Sistema de Corrección Atmosférica en Espectro Solar por Métodos Físico-Estadísticos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistema de Corrección Atmosférica en Espectro Solar por Métodos Físico-Estadísticos"

Transcripción

1 Sistm d Corrión Atmosféri n Esptro Solr por Métodos Físio-Estdístios Mrtínz, L., Plà, V. y Arbiol, R. Institut Crtogràfi d Ctluny (ICC) Unitt d Tldtió Pr d Montjuï s/n Brlon E-mil: lmrtinz@i.s Plbrs lv: orrión tmosféri, sptro solr, dyni, trnsfrni rditiv, normlizión, multitmporl, suprfiis invrints, MASS, Lndst 7 ETM+. Rsumn: En st trbjo s mustr l Sistm d Corrión Atmosféri ICC, pr snsors d tldtión psiv n l sptro solr, qu rdu l impto d l bsorión gsos, l disprsión d Rylight, l disprsión d Mi y l fto d dyni qu l tmósfr produ n l mdid rdiométri. El método físio s bs n simulions d trnsfrni rditiv, no stá rstringido un pltform onrt y su disño prmit ontmplr l impto d l gomtrí d iluminión y obsrvión, l stdo d l tmósfr, y l topogrfí. L orrión físi s omplmnt mdint un prodiminto d normlizión stdísti bsdo n l rdiomtrí d suprfiis invrints qu posibilit l gnrión d sris multitmporls d imágns ompnsds. El Sistm s h implmntdo pr l orrión d sris d imágns pnromátis Lndst 7 ETM+, mplndo dtos tmosférios dl modlo d prdiión mtorológi MASS. El fto d l orrión tmosféri s nliz sobr suprfiis invrints dtrminds sobr l trnsformión Tssld Cp. L dsviión udráti mdi d l rfltividd d ls suprfiis invrints s rdujo l mitd l plir l método propusto, rspto l rfltividd sin orrgir. 1.Introduión Los snsors d tldtión n l sptro solr midn básimnt l rdini dl Sol rfljd por l sistm suprfii-tmósfr, pusto qu n l rngo sptrl d stos snsors ls misions térmis d l Tirr son dspribls. Ests imágns prsntn divrss distorsions gométris y rdiométris. L orrión d ls distorsions rdiométris s nsri pr modlr dudmnt prámtros físios rlists y onsistnts, bordr studios multitmporls o on imágns d difrnts snsors. L rdini mdid por l snsor dpnd d l rfltividd d l suprfii obsrvd y l gomtrí d iluminión. Est mdid stá prturbd por dos fnómnos tmosférios: l bsorión gsos, y l disprsión por moléuls gsoss y rosols, dnominds disprsión d Rylight y Mi, rsptivmnt. L bsorión s un intrión inlásti y, por tnto, d rátr disrto on l longitud d ond. L disprsión s un intrión lásti d rátr ontinuo on l longitud d ond, qu modifi l dirión d propgión d l rdiión ltromgnéti. D st form l disprsión s rsponsbl dl fto d dyni, por l qu l mdid rdiométri dl ár otd por un píxl s v ontmind por l rdiión qu s propg dsd l ntorno d diho ár, s dir, dsd los píxls próximos. Pr obtnr mdids d l rdini tldtión libr d ftos tmosférios s h dsrrolldo un Sistm d Corrión Atmosféri d Esptro Solr bsdo n un método físio on dtos tmosférios sínronos, sguido d un método d normlizión prtir d suprfiis invrints. Diho método s d rátr modulr y dptbl ulquir tipo d snsor y pltform d sptro solr, y prmit l inorporión d dtos sínronos l imgn pr l obtnión d rfltividds bsoluts mdint simulions d trnsfrni rditiv o l uso d vlors stándr n usni d stos. Un vz rlizd l orrión tmosféri bsolut d d imgn, prmit l dpurdo d un sri multitmporl mdint un método d normlizión stdísti.

2 2. Mtodologí dl Sistm 2.1 El método físio El método físio s pli ls rdinis mdids por l snsor o rdini Top Of Atmosphr (TOA), pr obtnr l rfltividd orrgid o rfltividd Bottom Of Atmosphr (BOA). L rdini mdid por l snsor L, pud rlionrs on l rfltividd xtrtrrstr quivlnt, o rfltividd TOA, omo dond: E s s l irdini solr xtrtrrstr. µ s s l osno dl ángulo nitl solr. π L µ Pro, tnindo n unt los fnómnos d intrión on l tmósfr dsritos y sgún Stnz [2], s posibl notr l rdini solr qu lnz un snsor d tldtión obsrvndo un suprfii horizontl omo s E S ( 1 S) + B /( S) L L A / 1 + dond: s l rfltividd orrgid d l suprfii obsrvd. < > s l rfltividd orrgid dl ntorno n l qu s nuntr l suprfii obsrvd. S s l lbdo sfério d l tmósfr. L s l rdini rtrodisprsd por l tmósfr hi l snsor. A y B dn unt dl fto tmosfério sobr l rdiión dirt y difus, rsptivmnt. Así l rfltividd orrgid d l suprfii obsrvd, srá pr d píxl ( L L )( 1 S) Los prámtros A, B, S y L rtrizn tnto l gomtrí y posiión n l tmósfr d snsor y ár obsrvd, omo ls ondiions tmosféris n ls qu s rliz l mdid. Su vlor no dpnd ni d l rfltividd d l suprfii obsrvd ni d l d su ntorno. Así pus, su álulo s rliz prtir d ls mgnituds L g o rdini qu lnz l snsor dsd l suprfii obsrvd, y L p o rdini qu lnz l snsor dsd l ntorno d l suprfii obsrvd y por l tmósfr, qu pr un mdio d rfltividd uniform s notn omo A B L g A L B + L p 1 S 1 S Ambs mgnituds L g y L p pudn obtnrs mdint ódigos d trnsfrni rditiv funionndo n modo dirto, sindo l obtnión dl vlor d A, B, S y L trivil mdint l rsoluión d sistms d uions. En dih simulión d trnsfrni rditiv s dond s introdun l orrión los dtos gométrios y tmosférios sinrónios l obtnión d l imgn. L mgnitud < > o rfltividd orrgid dl mdio n l qu s nuntr l suprfii obsrvd s obtndrá trtndo l onjunto d píxls qu onstituyn l ntorno o vindd, omo un nuvo píxl situdo n un ntorno uniform d rfltividd. Su vlor vndrá ddo por L L A + B + S < > ( L L ) Así l álulo d l rfltividd orrgid pr d píxl s rliz n un prodiminto d dos psos, qu prmit ruprr ontrst prdido dbido l fto d dyni l inorporr n l prodiminto l fto d l rfltividd dl ntorno dl píxl.

3 2.2 El método stdístio En un sri d imágns orrgids bsolutmnt on l método físio s pud plir d mnr gnrl un método d normlizión sobr suprfiis invrints, pus s h limindo los ftors qu limitn l uso d diho método stdístio. Est prodiminto homogniz l rfltividd d sris multitmporls orrigindo dsviions d l rtrizión tmosféri, drivs dl librdo dl snsor, t [3]. A prtir d l rfltividd d dihs zons s luln los ofiints d ssgo y gnni qu rlionn ls rfltividds ntr ls imágns d l sri. 3. Apliión y rsultdos El Sistm d Corrión s h dptdo pr orrgir tmosférimnt un sri d 6 imágns pnromátis dl snsor Enhnd Thmti Mppr Plus (ETM+) d l pltform Lndst 7. El frgmnto nlizdo s loliz n l ár mtropolitn d Brlon (Figur 1). L fh d dquisiión d ls imágns s: 23-jul-1999, 09-sp-1999, 30-di-1999, 03-mr-2000, 07-jun-2000 y 11-sp L sri stá orintd gométrimnt n un solo bloqu usndo l método gométrio d Plà y Pons [4], y rtifid por vino más próximo n píxls d 15 mtros. Figur 1: Imgn Lndst 7 ETM+ d Brlon sobr l qu s pli l orrión tmosféri L simulión d trnsfrni rditiv pr l método físio s hn rlizdo prtir dl ódigo ): Sond Simultion of th Stllit Signl in th Solr Sptrum (6S) [5], mplndo simulions d l tmósfr dl modlo Msoslr Atmosphri Simultion Systm (MASS) [6] dl Srvi d Mtorologi d Ctluny (SMC) [7], un modlo limtológio stándr d rosols y un modlo d lvión dl trrno (MET) on l mism rsoluión spil qu l imgn. Ls árs invrints pr l método stdístio s hn sogido prtir d l trnsformión Tssld Cp (TC) pr ETM+ sgún Hung [8]. S hn tomdo un totl d 9 zons qu ontbn on un mplio rngo d vlors d l primr omponnt TC o intnsidd, on los mínimos vlors nontrdos pr l sgund omponnt TC o índi d vrdor. Sobr lls s hn rlizdo rgrsions linls on r 2 suprior 0.98 pr l normlizión stdísti rspto l primr imgn d l sri orrspondint 23-jul-1999 (Figur 2).

4 N ormlizión stdísti 11-st-2000 rspto 23-jul-1999 Rfltividd 11-sp (Rfltividd 23-jul-1999 ) r Rfltividd BOA método físio 11-sp Rfltividd BOA método físio 23-jul-1999 Figur 2: Ejmplo dl método d normlizión stdísti pr l imgn d 11-sp-2000 Como mustr l Tbl 1, l rfltividd TOA d ls árs stblids omo invrints mustrn un dsviión udráti mdi n su rfltividd d y si s pli l método físio s obtin un dsviión udráti mdi d Cundo dspués dl método físio s pli l sri l método stdístio, l rfltividd orrgid d dihs árs rdu su dsviión udráti mdi L rduión d l dsviión udráti mdi logrd on l método físio no s muy lvd. Pro db tnrs n unt qu st proso d obtnión d rfltividds BOA port l imgn otro bnfiio qu s l ruprión d ontrst. Método d orrión tmosféri plido l rfltividd Dsviión udráti mdi d l rfltividd orrgid n árs invrints Ninguno (TOA) Físio Físio + Estdístio Tbl 1: Dsviión udráti mdi d l rfltividd orrgid n árs invrints 4.Conlusions. En st trbjo s h prsntdo l Sistm d Corrión Atmosféri ICC pr snsors d tldtión n l sptro solr, bsdo n l ontnión d un método físio, on simulions d trnsfrni rditiv, más un método stdístio, on rgrsions linls. S h dsrito su mtodologí bási y su pliión un so prátio: un sri d imágns pnromátis Lndst ETM+ dl ár d Brlon. S hn sliondo árs invrints uy rfltividd TOA prsntb un dsviión udráti mdi d Trs l pliión dl método físio l dsviión udráti mdi d l rfltividd BOA r d y s rdujo trs l pliión onsutiv dl método físio y dl método stdístio. Estos rsultdos son stisftorios, más tnindo n unt qu ls zons invrints s nuntrn n un ntorno urbno y, por tnto, son susptibls d prsntr ltrions rdiométris por l fto d ls sombrs. Agrdimintos Los utors dsn xprsr su grtitud Elisu Villr Ribs y Abdlmlik Sirouni dl SMC, por los dtos dl modlo mtorológio MASS.

5 Rfrnis [1] Hung, C., L. Yng, C. Homr, B. Wyli, J. Voglmn nd T. DFli, "At-Stllit Rfltn: A First Ordr Normliztion of Lndst & ETM+ Imgs". USGS. [2] Stnz, K., Willims, D.J. 1997, Rtrivl of Surf Rfltn from Hiprsptrl Dt Using Look-up Tbl Approh. Cndin Journl of Rmot Snsing, Vol 23, nº4, [3] Cslls, V. y Lópz, M.J. (1989): An ltrntiv simpl pproh to stimt tmosphri orrtion in multitmporl studis, Intrntionl Journl of Rmot Snging, vol. 10, pp [4] Plà V. y Pons X. (1995): Inorportion of rlif in polynomil-bsd gomtri orrtions, Photogrmmtri Enginring nd Rmot Snsing, vol. 61, pp [5] Vrmont, E., Tnré, D., Duzé, J.L., Hrmn, M. y Morrtt, J.J. (1997): Sond simultion of th stllit signl in th solr sptrum, 6S: n ovrviw. IEEE Trnstions on Gosin nd Rmot Snsing, 35, [6] [7] Codin, B., Arn, M., Young, S. y Rdño, A. (1997): Prdition of Msosl Convtiv Systm ovr Ctloni (Northstrn Spin) with Nstd Numril Modl. Mtor. Atmos. Phys., 62, [8] Hung, C., Wyli, B., Homr, C., Yng, L., nd Zylstr, G., 2002, Drivtion of Tssld p trnsformtion bsd on Lndst 7 t-stllit rfltn: Intrntionl Journl of Rmot Snsing, v. 23, no. 8, p

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004 EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 99- Ptr Slmn Univrsity of Nwcstl, UK pfslmn@yhoo.co.uk Rsumn Introducción

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Ie Io. Medidas absolutas y medidas relativas

Ie Io. Medidas absolutas y medidas relativas Mdids soluts y mdids rltivs Cómo otnr un mdi socición? Comprndo dos mdids d frcunci Mdids soluts (Difrnci) Mdids rltivs (Rzón) Supongmos qu un invrsión inicil d Euros s convirt n 2 Euros l co d un ño.

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Dinámica relativista - Efecto Compton

Dinámica relativista - Efecto Compton Dinámia rlativista - Efto Compton Niolás Di Fiori Fdrio Foiri Matías Rodríguz niolasdf@fibrtl.om.ar, fdfoiri@hotmail.om, srv@labs.df.uba.ar Laboratorio 5 FCEyN UBA, Otubr d S analizó l fto Compton produido

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN. Dd l gráfic d l función f qu s djunt l prsnt, idntifiqu

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN 0. Si g s un función d l n l cu gráfic stá dd por:

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz. nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto. ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

ESTIMACIÓN DE ENERGÍA SOLAR GANADA POR VENTANAS MULTIACIMUTALES EN RELACIÓN A SU ORIENTACIÓN Y A SU GEOMETRÍA. SITUACIÓN INVERNAL.

ESTIMACIÓN DE ENERGÍA SOLAR GANADA POR VENTANAS MULTIACIMUTALES EN RELACIÓN A SU ORIENTACIÓN Y A SU GEOMETRÍA. SITUACIÓN INVERNAL. ESTIMACIÓN DE ENERGÍA SOLAR GANADA POR VENTANAS MULTIACIMUTALES EN RELACIÓN A SU ORIENTACIÓN Y A SU GEOMETRÍA. SITUACIÓN INVERNAL. Arq. Gustvo Br (1) ; Dr. Arq. Crolin Gnm (2) ; Ing. Alfrdo Estvs (3) (1,2,3)

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

Distribución de corriente

Distribución de corriente Ensyo tipo sgún DN EN 439-1 Durnt un nsyo tipo sistm s rlizron los siguints nsyos n los sistms rrs RiLin, sí omo n omponnts montj rprsnttivos RiLin: Distriuión orrint Digrms rsistni l ortoiruito sgún EC

Más detalles

MÉTODO INDUCTIVO. Capítulo TRILCE

MÉTODO INDUCTIVO. Capítulo TRILCE pítulo É V l É V r lys prtir l osrvión los hhos, mint l gnrlizión l omportminto osrvo; n rli, lo qu rliz s un spi gnrlizión, sin qu por mio l lógi pu onsguir un mostrión ls its lys o onjunto onlusions.

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua 3/1/01 Hidrologí Cinci qu studi ls roidds, distribución y circulción dl gu Smn 4 - Procsos d Gnrción d l Prciitción. - Vor d Agu n l Atmósfr. - Agu rciitbl. Mcnismos d Elción d ls Mss d Air Concto gnrl

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

Implementación de un Regulador PID

Implementación de un Regulador PID Tma 3 Implmntación d un Rgulador PID Gijón - Marzo 22 .4 Accions d Control Clásicas.2 x(t).8.6 x(t) (t) _ P I D 2 3 u(t) Sistma.4.8.6.4.2-5 5 5 2 25 3 (t) -.2 -.4-5 5 5 2 25 3 2.8 - Proporcional ( t) =

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos) Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO Rvista Ibroamriana d Ingniría Mánia. Vol. 11, N.º 3, pp. 39-51, 007 DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO BORIS F. VORONIN, JESÚS A. ÁLVAREZ SÁNCHEZ, JOSÉ ANTONIO

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

1/4 6,35 1/2 12,7 3/4 19, ,4 1 1/2 38,1 2 50,8

1/4 6,35 1/2 12,7 3/4 19, ,4 1 1/2 38,1 2 50,8 Tubrí Crctrític d un tubrí: Diámtro intrior = d Diámtro xtrior = D L rugoidd bolut = ε Epor = D d Pulgd mm. 1/ 6,35 1/ 1,7 3/ 19,05 1 5, 1 1/ 38,1 50,8 Cudl volumétrico E l cntidd d volumn d fluido qu

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado SEGURIDAD INFORMÁTICA M. Kthrin Cncldo Agnd: Introducción l curso Prsntcions Informción dl curso Rgls dl jugo Mnos l obr! ---> Introducción l sguridd informátic INTRODUCCIÓN AL CURSO Acrc d ustds... Acrc

Más detalles

GUÍA DEL USUARIO. Medidor de luz de bolsillo. Modelo LT10

GUÍA DEL USUARIO. Medidor de luz de bolsillo. Modelo LT10 GUÍA DEL USUARIO Mdidor d luz d bolsillo Modlo LT10 Introducción Grcis por slccionr l Modlo LT10 d Extch. Est instrumnto s mbrc compltmnt probdo y clibrdo y con uso propido l provrá muchos ños d srvicio

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010 Emn Introuión l Invstigión Oprions Fh: 4 Diimr 00 INDICACIONES Durión l mn: 4 hrs. Esriir ls hojs un solo lo. Numrr ls hojs. Ponr nomr y éul inti n l ángulo suprior rho hoj. Esriir n l primr hoj l totl

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

ESTIMACIÓN LINEAL DE ERROR CUADRÁTICO MEDIO MÍNIMO

ESTIMACIÓN LINEAL DE ERROR CUADRÁTICO MEDIO MÍNIMO STIMACIÓ LIAL D RROR CUADRÁTICO MDIO MÍIMO MOTIVACIÓ: Los stmdors óptmos sgún l crtro d Bs son, n gnrl, funcons no lnls d ls obsrvcons. s ncsro conocr l f.d.p. d l vrbl ltor dds ls obsrvcons. Usndo stmdors

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capitulo IV IV. Gnración d trayctorias Capítulo IV Síntsis dimnsional d mcanismos IV. Síntsis dimnsional d mcanismos. Gnración n d funcions. IV. Gnración n d trayctorias.. Introducción n a la síntsis d

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

INTRODUCCIÓN A LA ELECTROACÚSTICA

INTRODUCCIÓN A LA ELECTROACÚSTICA INTRODUCCIÓN A LA ELECTROACÚSTICA Fdri Miyr. Intrduión L ltrústi s up dl studi, nálisis, disñ y pliins d dispsitivs qu invlurn l nvrsión d nrgí létri n ústi y vivrs, sí m d sus mpnnts sids. Entr ls primrs

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la José Aulio Pin Romo JULIO MII www.pin.s EXAMEN DE ELECTIVIDAD JULIO. MATEMÁTICA II OPCIÓN A Poblm A.. Obtn ondmnt scibindo todos los psos dl onminto utilido: ) El vlo dl dtminnt d l mti ( puntos) l mti

Más detalles

Calderas murales a gas

Calderas murales a gas Cadras muras a gas Nuva gnración d cadras muras d condnsacion wifi. Con conxión via wifi dsd Smart Phon, Tabt o PC BLUEHELIX TECH WIFI. Intrcambiador d Pacas. Microacumuación Enrgy-ratd Products ata ficincia

Más detalles

REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA

REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA Librtd y Ordn REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA Atls d Vinto y Enrgí Eólic d Colombi Librtd y Ordn REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

Más detalles

ENFOQUE MEDIA VARIANZA 1

ENFOQUE MEDIA VARIANZA 1 ENFOQE MEDIA VARIANZA Sndro A. Humn Antono El nfoqu Md-Vrnz nos d qu, bjo runstns spls, un utldd sprd pud sr dsrt n funón l md y l vrnz d los pgos y/o lotrís. Dh rduón s dud sólo n l so n qu l funón d

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño. F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente.

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente. LAS FUNCIONES DE ONDA PARA EL HIDROGENO qq Ddo qu : U k dpnd solnt d l distnci dil nt l núclo y l lctón, lgunos d los stdos pitidos p st átoo pudn s psntdos dint funcions d ond qu solo dpndn d L s sipl

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

Problemas resueltos. Problema 4.1 R 4 C E L. k i 4 3 R 3

Problemas resueltos. Problema 4.1 R 4 C E L. k i 4 3 R 3 Problmas rsultos. Problma 4. Para la rd d la figura P4., mplar la idntificación para las variabls sgún l diagrama d la drcha, d tal forma qu l producto d las variabls asociadas a un lmnto, sa la potncia

Más detalles

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS Vagón d rrnia Ltras índi a on bogis part suprior ( a ) part inrior ( a ) on 3 unidads on 4 ó más unidads (xlusivamnt a través dl túnl) (xlusivamnt

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles