CAPÍTULO 1 LA FUNCIÓN DERIVADA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO 1 LA FUNCIÓN DERIVADA"

Transcripción

1 CAPÍTULO LA FUNCIÓN DERIVADA. LA DERIVADA En el fascículo anerior uilizase el concepo de la razón de cambio a ravés de problemas o siuaciones de la vida real e ilusrase gráficamene 0 o, dando una inerpreación de la razón de cambio. Todo lo anerior es la base para el esudio de la derivada a ravés de la discusión de un problema de la vida real. Y a parir del concepo de la DERIVADA, aprenderás las écnicas para derivar funciones aplicar esos conocimienos en la consrucción de gráficas solución de problemas. Analiza el siguiene problema: Un móvil se desplaza de acuerdo a la función f() +, Ricardo observa ese desplazamieno le preguna a Oscar, Cómo se puede deerminar la velocidad insanánea o angencial de dico móvil, después de que ranscurren seg. desde el inicio el movimieno? Oscar respondió; no lo se!, al vez aplicando concepos de física. Ricardo le conesó, para saber con eaciud la velocidad insanánea aplicaré mis conocimienos de razón de cambio promedio, razón de cambio insanánea, limies coninuidad; Oscar replicó eso es imposible!. Qué arías para resolver el problema? Refleiona después analiza la solución que e presenamos

2 ACTIVIDAD DE REGULACIÓN Con base al problema del móvil, conesa las siguienes pregunas. a) Sabes que ipo de función es? b) Es una función coninua o disconinua? c) Por qué es coninua o disconinua? d) Qué eniendes por velocidad insanánea? e) Cuál sería su razón de cambio de la velocidad en el móvil? f) Cuál es la velocidad de en los res segundos que ranscurren? g) Puedes resolverlo empleando la función derivada a ravés de la razón de cambio como límie? Aún no puedes resolver el problema anerior? Sigue analizando la información que e presenamos, ésa e dará más elemenos. 4

3 Una bola sube vericalmene alcanzando una alura S m, en segundos después de lanzada. Halla la razón de incremeno (Cambio) de alura de la bola en m/s al iempo Analiza la solución: digamos que la bola esa a una alura S al iempo S a. El incremeno promedio de la elevación de la bola durane el inervalo < < es, Incremeno de alura S S Tiempo ranscurrido Geoméricamene esa magniud esa represenada por la pendiene de la Secane a ravés de los punos (, S ) (, S ) del diagrama alura iempo. Si es pequeño, S S / represena aproimadamene la velocidad de ascenso de la bola en cualquier insane del inervalo. Para calcular la relación precisa del incremeno de alura al iempo acemos que 0. Así, S S Pendiene de la Secane S S Velocidad promedio de ascenso S S ( + ) Al aproimarse a, en el inervalo, enonces + iende a. Por lo ano la pendiene S S / de la secane se conviere en la pendiene de la angene de la curva. Es decir: lim 0 [ 4.9( + )] lim

4 La velocidad de ascenso v a los segundos es V m/seg. Noa: Que la razón de cambio consa de dos érminos separados. El érmino 4 es la razón de cambio de es la razón de cambio de 4.9 al iempo. La velocidad o razón de cambio insanánea de elevación con relación al iempo en el insane se represena gráficamene por la pendiene de la curva en. ACTIVIDAD DE REGULACIÓN Con base al problema de la bola, conesa las siguienes pregunas. Cuándo es cero la velocidad? Cuándo esa, la bola a maor alura? A qué velocidad vuelve la peloa al piso? 6

5 .. CONCEPTO DE DERIVADA Precisamene como d / d es la razón de cambio de con respeco a, enonces podemos concluir que: Velocidad v ds / d lim S s S / 0 S (, S ) S 0 (, S ) Gráfica No. Has aclarado algunas dudas? Coninúa el esudio analiza el siguiene problema. La posición de una parícula suspendida en el espacio iene como ecuación f() 4 5. Deermina la pendiene (m) la ecuación de la reca angene a la curva en el puno cua abscisa es igual a Solución: a) De la derivada como límie, que es la razón de cambio de la función, en la pendiene que une los punos (, f () ). 7

6 f ( ) lim 0 f ( + ) f ( ) f ( ) 4 5 f ( + ) ( + ) 4( + ) 5 f ( + ) f ( ) lim 0 f ( + ) ( 4 5) lim lim 0 ( + + 4) lim ( 0) 4 0 La razón de cambio para la función es la epresión f () 4, donde: La razón de cambio para La razón de cambio para 4 4 Siendo la derivada f () 4 el valor de la pendiene (m); si f () m, enonces: m 4 para m () 4 (4) m 8u. La ecuación de la reca angene a la curva f () 4 5 en. Si, f () () 4 () El puno de angencia es P (, 5) m 8u es la pendiene de la reca angene. Por lo ano la ecuación iene la forma: m ( ) ( 5) 8 ( ) ecuación de la reca angene en donde 8 es la pendiene la ordenada al origen es. 8

7 Graficando f () 4 5 con base a la abla siguiene: 0 f () Podemos razar la angene a la gráfica en P(, 5), omando en cuena que cora al eje en (0, ) su pendiene es m P(, 5) Gráfica No. Mucos fenómenos físicos implican canidades variables, la velocidad de un coee, la devaluación de la moneda por la inflación, el número de bacerias de un culivo, la inensidad de un movimieno elúrico, el volaje de una señal elécrica, ec. En ese fascículo desarrollaremos las erramienas maemáicas para epresar con precisión las razones o azas de cambio. 9

8 Primero se revisarán algunas ideas aneriores, supón que P(,) Q(, ) son los punos de la gráfica de una función f. Enonces la reca secane P Q ienen la pendiene: m. sec Y X Y X o bien, pueso que f () f ( ), f ( ) f ( ) m. sec () aciendo,, enonces + de al manera que la ecuación () puede escribirse así m sec m.sec f ( + ) f ( ) Observemos la gráfica No. f(+) Q f(+) f() f() P 0 + f() Gráfica No. De la gráfica se observa que P(,f()) Q(,f(+) f()) ó Q(+,f(+) f()). Cuando Q iende P sobre la gráfica de f, X iende a Xo por consiguiene X X iende a cero. 0

9 Además, cuando Q iende a P, la reca secane que une P Q iende a la reca angene en P. El cual nos conduce a la siguiene definición: Si P (, ) es un puno de la gráfica de una función f, enonces la reca angene a la gráfica de f en P se define como la reca que pasa por P iene la pendiene siempre que eisa el limie. m an lim 0 f ( + ) f ( ) () Siempre que eisa el límie, se ará referencia a la reca angene en. DEFINICIÓN: La derivada de una función f es una f definida por: f ( ) lim 0 f ( + ) f ( ) () El dominio de f, consa de odas las en la que eise ese límie; NOTACIÓN: El símbolo f () se lee f prima de. Sí esa en el dominio de f, enonces se dice que f es diferenciable en. De () () se sigue que si f es diferenciable en Xo, el valor de la derivada en es: f ( ) lim 0 f ( + ) f ( ) m an En oros érminos, la derivada de f es una función cuo valor en X X es la pendiene (m ang θ) de la reca angene a f() en. El dominio de la derivada es el conjuno de los valores de X para lo que eise una reca angene a Y f(). Eisen res maneras comunes en las que la función f puede no ser diferenciable en un puno, formuladas de una manera informal, esas pueden clasificarse como: a) Rupuras. b) Vérices. c) Tangenes vericales.

10 Rupura. a) *Es evidene que si la gráfica de una función f iene una rupura en XX (ver gráfica 4) enonces la función no puede ener una angene en X. Eso se demuesra cuando más preciso sea el érmino de una rupura. 0 Gráfica No. 4 Vérices. b) La gráfica de una función f iene un vérice en un puno P (X, f (X) ) si la gráfica de f no se inerrumpe en P la posición límie de la reca secane que une a P Q depende de si Q iene a P por la izquierda o por la dereca ( ver gráfica 5). En los vérices no eise una reca angene, a que las pendienes de las recas no ienen un límie ( por ambos lados).

11 P Posición límie de las recas secanes cuando Q P por la izquierda Q Q Posición límie de las recas secanes cuando Q P por la dereca. 0 X Gráfica No. 5 Tangenes vericales. c) No eise, pueso que los límies por un lado no son iguales. Por consiguiene, f () no es diferenciable en 0. Si la pendiene de la reca secane que une P Q iende a a + ó cuando Q iende a P sobre la gráfica de f, enonces f no es diferenciable en. Desde el puno geomérico, ales punos ocurren cuando las recas secanes ienden a una posición límie verical (ver gráfica 6 7)

12 Q P(, f()) 0 Gráfica No. 6 a) la pendiene de la reca iende a + cuando Q P P(, f()) 0 Q Gráfica No. 7 b) la pendiene de la reca secane iende a cuando Q P 4

13 El cálculo diferencial es el esudio del cambio que ocurre en una canidad, cuando ocurren variaciones en oras canidades de las cuales depende la canidad original. Los ejemplos siguienes muesran ales siuaciones. ) El cambio en el core oal de operación de una plana que resulan de cada unidad adicional producida. ) El cambio en la demanda de ciero produco que resula de un incremeno en el precio. ) El cambio en el produco nacional bruo de una país con cada año que pasa. Sea una variable con un primer valor un segundo valor. Enonces es el cambio, de valor ; es se denomina el incremeno de cualquier variable. denoa el cambio de la variable p p p índica el cambio de variable p q q q denoa el cambio de la variable q. Sea f() una variable que depende de. Cuando iende al valor, iende el valor f ( ) De manera inicial, cuando iende el valor f ( ) Así el incremeno de es f ( ) f ( ) Ejemplo. El volumen de venas de gasolina de ciera esación de servicio depende del precio del liro. Si p en el precio por el liro en cenavos, se encuenra que el volumen de vena ( en liros por día ) esa dado por: q 500 (50 p ) Calcula el incremeno en el volumen de venas que corresponde a un incremeno en el precio de 0 c a 0 c por liro. Solución. Aquí p, es la variable independiene q la función de p. El primer valor de p es: p 0 el segundo valor es p 0. El incremeno de p es: p p p p

14 Los valores correspondienes de q son los siguienes: q 500 ( 50 p ) 500 (50 0 ) 5, 000 q 500 (50 p ) 500 (50 0 ) 0, 000 En consecuencia, el incremeno de q esa dado por: p p q q 0,000 5, El incremeno de q mide el incremeno en q el eco de que sea negaivo significa que q en realidad decrece. El volumen de venas decrece en 5, 000 liros por día si el precio se incremena de 0c a 0c. Resolviendo la ecuación para si, enonces enemos + Usando ese valor de en la definición de, obenemos, f ( + ) f ( ). En forma alernaiva, dado que f () podemos escribir: + f ( + ) Ejemplo. Dado f () calcula el incremeno, si 0. Solución. susiuendo los valores de en la fórmula de, enemos: f ( + ) f ( ) f ( + 0.) f () f (.) f () (.) () Observemos que un cambio de 0. en el valor de da como resulado un cambio en de

15 Observemos la gráfica Gráfica No.8 Ejemplo. En el caso de la función, deermina cuando para cualquier incremeno. de. f ( + ) f ( ) f ( + ) f () ( + ) () + + ( ) + + ( ) + ( ) Como en la epresión de el ejemplo es valido para odos los incremenos, enonces podemos resolverlo susiuendo 0. quedando el siguiene resulado: (0.) + (0.) Como el anerior. 7

16 DEFINICIÓN: La asa de cambio de una función f sobre un inervalo de a + se define por la razón /, por lo ano, la asa de cambio promedio de con respeco a es: f ( + ) f ( ) OBSERVACIÓN: Es necesario que el inervalo de a + perenezca al dominio de f. gráficamene. Si P en un puno (, f() ) Q en el puno (+ ), f (+) sobre la gráfica de f (), enonces el inervalo f ( + ) f() en la elevación de la en el recorrido de P a Q. Por definición de pendiene, decimos que / es la pendiene del segmeno recilíneo PQ. Así que, la asa de cambio promedio de con respeco a es igual a la pendiene de la reca PQ que pasa por los punos P Q sobre la gráfica de f() Ver la figura para maor comprensión; esos punos corresponden a los valores + de la variable independiene. f() f(+) Q f() P 0 X + Gráfica No.9 8

17 .. NOTACIÓN DE LA DERIVADA. Es conveniene recordar que para denoar la derivada de una función con una variable independiene se uilizan las siguienes noaciones simbolizaciones. Si se iene f(), la función derivada se simboliza por D, que se lee: la derivada de respeco de. NOTACIÓN DE CAUCHY. Si la función es f () la función derivada se represena por o por f () NOTACIÓN DE LAGRANGE. La noación americana de la derivada de la función f () es: d df ( ó ) d d Resumiendo las res noaciones aneriores la derivada de una función f() puede escribirse: lim 0 f ' () ' d d EXPLICACIÓN INTEGRADORA Hasa el momeno emos aprendido que la reca que mejor se aproima a una curva cerca del puno P es la angene, a ravés de ese puno, más precisamene, la reca angene a una curva en P es la posición de la reca angene que pasa por dos punos, conforme uno de los punos se aproima al oro a lo largo de la curva. La pendiene m de la reca angene a la curva f () esá dada por: lim 0 f ' () ' d d 9

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2]

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2] UNIVERSIDAD TECNOLÓGICA NACIONAL Faculad Regional Rosario UDB Física Cáedra FÍSICA I CAPITULO : Movimieno en una dirección [S.Z.F.Y. ] Cinemáica: La Cinemáica se ocupa de describir los movimienos de los

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

a) en [0, 2] ; b) en [-1, 1]

a) en [0, 2] ; b) en [-1, 1] UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CATEDRA: Maemáica I CURSO: 04 TRABAJO PRACTICO Nº -Tercera Pare Pare III. Aplicaciones de la derivada TEOREMA DE ROLLE

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial TRABAJO PRÁCTICO N : Derivadas - Diferencial ) Definición de derivada en un puno: La derivada de la función f es aquella función, denoada por f ', al que su valor en un número del dominio de f esá dado

Más detalles

PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO. Introducción

PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO. Introducción PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO Presenada por: Prof. Yuri Posadas Velázquez Seminario LAC. 24 de ocubre de 2013 Inroducción

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t)

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t) Inroducción a la ísica Paralelos y 3. Profesor RodrigoVergara R RPIDEZ DE CMBIO Rapidez media de cambio Definir el concepo rapidez media de cambio nalizar arianes donde no es el iempo la ariable independiene

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Gráficas de curvas trigonométricas

Gráficas de curvas trigonométricas Capíulo 4 Gráficas de curvas rigonoméricas La definición de las razones rigonoméricas, como funciones del ángulo, lleva implicado el esudio de las funciones rigonoméricas desde el puno de visa de las funciones

Más detalles

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 A) Hallar la pendiene de la reca secane a la parábola y + 8,cuyas abscisas de los punos de inersección son 1 y 4 f ( ) f ( a) B) Dada la siguiene epresión

Más detalles

CINEMÁTICA II. pendiente = t(s)

CINEMÁTICA II. pendiente = t(s) C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II Tipos de movimienos i) Movimieno recilíneo uniforme (MRU): cuando un cuerpo se desplaza con rapidez consane a lo largo de una rayecoria recilínea,

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

Facultad de Ciencias Exactas. UNLP Página 1

Facultad de Ciencias Exactas. UNLP Página 1 ANÁLISIS MATEMÁTICO I. CIBEX-FÍSICA MÉDICA. Primer cuarimesre 0 UNIDAD I. GUÍA FUNCIONES. DOMINIO. GRÁFICA Comenzaremos nuesro curso repasando el concepo de función. Las funciones represenan el principal

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?.

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?. CINEMÁTICA: MRU 1. Pasar de unidades las siguienes velocidades: a) de 36 km/ a m/s. b) de 10 m/s a km/. c) de 30 km/min a cm/s. d) de 50 m/min a km/. 2. Un móvil recorre 98 km en 2, calcular: a) Su velocidad.

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

Propagación de crecidas en ríos y embalses

Propagación de crecidas en ríos y embalses GUÍA DEL TRABAJO PRACTICO N 8 Propagación de crecidas en ríos y embalses 1 Pare: Propagación de crecidas en río. Méodo de Muskingum Conocidos los hidrogramas de enrada y salida de un ramo del río Tapenagá

Más detalles

MATEMATICA PARA MEDICINA

MATEMATICA PARA MEDICINA MATEMATICA PARA MEDICINA CAPITULO II: NOCIONES DE CALCULO DIFERENCIAL... Concepo inuiivo de límie y el concepo de derivada en un puno. Considere la siguiene epresión: n, siendo n un número naural, es decir,

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO hp://comunidad.udisrial.edu.co/elecriciyprojecudisrial/ Elecriciy Projec UD 2017 CORRIENTE ELÉCTRICA La corriene es la asa de variación de la carga respeco al iempo [1]. La Unidad de medida es el Ampere

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. CASTELAR BADAJOZ A. Menguiano PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 8 (RESUELTOS por Anonio Menguiano) MATEMÁTICAS II Tiempo máimo: horas minuos Se valorará la corrección

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana.

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana. 1.- Sea una función coninua y = f() al que el dominio de f() =[a,b], enonces: a) El máimo absoluo de f() se alcanza en uno de los valores ales que f ()=0. b) No iene porque ener máimo absoluo. c) El máimo

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 4 CINEMÁTICA DEL MOVIMIENTO UNIDIMENSIONAL.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 4 CINEMÁTICA DEL MOVIMIENTO UNIDIMENSIONAL. Página 1 de 6 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA I/11 PRÁCTICA No. 4 CINEMÁTICA DEL

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión:

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión: MMII_L_C5: Problema de la cuerda finia: Méodos direco y de las imágenes. Guión: En esa lección se esudia el problema de una cuerda finia, por lo ano, es el problema con dos condiciones de conorno. Como

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 1: CINEMÁTICA RECTILÍNEA-SOLUCIÓN DE LAS ECUACIONES DIFERENCIALES- Diego Luis Arisizábal R.,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos ES CSTELR DJOZ Menguiano PRUE DE CCESO (LOGSE) UNVERSDD DE LERES JUNO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTCS Tiepo áio: horas inuos Conese de anera clara raonada una de las dos opciones propuesas

Más detalles

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática Índice Tema 1: Cinemáica Capíulo 1: Inroducción a la Cinemáica TEMA 1: CINEMÁTICA Capíulo 1: Inroducción a la cinemáica Inroducción Dos nuevas ciencias Galileo Galilei (1564 164) El movimieno en el Renacimieno.

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. NOTA: En odos los ejercicios se deberá jusificar la respuesa eplicando el procedimieno seguido en la resolución del ejercicio. CURSO 10-11 JUNIO CURSO 10 11 1 Aplicando ransformadas de Laplace, hallar

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular.

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular. CINEMÁTICA /34 Un ren pare de una esación. Una niña senada en su inerior lanza hacia arria una peloa y la recoge al caer. Diuja la rayecoria de la peloa al como la ven la niña y la jefe de esación siuada

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA Funciones Vecoriales Insiuo Poliécnico Nacional 1. Para cada función vecorial, calcule r' ( r ''( 1.1 r( (sin cos i cos j sink (Res r' ( cosi sin j cosk 1. r( (cos i e j (1/ k (Res. r'( sin i e j (1/ k.

Más detalles

CINEMÁTICA Física I IQ Prof. G.F. Goya

CINEMÁTICA Física I IQ Prof. G.F. Goya Unidad - Cinemáica CINEMÁTICA Física I IQ Prof. G.F. Goya CINEMÁTICA Unidad - Cinemáica Qué vamos a ver Posición, velocidad, aceleración. Modelo. Magniud. Problemas. Soluciones. Coordenadas caresianas

Más detalles

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA).

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). 1 TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). Movimieno recilíneo uniforme. 1.- Un objeo se encuenra en el puno de coordenadas (4,) en unidades del SI moviéndose en el senido posiivo del

Más detalles

Ecuaciones de primer orden

Ecuaciones de primer orden Capíulo 1 Ecuaciones de primer orden Problema 1.1 Hallar la solución general de la ecuación + 1 + 2 = 0. Hallar la solución que verifica (0) = 0 y la que verifica (1) = 0. k=-5 k=5 k=-1 Figura 1.1: Soluciones

Más detalles

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA INTRODUCCIÓN DERIVADAS La observación de un fenóeno, un cabio, conduce a una función. Observaos, por ejeplo, la inflación a lo largo del iepo en una econoía paricular. Observaos en un ebalse coo el nivel

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

FÍSICA Y QUÍMICA 1º DE BACHILLERATO TEMA 2: ESTUDIO DEL MOVIMIENTO

FÍSICA Y QUÍMICA 1º DE BACHILLERATO TEMA 2: ESTUDIO DEL MOVIMIENTO FÍSICA Y QUÍMICA 1º DE BACHILLERAT TEMA : ESTUDI DEL MVIMIENT 1. Concepo de moimieno.. Moimieno recilíneo..1. Desplazamieno y elocidad..1.1. Desplazamieno..1.. Velocidad..1.3. Inerpreación geomérica de

Más detalles

DPTO. DE ÁREA DE FÍSICA

DPTO. DE ÁREA DE FÍSICA UNIVERSIDD UTÓNOM CHPINGO DPTO. DE PREPRTORI GRÍCOL ÁRE DE FÍSIC Movimieno Recilíneo Uniforme Guillermo ecerra Córdova E-mail: gllrmbecerra@yahoo.com TEORÍ La Cinemáica es la ciencia de la Mecánica que

Más detalles

Movimiento uniformemente acelerado

Movimiento uniformemente acelerado CINEMÁTICA DE LA PARTÍCULA Moimieno recilíneo Como su nombre lo indica, ese moimieno es el que iene lugar cuando una parícula se desplaza a lo largo de un rayeco reco. Describiremos res casos para el moimieno

Más detalles

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t Insrucciones: a) Duración: 1 hora y 3 minuos. b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida. c) En cada ejercicio, pare o aparado se indica la punuación máxima

Más detalles

Unidad II. Cinemática

Unidad II. Cinemática Unidad II. Cinemáica Conenido Definiciones Diagramas de moimieno Marco de referencia Magniudes de la cinemáica Clasificación del moimieno Moimieno recilíneo uniforme Moimieno uniformemene ariado Moimieno

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

Circuitos para observar la descarga y carga de un capacitor.

Circuitos para observar la descarga y carga de un capacitor. IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

FÍSICA 100 CERTAMEN GLOBAL 06 de Julio de En un día, se remueven de la mina de Chuquicamata aproximadamente 6 10

FÍSICA 100 CERTAMEN GLOBAL 06 de Julio de En un día, se remueven de la mina de Chuquicamata aproximadamente 6 10 UNIERSIDAD ÉCNICA FEDERICO SANA MARÍA DEPARAMENO DE FÍSICA FORMA W FÍSICA CERAMEN GLOBAL 6 de Julio de 9 AP. PAERNO AP. MAERNO NOMBRE ROL USM - EL CERAMEN CONSA DE PÁGINAS CON PREGUNAS EN OAL. IEMPO: MINUOS

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

Facultad Regional Rosario Universidad Tecnológica Nacional UDB Física - Cátedra FÍSICA I

Facultad Regional Rosario Universidad Tecnológica Nacional UDB Física - Cátedra FÍSICA I Faculad Regional Rosario Universidad Tecnológica Nacional UDB Física - Cáedra FÍSICA I Pregunas y Cuesiones de Físicas Recopilación y Edición: Ing. Hugo Cogliai Ing. Ricardo Pérez Soile 0 AÑO 2018 UNIVERSIDAD

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

PRÁCTICA Nº 2 GRÁFICAS GRUPO: FECHA:

PRÁCTICA Nº 2 GRÁFICAS GRUPO: FECHA: PRÁCTICA Nº GRÁFICAS NOMBRE: GRUPO: FECHA: OBJETIVOS Aprender a abular los daos eperienales y a realizar gráficas en papel ilierado, logaríico, seilogariico. NORMAS PARA GRAFICAR. Elaborar una abla con

Más detalles

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación)

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación) .1. ASPECTOS GENERALES DE LA DINÁMICA (coninuación).1.3. Sobre un plano inclinado (ángulo de inclinación alfa), esá siuado un cuerpo de masa M. Suponiendo despreciable el rozamieno enre el cuerpo y el

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 217

10Soluciones a los ejercicios y problemas PÁGINA 217 PÁGIN 217 Pág 1 P RCTIC 1 a) Represena en papel cuadriculado la figura H 1 obenida a parir de H mediane la raslación del vecor 1 (3, 2) b) Dibuja la figura H 2 ransformada de H 1 mediane la raslación 2

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC ANEXO A LA PRÁTIA ARGA Y DESARGA DE UN APAITOR EN UN IUITO Inroducción. En esa prácica se esudia el comporamieno de circuios. En una primera pare se analiza el fenómeno de carga y en la segunda pare la

Más detalles

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N. Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 EREHOS ÁSIOS E PRENIZJE Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7+ 7 7 7 7 7 0 Realiza conversiones de unidades de una magniud

Más detalles

Aplicaciones de las Ecuaciones Diferenciales

Aplicaciones de las Ecuaciones Diferenciales Aplicaciones de las Ecuaciones Diferenciales Velocidad de Variación: Cuando una canidad z varía con el iempo, la velocidad con la que lo hace se puede represenar como z v, siendo v una velocidad promedio.

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII..- SOLUCIONES NUMÉRICAS A PROBLEMAS DE CONDUCCIÓN MONODIMENSIO- NALES EN RÉGIMEN TRANSITORIO El méodo numérico aplicado a los problemas de conducción

Más detalles

Práctico 1. Macro III. FCEA, UdelaR

Práctico 1. Macro III. FCEA, UdelaR Prácico 1. Macro III. FCEA, UdelaR Ejercicio 1 Suponga una economía que se compora de acuerdo al modelo de crecimieno de Solow-Swan (1956), se pide: 1. Encuenre la ecuación fundamenal del modelo de Solow-Swan.

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

ALUMNO: GRADO 1 BGU ASIGNATURA: Física PROFESOR(A) Francisco Raúl Casanella Leyva FECHA:. /

ALUMNO: GRADO 1 BGU ASIGNATURA: Física PROFESOR(A) Francisco Raúl Casanella Leyva FECHA:. / Insrucciones: Esa es una prueba para evaluar sus conocimienos y desrezas en FÍSICA Trabaje con aención para que pueda resolverla. UNIDAD EDUCATIVA STELLA MARIS. EXAMEN SUPLETORIO. PRIMERO BI ALUMNO: GRADO

Más detalles