TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS"

Transcripción

1 TEMA ECUACIONES INECUACIONES Y SISTEMAS

2 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. ECUACIONES DE PRIMER GRADO... Método geerl de resolució de ecucioes EJEMPLO: Resolver (+7) = ( ).. ECUACIONES CUADRÁTICAS Y BICUADRADAS... Ecucioes cudrátics U ecució de segudo grdo co u icógit es u iguldd que se puede epresr de l form c 0 co c R y 0. Pr resolver ecucioes se segudo grdo utilizmos l fórmul que os d sus solucioes: 4c. ECUACIONES INCOMPLETAS: + = 0 + c=0

3 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS... Ecucioes icudrds. Ls ecucioes icudrds so ecucioes de curto grdo de l form: 4 () c 0. Ests ecucioes se resuelve trsformdo l ecució e otr de segudo grdo por medio de u cmio de vrile. Efectivmete si relizmos el cmio de vrile t l ecució iicil se trsform e: () t c 0 t. Por cd solució t de l ecució () otedremos dos solucioes de l ecució ():.. EJERCICIOS: t y t. Por ejemplo vmos resolver l siguiete ecució: Resuelve ls siguietes ecucioes: 4 ) 6 0 ) c) 6 5 0

4 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. Ecucioes poliómics... Regl de Ruffii Pr dividir u poliomio P() por u iomio de l form ( ) eiste u procedimieto ltertivo lgoritmo de l divisió deomid Regl de Ruffii que os proporcio el cociete y el resto de l divisió de estos dos poliomios. 6 5 Por ejemplo Cosideremos los poliomios p ( ) y q ( ) 6. Utilizdo l Regl de Ruffii oteemos: Ejemplo. Aplicr l Regl de Ruffii pr oteer cociete y resto de ( 7 ) : ( )

5 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS... Fctorizció de poliomios. Diremos que u poliomio P () es irreducile si solo es divisile por sí mismo o por u poliomio de grdo 0. Por ejemplo: so irreduciles y 5. El poliomio ( ) es irreducile pues úicmete es divisile por el poliomio de grdo 0. El poliomio ( ) o es irreducile pues tiee dos divisores ( )( ). El poliomios es irreducile pues o tiee ríces reles. Diremos que es u ríz del poliomio P () si P ( ) 0 es decir si es u solució de l ecució P ( ) 0. E ese cso el iomio ( ) es u fctor del poliomio P (). 4 Cosideremos el poliomio P ( ) 8 8 si plicmos l Regl de Ruffii pr dividir P () y el iomio ( ) oteemos que el resto de l divisió es ulo. Diremos etoces que el poliomio tiee u ríz e =. Además podrímos firmr que P ( ) ( 6 6) ( ) es decir el iomio ( ) es u fctor divisor del poliomio P ().

6 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. Ecucioes poliómics... Fctorizció de poliomios (Método) Si P () es u poliomio de grdo myor que dos etoces deemos ecotrr ls ríces del poliomio teiedo e cuet que u poliomio de grdo tiee lo sumo -ríces reles (Teorem Fudmetl del Álger). Pr ecotrr ls ríces plicremos secuecilmete l Regl de Ruffii. Por ejemplo: Se el poliomio como sus coeficietes so eteros etoces sus ríces eters puede ser Si plicmos l regl de Ruffii Luego ( )( )( 4)... EJERCICIOS Resuelve ls siguietes ecucioes poliómics: ) ( 5)( )( 4) 0 ) 6 ( )( )( 4) 0 4 c) d)

7 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.4. Ecucioes co rdicles. Ecucioes rcioles..4.. Ecucioes co rdicles. Cudo e u ecució l icógit prece e lguo de los térmios detro del sigo rdicl decimos que es u ecució co rdicles. Pr resolver ls ecucioes co rdicles se sigue los siguietes psos: ) Aislr e u miemro de l ecució los térmios e los que l icógit está detro de u sigo rdicl. ) Elevr los dos miemros de l ecució l cudrdo. ) Si y o eiste rdicles se resuelve l ecució resultte teiedo e cuet que ls solucioes de l últim ecució puede o ser solucioes de l ecució iicil por lo que es ecesrio compror cuáles de ls solucioes oteids e l últim ecució so solucioes de l ecució iicil. Si todví eiste icógits detro de u rdicl iicimos co est ecució el pso ). EJEMPLO. Resolver ls siguietes ecucioes co rdicles: ) 4 5 )

8 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.4. Ecucioes co rdicles. Ecucioes rcioles..4.. Ecucioes rcioles. Ls ecucioes e ls que l icógit prece e u frcció lgeric se deomi ecucioes rcioles. Pr resolver ecucioes co frccioes lgerics multiplicmos ls frccioes por el m.c.m. de los deomidores y después resolvemos l ecució oteid. Ls solucioes resulttes deerá ser comprods e l ecució iicil. EJEMPLO: 6.4. EJERCICIOS 9. Resuelve ls siguietes ecucioes: ) 5 5 ) 5 c) d). Resuelve ls siguietes ecucioes rcioles: ) ( ) ).

9 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.5. Ecucioes epoeciles y logrítmics..5.. Ecucioes epoeciles. So ecucioes e ls que l icógit está e el epoete de u poteci. Se resuelve utilizdo vris técics: ) Epresdo los dos miemros de l ecució como potecis de l mism se y cotiució escriiedo l ecució formd por l iguldd de los epoetes. Ejemplo: 5 6 ) Tomdo logritmos e mos miemros de l ecució y plicdo ls propieddes de los logritmos. Ejemplo: )Efectudo el cmio de vrile Ejemplo: 4 4 t.

10 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.5. Ecucioes epoeciles y logrítmics.5.. Ecucioes logrítmics. So ecucioes e que l icógit está detro del rgumeto de u logritmo. Se resuelve utilizdo ls propieddes de los logritmos y comprodo ls solucioes oteids e l ecució iicil y que solo eiste logritmos de úmeros positivos. EJEMPLO: log( 4) log( 5).5. EJERCICIOS.. Resuelve ls siguietes ecucioes: 5 ) 8 6 c) 6 0 ) 5 6 d) Resuelve ls siguietes ecucioes logrítmics: ) log(4 ) log( ) log log ) log( 4 ) log log(6 ) log log 4 log( ) log( 4) log c) 0

11 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.6. Sistems de ecucioes lieles.6.. Defiició de sistem de ecucioes lieles U ecució es liel e ls vriles... si se puede epresr de l form... dode R.... U sistem de ecucioes lieles co icógits es u cojuto de vris ecucioes lieles e ls vriles... : m m m m siedo R m m m m.

12 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.6. Sistems de ecucioes lieles..6.. Clsificció de los sistems de ecucioes lieles segú sus solucioes. Segú el úmero de solucioes los sistems de ecucioes lieles se clsific e: ) Sistems comptiles: cudo el sistem tiee lgu solució. Si l solució es úic diremos que el sistem es comptile determido y si eiste ifiits solucioes diremos que es comptile idetermido. EJEMPLO:El sistem liel y y es comptile determido y que su úic solució es = y = 0. Gráficmete so dos rects que se cort e el puto (0) es comptile determido úic solució = y=0 ) El sistem y 4 y 4 es comptile idetermido su gráfic cost de dos rects cocurretes ) Sistems icomptiles: si o eiste igu solució. EJEMPLO: El sistem y y es icomptile su gráfic cost de dos rects prlels.

13 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.6. Sistems de ecucioes lieles..6.. Métodos de resolució por sustitució igulció y reducció. SUSTITUCIÓN: Despejr u icógits e u de ls ecucioes y sustituir e ls resttes hst coseguir u ecució co u icógit. IGUALACIÓN: Despejr l mism ecució e tods ls ecucioes e igulr los segudos miemros de ls ecucioes resulttes. REDUCCIÓN: Reducir el sistem otro co meos icógits relizdo opercioes co ls ecucioes. EJEMPLO: Resolvmos u sistem de ecucioes co icógits: 0 utilizdo los tres métodos.

14 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.6. Sistems de ecucioes lieles Método de Guss. Trsformcioes pr costruir sistems equivletes: ) Si sustituimos u ecució de u sistem por el producto de est ecució por u úmero el sistem que se otiee es equivlete. ) Si sustituimos u ecució por l sum o difereci de est ecució co otr ecució del sistem el sistem que se otiee es equivlete. c) Si itercmimos dos ecucioes el sistem que se otiee es equivlete Diremos que u sistem de tres ecucioes co tres icógits es trigulr si tiee l siguiete form: y c z d y c z d c z d U método de resolució ltertivo los métodos clásicos de sustitució igulció y reducció cosiste e covertir u sistem de ecucioes lieles e otro equivlete pero trigulr: MÉTODO DE GAUSS. EJEMPLO: Resolver por el método de Guss: y z y z 6 y z 4

15 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.6. EJERCICIOS.. Resuelve y clsific los siguietes sistems de ecucioes lieles: ) z y z z y ) z y z y z y

16 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.7. Iecucioes..7.. Iecucioes de primer grdo co u icógit U iecució es u desiguldd ( ) etre dos epresioes lgerics e ls que prece u o más icógits y cuy solució es el cojuto de úmeros reles que verific l desiguldd. Ls iecucioes de primer gdo co u icógit so iecucioes que se puede covertir e u de ls siguietes iecucioes reducids: o R. co Pr reducir u iecució de primer grdo utilizmos ls siguietes regls: Si 0: Si 0:.. EJEMPLO:

17 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.7. Iecucioes..7.. Iecucioes poliómics co u icógit So iecucioes que puede reducirse u de ests forms: p ( ) 0 p( ) 0 p( ) 0 p( ) 0 dode p () es u poliomio. Pr resolver ls iecucioes poliómics seguiremos los siguietes psos: ) Simplificr l iecució de mer que e u miemro otegmos u poliomio y e el otro miemro el vlor ulo. ) Fctorizr el poliomio del primer miemro y oteer sus ríces. ) Dividir l rect rel e u cojuto de itervlos. Sore estos itervlos lizmos el sigo de cd uo de los fctores del poliomio pr oteer el sigo del poliomio totl y determir e qué itervlos se verific l iecució. EJEMPLO: 5 6

18 CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.7. Iecucioes..7.. Iecucioes rcioles co u icógit So iecucioes que puede reducirse u de ests forms: r ( ) 0 r( ) 0 r( ) 0 r( ) 0 dode r () es u frcció rciol. Pr resolver ls iecucioes rcioles podemos seguir los siguietes psos: ) Simplificr l iecució u de ls forms reducids idicds. ) Fctorizr los poliomios que compoe umerdor y deomidor. ) Co l ríces del umerdor y deomidor descompoer l rect rel e los itervlos; y lizr los sigos de cd fctor e cd itervlo pr oteer el sigo de l frcció rciol. EJEMPLO: 8 8 0

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS I.E.S. Rmó Girldo UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. POLINOMIOS Poliomios e u idetermid L epresió lgeric... 0 recie el omre de poliomio e l idetermid. Dode: es u úmero turl.,..., 0 so úmeros

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador.

Suma y resta de fracciones 1) Con el mismo denominador: Se suman o se restan los numeradores y se mantiene el denominador. Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

Potencias y Radicales

Potencias y Radicales Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució

Más detalles

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág

el blog de mate de aida. Matemáticas Aplicadas a las Ciencias Sociales I. Sistemas de ecuaciones. pág el blog de mte de id. Mtemátics Aplicds ls Ciecis Sociles I. Sistems de ecucioes. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,..., es u cojuto de "m" igulddes

Más detalles

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2

Soluciones de las actividades = (8,48 : 7,7) Página Las expresiones son: a) 2 3 / 2 b) 2 5 /3 c) x 2 / 5 + = 6. Las expresiones son: a) 4 2 Solucioes de ls ctividdes Pági. Los resultdos so ) - ) -, -, π π π 0,. Los resultdos epresdos e otció cietífic so ) ) 0, 0, 0, 0, 0, 0 (0 0 - ),0 0 (,,) 0,0 (0,,) (0-0 ) 0,, 0 0 -, 0 -. Los resultdos so

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO

APUNTES DE MATEMÁTICAS 1º BACHILLERATO APUNTES DE MATEMÁTICAS 1º BACHILLERATO 01-014 Aputes Bchillerto 01-014 Tem 0 1. TEMA 0:NÚMEROS REALES 1.1. CONJUNTOS NUMERICOS... 1.. INTERVALOS Y SEMIRECTAS.... 1.. VALOR ABSOLUTO.... 5 1.4. PROPIEDADES

Más detalles

TEMA 2: EXPRESIONES ALGEBRAICAS

TEMA 2: EXPRESIONES ALGEBRAICAS Aloso Ferádez Gliá Tem : Epresioes lgerics - - TEMA : EXRESIONES ALGEBRAIAS U poliomio es u sum idicd de moomios de distito grdo. Los poliomios se omr medite u letr múscul seguid de l vrile escrit etre

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,

Más detalles

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización:

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización: GYMNÁZIUM UDĚJOVICKÁ. MTEMÁTICS. EXPRESIONES LGERÁICS..- Técics de fctorizció: No h u orde clro, slvo u primer pso: scr fctor comú después vri técics que depederá de cuál se l epresió que tegmos. Scr fctor

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMS DE ECUCIONES U sistem de ecucioes es u cojuto de ecucioes que cotiee ls misms vribles. L solució so los vlores de ls vribles pr los cules el sistem se cumple. Resolver u sistem es ecotrr tods ls

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Matemática MATERIA. PROFESOR Vicino Anabela. Primer Año

Matemática MATERIA. PROFESOR Vicino Anabela. Primer Año MATERIA Mtemátic PROFESOR Vicio Ael Primer Año Deprtmeto Igeierí Eléctric mectroic@frsfutedur wwwfrsfutedur CAPITULO : CONJUNTOS NUMERICOS NÚMEROS NATURALES Recordemos que el cojuto de los úmeros turles

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles

Tema 1. Números Reales. Intervalos y Radicales

Tema 1. Números Reales. Intervalos y Radicales Tem. Números Reles. Itervlos y Rdicles. El cojuto de úmeros reles.... Cojutos de l rect rel. Itervlos y etoros..... Opercioes co cojutos, uió e itersecció..... Notció cietífic.... Potecis y Rdicles...

Más detalles

MATERIA. Primer Año UNIVERSIDAD TECNOLÓGICA NACIONAL. FACULTAD REGIONAL SANTA FE

MATERIA. Primer Año UNIVERSIDAD TECNOLÓGICA NACIONAL. FACULTAD REGIONAL SANTA FE MATERIA Mtemátic PROFESOR Vicio Ael Primer Año Deprtmeto Igeierí Eléctric mectroic@frsf.ut.edu.r www.frsf.ut.edu.r CAPITULO : CONJUNTOS NUMERICOS NÚMEROS NATURALES Recordemos que el cojuto de los úmeros

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4. Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz

Más detalles

Matemáticas Aplicadas a la Ciencias Sociales II SISTEMAS DE ECUACIONES. , a toda ecuación que pueda escribirse de la forma: ...

Matemáticas Aplicadas a la Ciencias Sociales II SISTEMAS DE ECUACIONES. , a toda ecuación que pueda escribirse de la forma: ... Mtemátics Aplicds l Ciecis Sociles II SISTEMAS DE ECUACIONES Ecució liel Se llm ecució liel co icógits,,,,,, tod ecució que pued escriirse de l form: + + + + = dode,,,,, so úmeros reles El cojuto de úmeros

Más detalles

UNIDAD 0.- Repaso (parte I)

UNIDAD 0.- Repaso (parte I) UNIDAD.- Repso prte I). NUMROS NATURALS Y NTROS Co los úmeros turles cotmos los elemetos de u cojuto úmero crdil). O ie epresmos l posició u orde que ocup u elemeto e u cojuto ordil). Se represet por N

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

Operaciones con números fraccionarios

Operaciones con números fraccionarios Opercioes co úmeros frcciorios ADICIÓN EN NÚMEROS FRACCIONARIOS. De igul deomidor Pr efectur l sum o dició de dos o más frccioes co igul deomidor, se sum los umerdores y se escrie el mismo deomidor. Vemos

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS: Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico

Más detalles

Ejercicios sobre Exponentes

Ejercicios sobre Exponentes EJERCICIOS SOBRE EXPONENTES. LEYES DE LOS EXPONENTES. Eftizr e l defiició de l -ési poteci de. = = (-) = ( ) (-) (-) (-) (-) Oserve que =.. veces LEYES DE EXPONENTES: Si, si, so úeros reles tles que ls

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

UNIDAD 3.- ECUACIONES Y SISTEMAS (tema 3 del libro)

UNIDAD 3.- ECUACIONES Y SISTEMAS (tema 3 del libro) UNIDAD.- CUACIONS Y SISTMAS (tem del libro). CUACIONS D º GRADO. RSOLUCIÓN U idetidd es u iguldd literl que se verific pr culquier vlor umérico que se dé ls letrs que etr e l iguldd. jemplo: ( ) es u idetidd

Más detalles

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8 º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Seminario Universitario de Ingreso Números reales

Seminario Universitario de Ingreso Números reales Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

Colegio Los Robles Equipo Técnico de Matemáticas. Matemáticas 2º ESO

Colegio Los Robles Equipo Técnico de Matemáticas. Matemáticas 2º ESO Colegio Los Roles Equipo Técico de Mtemátics Resume de OF Mtemátics º ESO Ídice I. Efectur opercioes comids co úmeros rcioles (eteros frcciorios). - Hst co dos iveles de prétesis. II. Efectur opercioes

Más detalles

Q, entonces b equivale a un radical. Es decir:

Q, entonces b equivale a un radical. Es decir: UNIDAD : POTENCIACIÓN, RADICACIÓN Y LOGARITMACIÓN. POTENCIACIÓN L potecició se utili pr epresr u producto de fctores igules. Es u operció teátic etre dos térios deoidos se epoete... Eleetos de l potecició

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por co dos opercioes

Más detalles

CAPÍTULO 3 Función Exponencial y Función Logarítmica. Por su uso e importancia, es necesario revisar las propiedades de las potencias, que se resumen

CAPÍTULO 3 Función Exponencial y Función Logarítmica. Por su uso e importancia, es necesario revisar las propiedades de las potencias, que se resumen CAPÍTULO 3 Fució Epoecil Fució Logrític 3.1) Repso de propieddes de ls potecis Por su uso e iportci, es ecesrio revisr ls propieddes de ls potecis, que se resue cotiució. ( ) 1 1 0 3.) Fució Epoecil Defiició

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por R co dos opercioes

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo por R co dos opercioes

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES I.E.P - YANAPAY AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El sistem de los úmeros reles es u cojuto o vcío deotdo

Más detalles

Operaciones con fracciones

Operaciones con fracciones lsmtemtics.eu Pedro Cstro Orteg mteriles de mtemátics Uidd. Números reles. Logritmos Opercioes co frccioes Mtemátics I - º de Bchillerto Operció Sum c d + c + d d Rest (difereci) c d c d d Ejemplo + +

Más detalles

4º ESO Opción A ARITMÉTICA Esquema resumen

4º ESO Opción A ARITMÉTICA Esquema resumen 4º ESO Opció A ARITMÉTICA Esquem resume NÚMEROS Números Nturles ( N ): so los que sirve pr cotr. So,, Números Eteros ( Z ): so los turles y sus simétricos egtivos. So -, -, -, 0,, 4 Números Rcioles ( Q

Más detalles

1.1 Secuencia de las operaciones

1.1 Secuencia de las operaciones 1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,

Más detalles

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO

INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: Si POTENCIA DE UN NÚMERO N y R, etoces, es igul l producto de veces el úmero rel

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x) Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO

Más detalles

Multiplicación y división con radicales

Multiplicación y división con radicales FAL-0_MAAL_MultipliccióDivisió Versió: Septiemre 0 Revisor: Sdr Elvi Pérez Multiplicció divisió co rdicles Por: Sdr Elvi Pérez E l lectur Los rdicles su simplificció, se relizó el cmio de u epresió rdicl

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

TEMA Nº 1: NÚMEROS REALES

TEMA Nº 1: NÚMEROS REALES Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES.

Más detalles

a b, siempre que c > 0.

a b, siempre que c > 0. DESIGUALDES E INECUACIONES.INECUACIONES SIN VALOR ABSOLUTO AXIOMAS DE ORDEN DE LOS NUMEROS REALES. Si y so dos úmeros reles emplemos: NOTACION SIGNIFICADO es meor ó igul es myor ó igul < es meor > es myor

Más detalles

PROPIEDAD FUNDAMENTAL DE LOS RADICALES

PROPIEDAD FUNDAMENTAL DE LOS RADICALES Mtemátics Aplicds ls Ciecis Sociles I DEFINICIÓN DE RAÍZ ENÉSIMA Llmremos ríz eésim de "" y lo represetremos sí que cumpl l codició de que elevdo "" se igul "": x / x Al úmero "" se le llm ídice de l ríz.

Más detalles

GUÍA PRÁCTICA PARA RESOLUCIÓN DE ECUACIONES Y SISTEMAS

GUÍA PRÁCTICA PARA RESOLUCIÓN DE ECUACIONES Y SISTEMAS MATEMÁTICAS Col L Presetció Ecucioes Sistems Bchillerto GUÍA PRÁCTICA PARA RESOLUCIÓN DE ECUACIONES Y SISTEMAS. Ecucioes Poliómics Teorem Fudmetl del Álgebr: Todo poliomio de grdo posee ríces (solucioes)

Más detalles

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1

Más detalles

(C) 2017 Raúl González

(C) 2017 Raúl González Tem 1 Repso de Coceptos Números Reles & Álger MATEMATICAS I (C) 017 Rúl Gozález Mtemátics 1º - CCTT Tem 1: Números y Álger 1.- Números Reles 1.1.- Cojutos Numéricos 1..- Represetció sore l rect rel 1..-

Más detalles

BLOQUE 2: NÚMEROS Y ÁLGEBRA

BLOQUE 2: NÚMEROS Y ÁLGEBRA MATEMÁTICAS ACADÉMICAS ºESO IES AGRA DE RAÍCES DEPARTAMENTO DE MATEMÁTICAS BLOQUE : NÚMEROS Y ÁLGEBRA Mtemátics Aplicds ls Eseñzs Acdémics.ºESO (IES Agr de Ríces) ------Pági .. Números Rcioles. U Frcció

Más detalles

Tema 0: Repaso de Conceptos

Tema 0: Repaso de Conceptos Mtemátics 1º Bchillerto Tem 0: Repso de Coceptos 1.- Números Reles. 1.1.- Cojutos Numéricos 1..- Itervlos y semirrects. 1..-Vlor Asoluto. 1.4.- Propieddes de ls potecis..- Idetiddes Notles..- Rdicles..1.-

Más detalles

FICHA DE REFUERZO EDUCATIVO CURSO: 4º ÁREA: Matemáticas académicas PROFESOES: María del Carmen de Andrés Fernández

FICHA DE REFUERZO EDUCATIVO CURSO: 4º ÁREA: Matemáticas académicas PROFESOES: María del Carmen de Andrés Fernández FICHA DE REFUERZO EDUCATIVO CURSO: º ÁREA: Mteátics cdéics PROFESOES: Mrí del Cre de Adrés Ferádez L relizció de est hoj se vlorrá u % de l ot de l recuperció del ee de septiere. TRABAJO VERANO MATEMÁTICAS

Más detalles

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes _ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

!!!""#""!!! !!!""#""!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2,

!!!#!!! !!!#!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2, Tem Nº ritmétic y álgebr! Obté co l clculdor:, y /y,0 bb ± /y -,0 cc [(--- ---] y /y, dd y ± /y 0,0 ee y /y, f y ± /y 0, gg 0,0 -/ 0,0 00 y ±,00 hh 0, 00 000 /y y ±,0 Epres e form epoecil: dd bb ee cc

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto TEMA SISTEMAS DE ECUACIONES LINEALES. ECUACIÓN LINEAL.. DEINICIÓN: U ecució liel es u ecució polióic de grdo uo co u o vris icógits:.. coeficietes

Más detalles

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD

TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD TEMA 4. LOGARITMOS. REPASO DE POTENCIAS - Poteci de epoete turl: = ( veces) - Poteci de epoete ulo: 0 = - Poteci de epoete egtivo: - = / - Poteci de epoete frcciorio: Propieddes: - m = +m - : m = -m -

Más detalles

Área de Matemáticas. INTERVALOS Un intervalo es un subconjunto de números reales, existen los siguientes tipos de intervalos INTERVALOS CERRADO

Área de Matemáticas. INTERVALOS Un intervalo es un subconjunto de números reales, existen los siguientes tipos de intervalos INTERVALOS CERRADO Istitució Eductiv S Vicete de Púl Cieci, Tecologí y Sociedd e Armoí Áre de Mtemátics AREA: Mtemátics PROFESOR: Crlos A. Márquez Ferádez Mil: kmrfer@gmil.com Grdo: GUIA Nº TEMA: INTERVALOS Y DESIGUALDADES

Más detalles

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA Fuete: PreUiversitrio Pedro de Vldivi Guí Práctic N RAÍCES FUNCIÓN RAÍZ CUADRADA DEFINICIÓN : Si es u etero pr positivo es u rel o egtivo, etoces es el úico rel, o egtivo, tl que = = =, 0 DEFINICIÓN :

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el log de mte de id. Mtemátics plicds ls ciecis sociles I: NÚMEROS REALES pág. INTERVALOS Y SEMIRRECTAS. L ordeció de úmeros permite defiir lguos cojutos de úmeros que tiee u represetció geométric e l

Más detalles

1º Bachillerato Matemáticas I Tema 1:Números Reales Ana Pascua García 1.1 Clasificación

1º Bachillerato Matemáticas I Tema 1:Números Reales Ana Pascua García 1.1 Clasificación º Bchillerto Mtemátics I Tem :Números Reles A Pscu Grcí. Clsificció El cojuto de los úmeros reles, R, es el formdo por todos los úmeros rcioles todos los irrcioles: R Q U I N Ú RACIONALES M E R O S R E

Más detalles

( ) ( )( ) ( ) Halla el valor numérico de los siguientes polinomios para los valores indicados.

( ) ( )( ) ( ) Halla el valor numérico de los siguientes polinomios para los valores indicados. Colegio L Cocepció EJERCICIOS REPASO PARA SEPTIEMBRE º ESO NOMBRE.- Ddos los poliomios R Q P Clcul P-QR R.P.- Clcul 9 d c.- Hll el vlor umérico de los siguietes poliomios pr los vlores idicdos. e P.- Epres

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

TEMA 8: LÍMITES Y CONTINUIDAD

TEMA 8: LÍMITES Y CONTINUIDAD 1. LÍMITE DE UNA FUNCIÓN 1.1. Límite fiito de u fució TEMA 8: LÍMITES Y CONTINUIDAD Decimos que: lim f ( x) L, si x / x ' x f ( x') L x Decimos que: lim f ( x) L, si x / x ' x f ( x') L x 1.2. Límite ifiito

Más detalles

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM Fudció Eductiv de Desrrollo Socil Cetro Itegrl Empresril por Mdurez Lbortorio Le deteidmete, ls propieddes de l potecició Si N es decir Ejemplos: y R, etoces... veces 6 PROPIEDADES DE LA POTENCIACION.

Más detalles

4ºB ESO Capítulo 2: Potencias y raíces

4ºB ESO Capítulo 2: Potencias y raíces ºB ESO Cpítulo : Potecis y ríces LirosMreVerde.tk www.putesmreverde.org.es Autor: JOSE ANTONIO ENCABO DE LUCAS Revisor: Nieves Zusti Ilustrcioes: Bco de Imágees de INTEF Potecis y ríces. ºB de ESO Ídice.

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA Olimpid Costrricese de Mtemátics II Elimitori 011 Curso preprtorio Nivel B Elbordo por: Christopher Trejos Cstillo ÁLGEBRA Iicimos demostrdo dos resultdos que puede ser importtes pr resolver problems olímpicos.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTES DE ECUCINES INEES Ecucioes lieles. Se llm ecució liel co icógits tod ecució que pued escriirse de l form: dode so vriles y... so úmeros reles siedo i el coeficiete de l vrile i y el térmio idepediete

Más detalles

2. CONJUNTOS NUMÉRICOS

2. CONJUNTOS NUMÉRICOS 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:

Más detalles

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma:

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma: CRISTIN ROND HERNÁNDEZ Sistes de ecucioes SISTEMS DE ECUCIONES. Sistes de ecucioes lieles. Epresió tricil de u siste. Clsiicció de sistes de ecucioes. Teore de Rouché-Fröeius. Discusió de sistes 6. Método

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA FUNCIÓN DERIVADA Cosideremos, de etrd, u fució f cotiu, Ituitivmete diremos que l fució f es derivble si es de vrició suve, esto es, que o preset cmbios bruscos como picos o cmbios vertigiosos pediete

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

a 1. x 1 + a 2 x a n.x n =

a 1. x 1 + a 2 x a n.x n = Estudios J.Coch ( fuddo e ) ESO, BACHILLERATO y UNIVERSIDAD Deprteto Bchillerto MATEMATICAS º BACHILLERATO Profesores Jvier Coch y Riro roilá TEMA SISTEMAS DE ECUACIONES LINEALES. Mteátics II º Bchillerto

Más detalles

Liceo Marta Donoso Espejo Raíces para Terceros

Liceo Marta Donoso Espejo Raíces para Terceros . Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos

Más detalles

Elaboración: M. A. E. Roberto Mercado Dorantes e Ing. Juan M. Gómez Tagle Fdez. de Córdova.

Elaboración: M. A. E. Roberto Mercado Dorantes e Ing. Juan M. Gómez Tagle Fdez. de Córdova. PLANTEL IGNACIO RAMÌREZ CALZADA Progrm Istituciol de Tutorí Acdémic Escuel Preprtori de l Uiversidd Autóom del Estdo de Méico ACTIVIDAD. GUÌA DE ÀLGEBRA PRIMERA FASE Elorció: M. A. E. Roerto Mercdo Dortes

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8 Repúlic Bolivri de Veezuel Miisterio de l Defes Uiversidd Nciol Eperietl Politécic de l Fuerz Ard Núcleo Crcs Curso de Iducció Uiversitri CIU Cátedr: Rzoieto Mteático EXPRESIONES ALGEBRAICAS RACIONALES

Más detalles

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES TRICES INTRODUCCIÓN Observemos el siguiete ejemplo: Tbl de ots de tres lumos e el primer bimestre: ------------------ temátic Físic Químic Biologí 6 4 5 8 toio 5 7 5 5 Betriz 5 6 7 4 L tbl terior os permite

Más detalles

Base positiva: resultado siempre positivo. Base negativa y exponente par: resultado positivo. Base negativa y exponente impar: resultado negativo

Base positiva: resultado siempre positivo. Base negativa y exponente par: resultado positivo. Base negativa y exponente impar: resultado negativo CAPÍTULO : POTENCIAS Y RAÍCES. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES.. Potecis de epoete turl. Recuerd que: Ddo, u úmero culquier, y, u úmero turl, l poteci es el producto del úmero por sí mismo veces

Más detalles

Operaciones con fracciones

Operaciones con fracciones Uidd. Números reles lsmtemtics.eu Pedro Cstro Orteg mteriles de mtemátics Opercioes co rccioes Mtemátics I - º de Bchillerto Operció Sum c d c d d Rest (diereci) c d c d d Ejemplo 5 5 5 5 5 7 7 7 7 7 OJO!

Más detalles