muestreo y Cuantización. Función Imagen. Índice. Tipos de Funciones. Función n Imagen 6. Digitalización de Imágenes (0,M-) (0,0) 3 34 3 8 7 3 4 33 35 34 3 7 3 30 3 34 37 36 35 35 36 43 39 40 45 44 57 55 45 4 48 57 5 48 56 76 56 55 55 5 84 96 65 6 57 53 5 6 73 85 (N-,M-) (N-,0) Índic Digitlizción d Imgn Mustro y Cuntizción

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

MECÁNICA CUÁNTICA - RESUMEN

MECÁNICA CUÁNTICA - RESUMEN I..S BATRIZ D SUABIA Dto. Físia y Quíia MCÁNICA CUÁNTICA - RSUMN. La iótsis d Plank. n l año 9 Plank introdujo una nua iótsis ara tratar d xliar la radiaión itida or los uros alints. Sgún él al igual la

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

Curso de m@rketing y comercio electrónico

Curso de m@rketing y comercio electrónico Curso d m@rkting y omrio ltrónio Markting.om: ómo intgrar la Rd n la stratgia d ngoio Inma Rodríguz Ardura Índi d ontnidos Estratgia y ngoio n Intrnt: ómo y uanto invrtir Haindo invstigaión d mrados por

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 Mdidas dl cuadrado d la vlocidad angular

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles