ÍNDICE MATEMÁTICAS 1 FÍSICA 15

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ÍNDICE MATEMÁTICAS 1 FÍSICA 15"

Transcripción

1 ÍNDIE MATEMÁTIAS Geometrí Trigoometrí Número omplejo Geometrí Alític el Epcio Regl Geerle e Derivció Tl e Itegrle 6 Vectore Itegrle Múltiple Trform e Lplce Fórml Miceláe FÍSIA 5 iemátic 5 Etátic 5 Diámic 6 Trjo, Eergí oervció e l Eergí 6 Implo e Ímpet 7 Electrici Mgetimo 7 Termoiámic 9 Óptic Mecáic e Flio otte Fctore e coverió QUÍMIA Serie Electroqímic e lo Metle Tl e Peo Atómico 5 Vlore e cotte fíic qímic 7 Dto termoiámico pr competo orgáico 98K 7 Potecile etár e recció 5 Vlore e Afii Electróic Vlore e Eergí e Ioizció Tl Perióic e lo Elemeto

2 FORMULARIO DE MATEMÁTIAS GEOMETRÍA Volme r r Áre e l Sperficie r Volme r h Áre e l perficie lterl rh h r r Volme r h Áre e l perficie lterl r r h r l h l Volme h h Áre e l perficie lterl l h l

3 TRIGONOMETRÍA e A co A e A co A ec A t A co A co A cc A cot A e A e AcoA e AccA co A co A e A coaec A e A B e Aco B co Ae B t Acot A co A B co Aco B e Ae B e A e A ta tb t A B tatb co A co A A coa e t A t A A coa co e Aco B e A B e A B e Ae B co A B co A B co Aco B co A B co A B Se el igiete triáglo plo AB e lo c,, áglo A, B,. A c B Le e lo eo c e A e B e Le e lo coeo c co Le e l tgete t A B t A B Lo otro lo áglo etá relcioo e form imilr Lo otro lo áglo etá relcioo e form imilr NÚMEROS OMPLEJOS Teorem e DeMoivre Ríz complej rco ie co e co e r i r i : úmero etero r co ie k k : úmero etero poitivo k,,,,

4 GEOMETRÍA ANALÍTIA DEL ESPAIO oiero P x,, z,, Vector qe e P Ditci etre o P x z : PP x x,, z z l, m, P pto Rect qe p por o pto oeo Directore Ecció el Plo x x z z l m Form prmétric x x lt mt z z t Form imétric x x z z t t t l m co x x = l co = m co z z = oe,, áglo qe form l líe qe e lo pto P P co l prte poitiv e lo eje x,, z, repectivmete co co co l m Qe p por pto,,,, Form geerl P x z tiee vector orml x x z z Ax B z D Ditci el pto,, P x z l plo Ax B z D Ax B z D A B Áglo etre o rect e el plo m m t mm oore: ilíric r,, z z x r co r e z z r x o t x z z x O r P (x,,z) {(r,z) z x

5 Eféric r,, z x r e co r e e z r co o r x z x z co x z t co x x O r P { z (x,,z) (r, x REGLAS GENERALES DE DERIVAIÓN ( c) vw v w w v v w cx c v v v cx cx v v F F (Regl e l ce) c c v v v Deriv e l Fcioe Expoecile Logrítmic log e log, l log e e e v e vl e vl v v v v l l v

6 5 Deriv e l Fcioe Trigoométric e l Trigoométric Iver e co t ec ec ec t e t e t co e cot cc cc cccot co cot i ec ec i ec i cc cc i cc co cot Deriv e l Fcioe Hiperólic e l Hiperólic Recíproc ih coh coh ih th ech coth cch ech ech th cch cch coth eh - - i coh, co h i coh, th coth o - i ech, ec h i ec h, - i cc h i

7 6 TABLAS DE INTEGRALES v v v cc cot cc t l ec l cot l e e e ec l ec t l cc l cc cot e co e co e t ec t ec cc cot l ec t ec l l l l 8 8 l / l e l 8 e 8 l l e l

8 e 8 l 8 l co l 8 5 e 8 l l l l l 8 5 l l, i t, i l l l cc cc cot l cc cot 5 e e co e e co e e co co e co t t t 7

9 8 t t cot cot cot cot cot ec ec ec t e e co co co e cc cot cc cc t t l co cot cot l e e e e e ec ec t l ec t e e co co co co e co co e e m e co e e co m e co m e co m m co co e m e co m m e co m m e co co co co t t e e co co t t l e e e e e e e e e e e co e e co co e e e, co co, t t, l l l l l l l

10 9 eh coh ech l t coh eh ech th th l coh cch coth coth l eh ech th ech ech t eh cch coth cch co co 6 co co co co co

11 VETORES Procto pto AB A B co oe e el áglo formo por A B AB A B A B A B oe A A, A, A B B, B, B AB i j k A A A B B B Procto crz A B A B A B A B A B A B ˆi ˆj kˆ oe A A i A j A k B B i B j B k Mgit el procto crz AB A B e Se U U x,, z, fció eclr, x,, z A A, fció vectoril,m co eriv prcile Operor l i j k x z Griete e U U U U gr U U U x i j z k x i j z k Lplcio e U U U U U U x z Divergeci e A iv A A i j k A i A j A k x z A A A x z Rotciol e A rot A A i j k A i A j A k x z i j k x z A A A A A A A A A i j k z z x x

12 INTEGRALES MÚLTIPLES Itegrle ole o itegrle e áre F x,, f( x) f( x) x f x x f x F x F x,, g( ) g( ) c xg c xg F x Lo teriore cocepto e pee mplir pr coierr itegrle triple o e volme í como itegrle múltiple e má e tre imeioe. Vector tgete itrio Vector orml pricipl ˆ( t) ˆ ( t) tˆ ( t) Vector iorml Lo vectore itrio E prámetro ritrrio: E prámetro : r () t tt ˆ( ) r () t t ˆ( ) r ( ) ˆ( ) r () r () rr() t r( ) r( ) t ˆ( ) ˆ( ) r r () t r () tˆ, ˆ, ˆ gr l relció ˆ tˆ ˆ, ˆ ˆ tˆ, tˆ ˆ ˆ Rect tgete e t Plo oclor tˆ, ˆ e t Plo orml Plo Rectificte t ˆ, ˆ e t Ecció vectoril r r t r t Ecció prmétric x x z z x x Ecció vectoril r r t rt r t Ecció prmétric x x z z x z x z Ecció vectoril r r t r t Ecció prmétric x x x zz z Ecció vectoril r r t ˆ t Ecció prmétric x - x - z - z x z z z z x zx x x

13 rvtr Torió ompoete Tgecil e l Acelerció ompoete Norml e l Acelerció Propiee e l Divergeci t r rt r t r t N T t rtr t r t r t r t f ''( x) [ ( f '( x)) v T v N v F G F G F F F F G G F F G v ]

14 TRANSFORMADA DE LAPLAE t L{ f ( t)} e f ( t) t No f(t) F() (cotte) t!, = N t ( ), > k k 8 k 9 F( ) f ( t ) U( t ) e F() t ( ) f (t) ( ) F ( ) f ( t) t F ( p) p ( ) f ( ) ( t) F( ) f () f '()... f () t f ( ) t F ( ) 5 f g f ( ) g( t ) F ( ) G( ) 6 f (t) fció perióic e perioo T T T e 7 (t) 8 t t ) t ( e f ( t) e t t

15 FÓRMULAS MISELÁNEAS Áre e coore polre Eccioe prmétric e l cicloie pr t R r r x t e t cot Trjo Logit e rco e f x e, ( ) etro e grve e regió pl x W F r omp m x, A R R,, M x A M x x A ( ) f ( x) xf x x f ( x) f ( x) Logit e rco e form prmétric L t t t Mometo e ierci e R repecto l Io x x, A orige R Áre e l perficie geer l S F x f x x girr l gráfic f lreeor e x ( ) ( ) Volme el ólio e revolció V geero l girr l gráfic e f tf( t) t lreeor el eje álclo el volme R V A( x) V f x t Ecció el reorte helicoil r ( t) co t,e t, D f x,, z f x,, z ˆ ˆ : Vector itrio Deriv irecciol Ecció tifech por l crg e circito LR ˆ Lq Rq q E t Ferz ejerci por flío F L( ) Ferz qe ctú ore líqio ecerro e to F Ax g Axg

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució grtuit y lleg grcis Cieci Mtemátic El myor portl de recursos eductivos tu servicio! Los poliomios de Beroulli y sus pliccioes Pblo De Nápoli versió 0.. Los poliomios de

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Uniones por soldadura. Tema 2 UNIONES POR SOLDADURA

Uniones por soldadura. Tema 2 UNIONES POR SOLDADURA Tem UNIONES POR SOLDADURA. GENERALIDADES Ls estrctrs se form medite cojtos de chps o perfiles idos etre sí co elces cpces de soportr los esferzos qe se trsmite etre ls piezs. El objeto pricipl de l ió

Más detalles

3. Fallas Asimétricas Ejemplos

3. Fallas Asimétricas Ejemplos Ejemplo 7. Frcisco M. Gozlez-Logtt Aexo 7 3. Flls Aétrics Ejemplos El ple sistem de poteci qe se mestr e l Figr sigiete, cosiste de geerdor, trsformdor, líe de trsmisió, trsformdor redctor y crg. Cosidere

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

d e l a L e y 1 8. 3 8 4.

d e l a L e y 1 8. 3 8 4. D I A G N Ó S T I C O D E L A S I T U A C I Ó N E N E L S I S T E M A T E A T R A L E n e l c a m i n o d e p r o f u n d i z al r a c o n s o l i d a c i ó n d e l s e c t o r t e a t rsae l, r e s u

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas

Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas Progrm del Dplom Mtemátcs NS y Amplcó de Mtemátcs NS: cuderllo de fórmuls Pr su uso durte el curso y e los eámees Prmeros eámees: 04 Publcdo e juo de 0 Orgzcó del Bchllerto Itercol, 0 5050 Ídce Coocmetos

Más detalles

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1 Arturo Díz Pérez Aálisis y Diseño e Aloritmos Teorem Mestro Arturo Díz Pérez Aálisis y Diseño e Aloritmos Mestro- Itroucció Recurreci eerl pr estrteis ivie y vecerás T + T T Aálisis y Diseño e Aloritmos

Más detalles

Introducción a los métodos lineales en dominio de la frecuencia

Introducción a los métodos lineales en dominio de la frecuencia Itrouió los métoos lieles e omiio e l freuei Mrio Estévez Báez Arés Mho Grí José M. Estévez Crrer 3 Mteril pulio origilmete e formto html e: lirosiertos:itrouio los_metoos_lieles_e_el_omiio_e_l_freuei.

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

Estructuras Discretas. Unidad 3 Teoría de números

Estructuras Discretas. Unidad 3 Teoría de números Estructurs Discrets Uidd 3 Teorí de úmeros Coteido. Divisiilidd, Números rimos Teorem fudmetl de l ritmétic. 2. Algoritmo de l divisió Máximo comú divisor y míimo comú múltilo, Algoritmo de Euclides. 3.

Más detalles

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda* EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

1, 4, 16, 64,. Cuál regla define esta sucesión? Puedes indicar los próximos dos elementos?

1, 4, 16, 64,. Cuál regla define esta sucesión? Puedes indicar los próximos dos elementos? UCEIONE Prof. Evel Dávil Cálculo Reviso ABRIL 0 U sucesió o sucesió cosiste e u eumerció o listo e elemetos los cules los escribe u regl o ptró por tto el ore e sus elemetos es fumetl.,,,,. Cuál regl efie

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

! "#"" $%"&%!#$ % ''(%))* +,)-., &/) * ) 0 &/)! * $) % #$ 1' &/)! * ) 2 3 % "/ (,445

! # $%&%!#$ % ''(%))* +,)-., &/) * ) 0 &/)! * $) % #$ 1' &/)! * ) 2 3 % / (,445 ! "#"" $%"&%!#$ % ''(%* +,-., &/ * 0 &/! * $ % #$ 1' &/! * 2 3 % "/ (,445 66 % 6 666 1, 6, * $ &, 6+ " $ / + 65 $$ /, 5 656, 7, 8. 65, 1. 65+ " - 655 $9-65. - 65- " - 65: : 65; & & : 65< ",$/=> ; 6564

Más detalles

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS: Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

MULTIMIX DE CONSUMO: PENETRACIÓN Y FIDELIDAD DE MARCAS

MULTIMIX DE CONSUMO: PENETRACIÓN Y FIDELIDAD DE MARCAS TX : PTRÓ Y F R Y H PRT R PTRÓ F (*) G 88.2 29.9 K 58.6 21.8 54.1 17.6 K R 14.2 24.6 PP 10.3 8.7 JG TR/ RFR 67.8 47.6 FRG 42.6 62.0 PP 20.7 50.2 TP 12.2 42.6 G 66.6 45.6 43.7 65.0 21.7 45.2 RGZT/ RHRTT

Más detalles

CRITERIO DE ESTABILIDAD DE ROUTH

CRITERIO DE ESTABILIDAD DE ROUTH CRITERIO DE ESTABIIDAD DE ROUTH INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. Criterio e etili e Routh-Hurwitz El prolem má importte e lo item e otrol liel

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

Fandaáoí y Éifeete?, J U t i i a S e c o d e. de San Juan. los Tristes; arrancando de nuevo desde

Fandaáoí y Éifeete?, J U t i i a S e c o d e. de San Juan. los Tristes; arrancando de nuevo desde T B I F D CBIZOH x - x 8 f( f RIÓDICO BHTTHIO f F Éf O F I C I N R C 8 T H Z F D Q OBTTOBI8 INDNDINT Nú T B I F D CONICDO D D T R 9 N - D f f H - ñ f f - f f z é ñ f x f - - f ñ H x ú f C Y f z x T C O

Más detalles

Anillos de Newton Fundamento

Anillos de Newton Fundamento Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA

SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA Cipri Stig Zrgz Deprtmet de Mtemátics Diciembre de 2009 Ccepts Serie U serie de úmers reles es u pr rded (f g ; fa g) e el que f g es u sucesió de úmers

Más detalles

Manual de Diseño para la Construcción con Acero 261

Manual de Diseño para la Construcción con Acero  261 Manual de Diseño para la Construcción con Acero www.ahmsa.com 261 Manual de Diseño para la Construcción con Acero www.ahmsa.com 262 Manual de Diseño para la Construcción con Acero www.ahmsa.com 263 VII.1

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

Modelo1_2009_Enunciados. Opción A

Modelo1_2009_Enunciados. Opción A a) Duración: hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la o realizar únicamente los cuatro ejercicios de la. e) Se permitirá el uso de calculadoras que

Más detalles

Capítulo 7. Series Numéricas y Series de Potencias.

Capítulo 7. Series Numéricas y Series de Potencias. Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El

Más detalles

a es la parte real, bi la parte imaginaria.

a es la parte real, bi la parte imaginaria. CAPÍTULOIX 55 NÚMEROS COMPLEJOS Coocmetos Prevos Supoemos coocdo que: ) El cojuto de úmeros complejos está e correspodec buívoc co el cojuto de los putos de u plo. b) U úmero complejo expresdo e form boml

Más detalles

Coche de carreras con motor de muelle

Coche de carreras con motor de muelle 109.830 Cohe de rrers on motor de muelle Herrmients neesris: Lápiz, regl Sierr de mrqueterí o elétri Hoj de sierr pr metles Ppel de lij, Bloque de lij Lim de tller Tornillo de no Bro ø 3 mm Col de mder

Más detalles

VECTORES. BIDIMENSIONAL

VECTORES. BIDIMENSIONAL VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE.

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE. PITUO 6.- TRSFORD DE PE. 6. Irocció. 6. rform plc. 6.3 rform plc ilrl. 6.4 Ivrió l rform plc. 6.5 Solció ccio ifrcil co coicio iicil. 6.6 rform plc ilrl. 6.7 álii im mi l rform plc. 6. Irocció. Grlizmo

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Deprtmeto de Igeierí de Sitem y Automátic Tem 4. Aálii de l Repuet Temporl de Sitem LTI Automátic º Curo del Grdo e Igeierí e Tecologí Idutril Deprtmeto de Igeierí de Sitem y Automátic Coteido Tem 4.-

Más detalles

Introducción a la geometría diferencial

Introducción a la geometría diferencial Cpítulo 6 Introducción l geometrí diferencil 6.1. Concepto de curv. Expreione nlític L curv en el epcio repreentn intuitivmente l tryectori de un punto en movimiento. Vmo definir, dede un punto de vit

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. Llamamos magnitud a toda propiedad física susceptible de ser medida.

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. Llamamos magnitud a toda propiedad física susceptible de ser medida. CÁLCULO VECTORIAL.- MAGNITUDES ESCALARES Y VECTORIALES. Llmms mgtud td prpedd físc susceptle de ser medd. Al lr ls mgtudes físcs pdems cmprr que este ds clses e dferecds: ) Mgtudes esclres: s quells que

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA Fuete: PreUiversitrio Pedro de Vldivi Guí Práctic N RAÍCES FUNCIÓN RAÍZ CUADRADA DEFINICIÓN : Si es u etero pr positivo es u rel o egtivo, etoces es el úico rel, o egtivo, tl que = = =, 0 DEFINICIÓN :

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Primer Relevamiento Nacional de Personas con Sindrome de Down. 2000.

Primer Relevamiento Nacional de Personas con Sindrome de Down. 2000. !""" 1 # $% &' ( %'&'( 2 *+,* '-.+##/ '0 #12**2.1+ 3% 4 '0!* '5 6 ' '3" - 2 7 '35 0* '!0 8 9: '!; 5 2 9 '65 ; 19' '-! < = '-- > #+%*.1+12* '-5 > *2+?*#.+#*+*21.1++2+1**211'0" > @@2+A1B1 '8! > 1*C+ '8!

Más detalles

Masa y composición isotópica de los elementos

Masa y composición isotópica de los elementos Masa y composición isotópica de los elementos www.vaxasoftware.com Z Sím A isótopo Abndancia natral Vida Prodcto 1 H 1 1,00782503207(10) 99,9885(70) 1,00794(7) estable D 2 2,0141017780(4) 0,0115(70) estable

Más detalles

FIJACIONES NORMALIZADAS

FIJACIONES NORMALIZADAS FIJACIONES NORMALIZADAS para cilindros serie 449 conforme norma ISO 21287 Serie 434 FIJACIONES NORMALIZADAS ISO 21287 - ISO 15552 - AFNOR NF ISO 15552 - DIN ISO 15552 Charnela macho MT4 Escuadras de extremo

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Unidad 9: Vectores. 1. Sistemas de coordenadas y lugares geométricos. 1.1. Introducción.

Unidad 9: Vectores. 1. Sistemas de coordenadas y lugares geométricos. 1.1. Introducción. Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática Escuela de Ciencias Exactas y Naturales GEOMETRÍA I Licenciatura en Matemática - Profesorado en Matemática - Año 2014 Equipo

Más detalles

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ).

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ). Tem 3 mortcó e prétmo Defcó y mgtue fumetle opercó e mortcó e prétmo e u opercó fcer e l ue u pero pretmt o creeor cocert etregr otr pero prettro o euor u eterm cutí e u mometo coro y el euor e compromete

Más detalles

ALGEBRA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:

ALGEBRA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR: ALGEBRA PROBLEMARIO ELABORADO POR: M. e C. JOSÉ CORREA BUCIO SEMESTRE FEBRERO-JULIO Alger CBTis No. José Corre Buio EJERCICIOS SOBRE NOTACIÓN ALGEBRAICA:.- Esrie l su e,,..- Esrie l su el uro e, el uo

Más detalles

CIENCIAS SOCIALES Y JURÍDICAS

CIENCIAS SOCIALES Y JURÍDICAS Ft CIENCIAS SOCIALES Y JURÍDICAS Gr Ri Lr Rr H T Gr Ft Cii Si Jríi ó Ir Prfi t r trj fi r, rá xtr tri r r ii r rf Uiri Jé GRADO EN RELACIONES LABORALES Y RECURSOS HUMANOS PRESENTACIÓN DEL GRADO S fr t

Más detalles

14 Expresiones algebraicas. Polinomios

14 Expresiones algebraicas. Polinomios PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Análisis II - Primer Parcial Coloquio- Tema 1

Análisis II - Primer Parcial Coloquio- Tema 1 .5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto

Más detalles

Integrales Dobles. Vimos que este problema estaba relacionado con el cálculo de una primitiva de

Integrales Dobles. Vimos que este problema estaba relacionado con el cálculo de una primitiva de Pro. Erique Mteus Nieves otoro e Euió Mtemáti Itegrles oles Itrouió. E el primer urso e Fumetos se plteó el prolem e hllr el áre omprei etre l grái e u uió positiv y x, el eje OX y ls rets x, x. ih áre

Más detalles

TABLA DE MEDIDAS CATALOGOS PRIMAVERA VERANO 2015

TABLA DE MEDIDAS CATALOGOS PRIMAVERA VERANO 2015 TABLA DE MEDIDAS CATALOGOS PRIMAVERA VERANO 2015 CODIGO AC72 CH M G XG CODIGO AC73 CH M G XG LARGO TOTAL 66 68 70 72 LARGO TOTAL 64 66 68 70 75 81 87 93 81 87 97 103 CINTURA 61 66 71 76 CINTURA 74 80 90

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Tema 7: ESPACIOS VECTORIALES AFINES

Tema 7: ESPACIOS VECTORIALES AFINES Tema 7: ESPACIOS VECTORIALES AFINES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE 1 OBJETIVOS Defiir escueto y valor actual. Distiguir las actualizacioes simples y compuestas. Ietificar los istitos tipos e escuetos. Demostrar fórmulas pricipales y erivaas. Resolver situacioes problemáticas.

Más detalles

Los acuerdos de reconocimiento de títulos

Los acuerdos de reconocimiento de títulos Los acuerdos de reconocimiento de títulos El Ejercicio profesional en la Globalización Estándares internacionales y Normativa nacional Buenos Aires, Argentina 17 de Septiembre de 2004 De qué títulos hablamos?

Más detalles

Medline Lilacs y otras Bases de Datos Bibliográficas en http://www.bireme.br/bvs/e/ebd.htm Guía de uso

Medline Lilacs y otras Bases de Datos Bibliográficas en http://www.bireme.br/bvs/e/ebd.htm Guía de uso 1 Medline Lilacs y otras Bases de Datos Bibliográficas en http://www.bireme.br/bvs/e/ebd.htm Adaptada por Mireya Farías C., Valdivia, marzo 2003. Formularios de Búsqueda: existen tres formularios. El primero,

Más detalles

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA Dentro del campo general de la teoría de la optimización, también conocida como programación matemática conviene distinguir diferentes modelos de optimización.

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal 9 de noviembre de 2009 Deseo agradecer la cuidadosa lectura, las correcciones y las sugerencias para mejorar este documento realizadas por el M.C. César Rincón Orta. Deseo agradecer

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

Potencias y Radicales

Potencias y Radicales Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Ín d i c e. De c u o ta. Es c r i t u r a. Fo r m u l a r i o... 662. Limitación d e g a r a n t í a. Es c r i t u r a. Fo r m u l a r i o...

Ín d i c e. De c u o ta. Es c r i t u r a. Fo r m u l a r i o... 662. Limitación d e g a r a n t í a. Es c r i t u r a. Fo r m u l a r i o... Ín d i c e TOMO IV Contrato de Hipoteca Co n t r at o s Hi p o t e c a. Es c r i t u r a. Fo r m u l a r i o 1... 649 Hi p o t e c a. Es c r i t u r a. Fo r m u l a r i o 2... 653 Hi p o t e c a. Es c

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

INTEGRAL LAPSO 2 008-2 751-1/ 6

INTEGRAL LAPSO 2 008-2 751-1/ 6 INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

Factores de Carga, Simultaneidad, Diversidad y Pérdidas

Factores de Carga, Simultaneidad, Diversidad y Pérdidas Factores de Carga, imltaeidad, Diversidad y érdidas Abordaje qe asegra s cosistecia Bogotá, Diciembre 013 1 Itrodcció E los cálclos de redes de distribció para proyectos y operació se caracteriza las cargas

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

UNIVERSITAT ROVIRA I VIRGILI LA EDUCACIÓN PARA LA SALUD EN LOS CICLOS MEDIO Y SUPERIOR DE EDUCACIÓN PRIMARIA EN LA COMARCA DEL BAIX CAMP Pilar Moreno

UNIVERSITAT ROVIRA I VIRGILI LA EDUCACIÓN PARA LA SALUD EN LOS CICLOS MEDIO Y SUPERIOR DE EDUCACIÓN PRIMARIA EN LA COMARCA DEL BAIX CAMP Pilar Moreno "$%&' "$&&%() "$%&' "$ * %()' " + $ '', "$%&' "-$-( -&' "&$&/" ' "0'1, 23,&- 4-& '0%-(*&+&$",&- 4-& '0%-(*&&+&$",&- 4-& '0%-(*&(+&$""& '(&' %&0(%%() 1, 5 /6 -(*&,, &- ('&,1 -$- 7( -&'&")7(%8&$( -%(& '('9%-(%

Más detalles

SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA

SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA I. INFORMACIÓN GENERAL: 1.1 Fcultd: Igeierí 1.2 Crrer Profesiol: Igeierí Geológic 1.3 Deprtmeto: ---------------- 1.4 Requisito: Dibujo de Igeierí /1º ciclo 1.5

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

PROGRAMA DE PROFESIONALIZACION A DISTANCIA

PROGRAMA DE PROFESIONALIZACION A DISTANCIA AM00 ADMINISTRACION DE EMPRESAS TURISTICAS Y HOTELERAS E D B D A C C E C A AF99 ADMINISTRACION FINACIERA DE EMP. TURISTICAS Y HOT. C E D D A B C A D E AG99 ADMINISTRACION GENERAL C C B A C E D B A D AO01

Más detalles

&*4*&-#25 7*& 6%9:,*+ ;5,*+*+-%# <8

&*4*&-#25 7*& 6%9:,*+ ;5,*+*+-%# <8 #$%& $'(""$" + -# &./# &+./# &++ 0// &+&"1/ &&/23# &4+-#5 %# &4&-#25 %# 4 %1 4+ 6/ 7 6# 7+8/#06# 7& 6%9: 74866# 778/6, /#;5,+ ;5,++-%# 06 >+./# >&#3#069 :??+?++./#?+& "?&651

Más detalles

La Integral Definida

La Integral Definida Cpítulo 5 L Itegrl Defiid 5.. Prtició U cojuto fiito de putos P = {x, x, x,, x } es u prtició de [, b] si, y solmete si, = x x x x = b. 5.. Sum Superior y Sum Iferior Se y = f(x), u fució cotiu e [, b].

Más detalles

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N) rrcioles () //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles