Parámetro. Como en la elipse se cumplen las siguientes condiciones con respecto a las rectas tangentes.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Parámetro. Como en la elipse se cumplen las siguientes condiciones con respecto a las rectas tangentes."

Transcripción

1 LA ARÁBOLA: "la parábola es el lugar geomérico e los punos el plano que equiisan e un puno fijo llamao foco y una reca llamaa irecriz. Elemenos paraméricos: Llamamos así a los res elemenos que inervienen irecamene en la eerminación e su parámero: elemeno ao, en magniu y posición, con el que quea eerminaa una parábola.. oco : puno e angencia e la esfera (angene al cono) con el plano secane.. Direcriz : reca inersección el plano X con el plano secane. erpenicular al eje e simería.. érice A: érice exremo el eje, y por ano e la curva. Se encuenra en el puno meio enre el foco y la iecriz. EOREA DE DANDELIN EN LA ARÁBOLA Direcriz Eje érice oco arámero ELEENOS QUE INERIENEN -lano secane a oas las generarices el cono menos a una e ellas al que es paralelo. -arábola: Curva plana y abiera e una sóla rama. -Esfera angene: al cono e revolución y al plano secane. -Raio ecores: segmenos que paren el foco a un puno pereneciene a la parábola y e ese perpenicular a la irecriz. -oco: puno e angencia e la esfera con el plano secane. -lano X: lanos que pasan por (conienen) los punos (circunferencia) e angencia e la esfera angene con el cono y epl plano secane. lano Secane -Direcriz: Reca inersección el planos X con el plano secane. -Eje: Reca que pasa por el foco y se exiene enre los os vérices, y (impropio, en el infinio). Es eje e simería e la curva y es perpenicular a la irecriz. lano X Eje oco Circunferencia rincipal Direcriz = Cir. ocal érice arámero Como en la elipse se cumplen las siguienes coniciones con respeco a las recas angenes. DIRECRIZ (Cir. ocal): Es una reca, perpenicular al eje e la parábola que se encuenra a la misma isancia el vérice que ese el foco. La irecriz es la circunferencia focal e la parábola.es el Lugar Geomérico e los punos siméricos el foco, respeco e las recas angenes a la elipse. La circunferencia principal (C): En la parábola es la reca paralela a la irecriz que pasa por el vérice. Es el Lugar Geomérico e los punos e inersección e las angenes a la elipse con las perpeniculares razaas ese el foco a caa una e esas angenes. O ambién, el lugar geomérico e las proyecciones (perpeniculares) e los focos sobre las recas angenes a la cónica íulo e la lámina La arábola: unamenos y elemenos.

2 razao e la parábola ao el foco y la irecriz: º- razamos una paralela a la irecriz a una isancia. Con cenro en razamos un arco e raio que cora a la paralela en os punos perenecienes a la parábola. º- Repeimos ese proceimieno anas veces como pares e punos siméricos eseemos obener. º- or úlimo unimos los punos obenios para obener la parábola. razao e la parábola ao el foco y la irecriz (oro méoo): º- Elegimos un puno () arbirario sobre la irecriz y razamos el segmeno. º- razamos la meiariz el segmeno. º- A parir e razamos una perpenicular a la irecriz. Done esa cora a la meiariz obenemos un puno e la parábola. razao e la parábola ao el eje e simería, el vérice y un puno e la misma: eoo e los haces proyecivos irecriz º- razamos una perpenicular al eje e simería por (cir. rincipal.). Hallamos y ese y razamos perpeniculares a la cir. principal enconrano y. Diviimos los segmenos y en pares iguales (5 en ese caso) y hacemos lo mismo con los segmenos y. º- Unimos con y a parir e la ª ivisión el segmeno razamos la inersección e ambas recas es un puno pereneciene a la parábola. º- Repeimos la operación con el reso e ivisiones e los segmenos. º- razamos la parábola. razao e la parábola ao el foco y el vérice: razao por envolvenes Esa operación la repeimos anas veces como punos eseemos. oemos hacer uso e las propieaes siméricas e la parábola para consruir la ora mia simérica y asi obener el oble e punos º- razamos la circunferencia principal (perpenicular por el vérice). arieno el foco razamos una reca que cora a la cir. ppal. en un puno a parir el cual razamos una perpenicular a la reca p. º- Repeimos la operación. º- Las angenes a la parábola van escribieno la curva. Con ese méoo no conseguimos punos exacos e la curva sino una aproximación a su forma. p íulo e la lámina La arábola: Consrucciones.

3 razao e la parábola ao el foco y la irecriz: p irecriz Esa consrucción se basa en la efinición e la parábola, como el lugar geomérico e los cenros e circunferencia que pasan por el foco, y son angenes a la circunferencia focal. º- razamos la irecriz y la reca- cir. principal. arieno el foco razamos una reca que cora a la cir. principal en y a la irecriz en. º- A parir e razamos una perpenicular a la reca y a parir e una perpenicular a la irecriz. La inersección e ambas perpeniculares es un puno pereneciene a la parábola. º- Repeimos esos pasos anas veces como punos e la parábola necesiemos. º- razamos la parábola. razao e la parábola aos el foco y el vérice. méoo e las arjeas arjea arjea Ese es un méoo rápio y limpio, erivao e oros méoos, para el cual necesiamos os rozos e papel que conengan ángulos recos. Uno e ellos nos imiar, sin rayar el papel, el méoo el razao por envolvenes ienras que con el oro razaremos perpeniculares a la circunferenciaq principal y/o irecriz º- razamos la circunferencia prinmcipal y a parir el vérice iviimos esa reca en pares iguales. El número e pares e punos siméricos que consigamos e la parábola será la mia e pares en las que hayamos iviio la circunferencia principal. º- Con la arjea n alineamos un lao con el foco consiguieno que su esquina oque a la circunferencia principal en el primer puno. Con la argea n alineamos un lao con la cir. principal ejano su esquina (ángulo reco) en el puno que marca el oble que la esquina e la ora arjea, obenieno con el oro lao la perpenicular a esa. arcamos el puno one ambos laos e las arjeas coincien. º- Repeimos la operación anas veces como punos eseemos. EN ESA ILUSRACIÓN SOLO SE UESRA UNA DE LAS IADES SIÉRICAS DE LA ARÁBOLA arjea arjea arjea arjea íulo e la lámina La arábola: Consrucciones

4 C irecriz C Como en la elipse se cumplen las siguienes coniciones DIRECRIZ (Cir. ocal): Es una reca, perpenicular al eje e la parábola que se encuenra a la misma isancia el vérice que ese el foco. La irecriz es la circunferencia focal e la parábola.es el Lugar Geomérico e los punos siméricos el foco, respeco e las recas angenes a la elipse. La circunferencia principal (C): En la parábola es la reca paralela a la irecriz que pasa por el vérice. Es el Lugar Geomérico e los punos e inersección e las angenes a la elipse con las perpeniculares razaas ese el foco a caa una e esas angenes. O ambién, el lugar geomérico e las proyecciones (perpeniculares) e los focos sobre las recas angenes a la cónica razao e la angene y la normal e la parábola aa la parábola, la irecriz y el puno e angencia: º- razamos los raio vecores y N (N es una perpenicular a la irecriz por el puno ). º- razamos la bisecriz el ángulo que esos proucen. º- La bisecriz es la angene a la parábola por, La perpenicular a la angene es la normal. n N N razao e la angene a la parábola aa la parábola ese un puno exerior, aa la irecriz y el foco (y por lo ano la parábola): º- Con cenroen razamos la circunferencia e raio obenieno sobre la irecriz los punos y º- La meiariz el segmeno es la angene a la parábola.razano una perpenicular por a la irecriz obenemos sobre la parábola el puno e angencia. º-La meiariz el segmeno es la ora angene a la parábola.razano una perpenicular por a la irecriz obenemos sobre la parábola el puno e angencia. razao e la angene a la parábola aa la aa la irección e la reca angene. aa la irecriz y el foco (y por lo ano la parábola): º- razamos una perpenicular a por el oco. esa cora a la irecriz en º- La meiariz el segmeno es la angene a la parábola. razano una perpenicular a la irecriz por el puno obenemos sobre la parábola el puno e angencia. íulo e la lámina La arábola: angencias

5 angenes a una parábola ese un puno exerior : º- razamos ese os recas secanes a la parábola. Esas proucen cuaro punos e inersección. º- Se razan os recas unieno los cuaro punos e inersección os a os, coránose esas en oro puno. º- razamos las iagonales el cuariláero inscrio en la parábola. º- Dese el puno e inersección el seguno par e recas razamos una reca que pasa por el puno e inersección e las iagonales. Obenemos sobre la parábola los os punos e angencia buscaos. 5º- razamos las recas angenes. 5 angenes a una elipse en una irección aa: º- razamos os paralelas a la irección aa secanes a la parábola. Esas proucen cuaro punos e inersección. º- Se razan os recas unieno los cuaro punos e inersección os a os, coránose esas en oro puno. º- razamos las iagonales el cuariláero inscrio en la parábola. º- Dese el puno e inersección el seguno par e recas razamos una reca que pasa por el puno e inersección e las iagonales. Obenemos sobre la parábola los os punos e angencia buscaos. 5º- razamos las recas angenes. 5 íulo e la lámina La parábola: angencias por homología con la circunferencia

10Soluciones a los ejercicios y problemas PÁGINA 217

10Soluciones a los ejercicios y problemas PÁGINA 217 PÁGIN 217 Pág 1 P RCTIC 1 a) Represena en papel cuadriculado la figura H 1 obenida a parir de H mediane la raslación del vecor 1 (3, 2) b) Dibuja la figura H 2 ransformada de H 1 mediane la raslación 2

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12 Tema Problemas Méricos.- Inroducción..- Disancias...- Enre dos punos..- Enre puno y reca...- Enre puno y plano...- Enre dos recas..5.- Enre reca y plano..6.- Enre dos planos..- Ángulos..- Enre dos recas...-

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES Tema 47. Generación de curvas por envolvenes. TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES. Inroducción. Una curva o supericie es envolvene de un conjuno de curvas o supericies si es angene en cada puno

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos Geomería del espacio ecuaciones de recas planos; posiciones relaivas MATEMÁTICAS II TEMA Ecuaciones de recas planos en el espacio. Posiciones relaivas Problemas propuesos Ecuaciones de recas planos. Halla,

Más detalles

Examen de Matemáticas II 2º de Bachillerato

Examen de Matemáticas II 2º de Bachillerato º Bachillerao - Maemáicas II 1. Calcular el siguiene límie: Eamen e Maemáicas II º e Bachillerao 1 cos lim 0 e 1. Encuenra el puno e la reca y, que cumpla que la suma e los cuaraos e sus coorenaas sea

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

GUÍA DE EJERCICIOS II

GUÍA DE EJERCICIOS II Faculad de Ingeniería UCV Álgebra ineal Geomería Analíica Ciclo Básico GUÍA DE Encuenre las ecuaciones de la reca que a) iene vecor direcor v (,, ) pasa por el puno P ( 4, 5, ) b) pasa por los punos A

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

22. CURVAS CÓNICAS-ELIPSE

22. CURVAS CÓNICAS-ELIPSE 22. CURVAS CÓNICAS-ELIPSE 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

Dibujo Técnico Curvas cónicas

Dibujo Técnico Curvas cónicas 23. CURVAS CÓNICAS 23.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor

Más detalles

CAPÍTULO 9: POTENCIA E INVERSIÓN (II)

CAPÍTULO 9: POTENCIA E INVERSIÓN (II) CAÍTULO 9: OTENCIA E INVERSIÓN (II) Dane Guerrero-Chanduví iura, 015 FACULTAD DE INGENIERÍA Área Deparamenal de Ingeniería Indusrial y de Sisemas CAÍTULO 9: OTENCIA E INVERSIÓN (II) Esa obra esá bajo una

Más detalles

( ) ( 15 50) 0

( ) ( 15 50) 0 PRUE DE CCESO L UNIVERSIDD JUNIO 7 OPCION ) Deermina dos números reales posiivos sabiendo que su suma es y que el produco de sus cuadrados es máximo. Sean x e y los números reales que suman y P x y odos

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

CURVAS CÓNICAS La elipse. La hipérbola y la parábola. Tangencias y puntos de intersección con una recta. Otros problemas de cónicas TEMA7 LA ELIPSE

CURVAS CÓNICAS La elipse. La hipérbola y la parábola. Tangencias y puntos de intersección con una recta. Otros problemas de cónicas TEMA7 LA ELIPSE URVS ÓS La elipse La hipébola y la paábola angencias y punos e inesección con una eca os poblemas e cónicas E7 UJ GEÉR bjeivos y oienaciones meoológicas El cuso pasao esuiamos las popieaes e esas cuvas,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

INTEGRALES Prueba de Evaluación Continua Grupo A1 10-XI Enunciar y demostrar el Teorema Fundamental del Cálculo Integral.

INTEGRALES Prueba de Evaluación Continua Grupo A1 10-XI Enunciar y demostrar el Teorema Fundamental del Cálculo Integral. INTEGRALES Pruea de Evaluación Coninua Grupo A -XI-.- Enunciar y demosrar el Teorema Fundamenal del Cálculo Inegral. Ver eoría de la maeria..- Calcular las derivadas de las siguienes funciones: a) F()

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDADES PÚBLICAS DE LA COUNIDAD DE ADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 8-9 (Sepiebre) ATERIA: ATEÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El aluno conesará a los

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDDES PÚLICS DE L COUNIDD DE DRID PRUET DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) Curso 8-9 (Sepiebre) TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El aluno conesará a los cuaro ejercicios de

Más detalles

Gráficas de curvas trigonométricas

Gráficas de curvas trigonométricas Capíulo 4 Gráficas de curvas rigonoméricas La definición de las razones rigonoméricas, como funciones del ángulo, lleva implicado el esudio de las funciones rigonoméricas desde el puno de visa de las funciones

Más detalles

Calcular el área del paralelogramo si las diagonales son los vectores 2U V

Calcular el área del paralelogramo si las diagonales son los vectores 2U V x + y z 3 1. Hallar la disancia d de la reca L: = = al plano π que coniene al riángulo de vérices A(, 1, 4), 1 1 4 (1,, -8) y C(, -3, 4) Ax + y + Cz + D Aplicando la disancia de un puno a un plano: d =

Más detalles

Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano.

Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano. CURVAS CÓNICAS Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano. Secciones de un cono Supongamos un cono de revolución de dos ramas; según

Más detalles

22 CURVAS CÓNICAS- HIPÉRBOLAS

22 CURVAS CÓNICAS- HIPÉRBOLAS 22 CURVAS CÓNICAS- HIPÉRBOLAS 22.1 Características generales. La hipérbola se obtiene al cortar la superficie cónica por un plano paralelo al eje que corta las dos hojas de la cónica. 22.2 Focos y directrices.

Más detalles

B23 Curvas cónicas Curvas cónicas

B23 Curvas cónicas Curvas cónicas Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección

Más detalles

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 4. GEOMETRÍA CON LA FX 9860G SLIM DIVISIÓN DIDÁCTICA MAURICIO CONTRERAS MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA Enero/Febrero 008 Inroducción 1.

Más detalles

Geometría Vectorial, Afín y Euclídea

Geometría Vectorial, Afín y Euclídea Geomería Vecorial, Afín Euclídea PROBLEMAS CLASIFICADOS DE ESPACIOS VECTORIALES, AFIN Y EU- CLIDEO PROPUESTOS EN LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD. VECTORES. COMBINACIONES LINEALES. DEPENDENCIA LINEAL.

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica:

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica: Hoj de Problems Geomerí V 6. lsificr l cónic: f hllr su ecución reducid. Demosrción. Formremos el discriminne: / ; / como se r de un prábol rel. Hllremos los invrines de l cónic: l ecución reducid será

Más detalles

2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS

2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos a dos; tiene dos ejes

Más detalles

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x)

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x) Auoevaluación Cálculo Inegral Ejercicio 6. Calcular las siguienes inegrales indefinidas: ln d d ln( + d (a (b (c g cos + e d e + (d (e e + e d (f d cos( sen (g sen ( d (h ( + sen( d (i cos( cos ( + d (j

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N. Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos

Más detalles

S I S T E MAS DE REPRESENTACIÓN 20

S I S T E MAS DE REPRESENTACIÓN 20 S I S E MS DE RERESENCIÓN 20 R E C N GE N E U N CIR CU NF E R E N CI 1. raz ar una reca angene a una circunferencia or un uno obre ella. E l radio de la circunferencia que a a or e erendicular a la reca

Más detalles

CAPÍTULO 1 LA FUNCIÓN DERIVADA

CAPÍTULO 1 LA FUNCIÓN DERIVADA CAPÍTULO LA FUNCIÓN DERIVADA. LA DERIVADA En el fascículo anerior uilizase el concepo de la razón de cambio a ravés de problemas o siuaciones de la vida real e ilusrase gráficamene 0 o, dando una inerpreación

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

DERIVADAS. Lim. y Lim. y Lim

DERIVADAS. Lim. y Lim. y Lim DERIVADAS En maemáicas la erivaa e una función es uno e los os concepos cenrales el cálculo. El oro concepo es la anierivaa o inegral; ambos concepos esán relacionaos por el eorema funamenal el cálculo.

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante MATEMÁTICAS II Examen del /09/006 Soluciones Imporane Las calificaciones se harán públicas en la página web de la asignaura y en el ablón de anuncios del Dpo. de Méodos Cuaniaivos en Economía y Gesión,

Más detalles

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es SECCIÓN.4 Vecores angenes vecores normales 859 En la sección precedene se vio que el vecor velocidad apuna en la dirección del movimieno. Esa observación lleva a la definición siguiene, que es válida para

Más detalles

CURVAS TÉCNICAS CURVAS CÓNICAS

CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos

Más detalles

Sesión 14. Unidad IX La Parábola. A. Ecuación de segundo grado. B. Identificación de sus elementos.

Sesión 14. Unidad IX La Parábola. A. Ecuación de segundo grado. B. Identificación de sus elementos. Sesión 14 Unidad IX La Parábola. A. Ecuación de segundo grado. + 4 3+ 5 1 = 1.- La ecuación general representa una: Hipérbola B) Eponencial C) Elipse Recta Parábola.- De las siguientes ecuaciones señala

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

C O N I C A S. Elipse

C O N I C A S. Elipse C O N I C A S Elipse El primer matemático que inició el estudio de las cónicas fue Apolonio de Perga (6 190 a.c), que enseñó matemáticas en las universidades de Alejandría y Pérgamo. Su estudio lo plamó

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

IES Fernando de Herrera Curso 2013 / 14 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE:

IES Fernando de Herrera Curso 2013 / 14 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE: IES ernando de Herrera Curso / Primer rimesre - Primer eamen º Bach CCSS NOMBRE: ) Clasifique el siguiene sisema de ecuaciones resuélvalo, si es posible. Además, si uviera más de una solución, diga dos

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA Funciones Vecoriales Insiuo Poliécnico Nacional 1. Para cada función vecorial, calcule r' ( r ''( 1.1 r( (sin cos i cos j sink (Res r' ( cosi sin j cosk 1. r( (cos i e j (1/ k (Res. r'( sin i e j (1/ k.

Más detalles

Elipse. Circunferencia. Hipérbola. Parábola C O N I C A S

Elipse. Circunferencia. Hipérbola. Parábola C O N I C A S Elipse Circunferencia V Hipérbola Parábola C O N I C A S El primer matemático que inició el estudio de las cónicas fue Apolonio de Perga (262 190 a.c), que enseñó matemáticas en las universidades de Alejandría

Más detalles

8 x 2 + y 2 2y + 1 = 16 + x 2 + y 2 + 2y x + ( y+ 1) 8 (4y + 16) 2 = 64[x 2 + (y + 1) 2 ] y y = 64x y y 8

8 x 2 + y 2 2y + 1 = 16 + x 2 + y 2 + 2y x + ( y+ 1) 8 (4y + 16) 2 = 64[x 2 + (y + 1) 2 ] y y = 64x y y 8 De una elipse conocemos sus focos (0, ) y ' (0, ) y su constante k =. Determina su ecuación. Si P (, y) es un punto de la elipse, entonces: dist (P, ) + dist (P, ' ) = a, es decir: + ( y ) + + ( y+ ) =

Más detalles

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO EMA 4. ANGENCIAS Depaameno de Aes lásicas y Dibujo EMA 4. ANGENCIAS. Los OBJEIVOS geneales que se peende logen los alumnos al acaba el ema son: Conoce las popiedades en las que

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

9 Lugares geométricos. Cónicas

9 Lugares geométricos. Cónicas 9 Lugares geométricos. Cónicas Página Dónde se situará el depósito? La solución es P = (0, ) Página Hazlo tú. Mediatriz: y + = 0 Página 7 Hazlo tú. B : 7 7y = 0 B : 7 7y = 0 Hazlo tú. Es una recta, y =

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 A) Hallar la pendiene de la reca secane a la parábola y + 8,cuyas abscisas de los punos de inersección son 1 y 4 f ( ) f ( a) B) Dada la siguiene epresión

Más detalles

TANGENCIAS ENTRE CIRCUNFERENCIAS

TANGENCIAS ENTRE CIRCUNFERENCIAS 1. Cicunfeencias tangentes EXERIORES a una cicunfeencia a la dada y ente ellas. Dada la cicunfeencia debemos dibuja una cicunfeencia que sea tangente a la pimea. Después vamos a dibuja ota cicunfeencia

Más detalles

Fonaments Matemàtics

Fonaments Matemàtics Fonaments Matemàtics Grau en Engineria de la Construcció Cónicas. Denición Dadas una recta l un punto F no situado en l el conjunto de puntos P equidistantes de F de l se denomina parábola. La recta l

Más detalles

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial TRABAJO PRÁCTICO N : Derivadas - Diferencial ) Definición de derivada en un puno: La derivada de la función f es aquella función, denoada por f ', al que su valor en un número del dominio de f esá dado

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

CURVAS CÓNICAS-TANGENCIAS:

CURVAS CÓNICAS-TANGENCIAS: CURVAS CÓNICAS-TANGENCIAS: ELIPSE Recta tangente por un punto de la elipse 1.Se hallan los focos. 2.Se traza la Circunferencia focal correspondiente a uno de los focos.(f2) 3.Averiguar el simétrico de

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio.

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. SUPERFICIES SUPERFICIES Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. Una Superficie puede estar engendrada

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

Cónicas. Dibujo I, Geometría Tema 7 ETSIN. Copyright All rights reserved.

Cónicas. Dibujo I, Geometría Tema 7 ETSIN.  Copyright All rights reserved. Cónicas Dibujo I, Geometría Tema 7 ETSIN http://debin.etsin.upm.es/~geometria/ Copyright 2008. All rights reserved. Objetivos Con este objeto de aprendizaje conseguirás: Recordar las propiedades de estas

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

Algebra Lineal y Geometría

Algebra Lineal y Geometría Algebra Lineal y Geometría Unidad n 11:Ecuación General de Segundo Grado en Tres Variables. Algebra Lineal y Geometría Esp.Liliana Eva Mata 1 Contenidos Superficies. Relaciones elementales entre propiedades

Más detalles

CÓNICAS UNIVERSIDAD MARIANA

CÓNICAS UNIVERSIDAD MARIANA Cónicas CÓNICAS UNIVERSIDAD MARIANA FACULTAD DE INGENIERIA INGENIERIA DE PROCESOS 2015 CONTENIDO 1. INTRODUCCION 2. DEFINICON GENERAL 2.1 Ecuación canónica 3. PARABOLA 3.1 Ecuación canónica 4. ELIPSE 4.1

Más detalles

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES LECCIÓN : INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES Problema Calcula el sisema de primer orden equivalene a la ecuación + = 0, dibuja suficienes vecores del campo vecorial como

Más detalles

6. Movimiento Rectilíneo Uniforme

6. Movimiento Rectilíneo Uniforme 6. Movimieno Recilíneo Uniforme La velocia e un vehículo es mayor en las recas que en las curvas. Cuano un físico se refiere a la prisa con la que se mueve un cuerpo, aemás e conocer su rapiez, necesia

Más detalles