Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:"

Transcripción

1 Méodo de Gauss Ejercicio nº.- Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: compaible deerminado compaible indeerminado c) incompaible Jusifica en cada caso us respuesas. Ejercicio nº.- Dado el sisema de ecuaciones: Si es posible, añade una ecuación de modo que el nuevo sisema resulane sea: Incompaible Compaible indeerminado Jusifica us respuesas. Ejercicio nº.- Eplica si el siguiene sisema de ecuaciones es compaible o incompaible: Podríamos conseguir que fuera compaible deerminado, suprimiendo una de las ecuaciones? Raónalo. Ejercicio nº.- Resuelve el sisema de ecuaciones: Ejercicio nº.- Raona si los siguienes sisemas son equivalenes o no: II: I:

2 Añade una ecuación al sisema I, de modo que el nuevo sisema resulane sea incompaible. Jusifica u respuesa. Ejercicio nº.- Dados los siguienes sisemas de ecuaciones: Resuélvelos e inerpréalos geoméricamene. Ejercicio nº.- Resuelve el siguiene sisema e inerpréalo geoméricamene: Ejercicio nº.- Resuelve e inerprea geoméricamene el sisema: Ejercicio nº 9.- Resuelve los siguienes sisemas ha una inerpreación geomérica de los mismos: Ejercicio nº.- Resuelve e inerprea geoméricamene el siguiene sisema de ecuaciones:

3 Ejercicio nº.- Uilia el méodo de Gauss para resolver los sisemas: Ejercicio nº.- Resuelve, por el méodo de Gauss, los sisemas: Ejercicio nº.- Resuelve, por el méodo de Gauss, los siguienes sisemas de ecuaciones: Ejercicio nº.- Resuelve esos sisemas, mediane el méodo de Gauss: Ejercicio nº.- Resuelve los siguienes sisemas, uiliando el méodo de Gauss: 9 9

4 Ejercicio nº.- Discue, resuelve cuando sea posible, el siguiene sisema de ecuaciones: Ejercicio nº.- Discue en función del parámero, resuelve cuando sea posible: Ejercicio nº.- Discue, resuelve cuando sea posible, el sisema: Ejercicio nº 9.- Dado el siguiene sisema de ecuaciones, discúelo resuélvelo para los valores de m que lo hacen compaible: Ejercicio nº.- Discue el siguiene sisema en función del parámero a, resuélvelo cuando sea posible: Ejercicio nº.- En una reunión ha personas, enre hombres, mujeres niños. El doble del número de mujeres más el riple del número de niños, es igual al doble del número de hombres. a 9 a m m a

5 Con esos daos, se puede saber el número de hombres que ha? Si, además, se sabe que el número de hombres es el doble del de mujeres, cuános hombres, mujeres niños ha? Ejercicio nº.- Por un roulador, un cuaderno una carpea se pagan, euros. Se sabe que el precio del cuaderno es la miad del precio del roulador que, el precio de la carpea es igual al precio del cuaderno más el % del precio del roulador. Calcula los precios que marcaba cada una de las cosas, sabiendo que sobre esos precios se ha hecho el % de descueno. Ejercicio nº.- Disponemos de res lingoes de disinas aleaciones de res meales A, B C. El primer lingoe coniene g del meal A, g del B del C. El segundo coniene g de A, g de B g de C. El ercero coniene g de A, g de B g de C. Queremos elaborar, a parir de esos lingoes, uno nuevo que conenga g de A, g de B g de C. Cuános gramos ha que coger de cada uno de los res lingoes? Ejercicio nº.- Una compañía fabricó res ipos de muebles: sillas, mecedoras sofás. Para la fabricación de cada uno de esos ipos necesió la uiliación de cieras unidades de madera, plásico aluminio al como se indica en la abla siguiene. La compañía enía en eisencia unidades de madera, unidades de plásico unidades de aluminio. Si la compañía uilió odas sus eisencias, cuánas sillas, mecedoras sofás fabricó? MADERA PLÁSTICO ALUMINIO SILLA unidad unidad unidades MECEDORA unidad unidad unidades SOFÁ unidad unidades unidades Ejercicio nº.- En una residencia de esudianes se compran semanalmene helados de disinos sabores: vainilla, chocolae naa. El presupueso desinado para esa compra es de euros el precio de cada helado es de euros el de vainilla, euros el de chocolae euros el de naa. Conocidos los gusos de los esudiane, se sabe que enre helados de chocolae de naa se han de comprar el % más que de vainilla. Planea un sisema de ecuaciones lineales para calcular cuános helados de cada sabor se compran a la semana. Resuelve, mediane el méodo de Gauss, el sisema planeado en el aparado anerior.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS Ejercicio nº 1.- SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS Resuelve estos sistemas, mediante el método de Gauss: Las soluciones del sistema son: Ejercicio nº 2.- Por un rotulador, un cuaderno y una carpeta

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SS. II 2007/2008 ÁLGEBRA. a) Plantee, sin resolver, un sistema de ecuaciones asociado al siguiente problema:

MATEMÁTICAS APLICADAS A LAS CC. SS. II 2007/2008 ÁLGEBRA. a) Plantee, sin resolver, un sistema de ecuaciones asociado al siguiente problema: MATEMÁTICAS APLICADAS A LAS CC SS II ÁLGEBRA 1 Un cliene de un supermercado ha pagado un oal de 156 euros por 24 liros de leche, 6 kg de jamón serrano y 12 liros de aceie de oliva Planee y resuelva un

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

x 1; Soluciones dobles

x 1; Soluciones dobles EJERCICIOS TIPO EXAMEN ECUACIONES INECUACIONES Y SISTEMAS.- Resuelve las ecuaciones siguienes, facorizando previamene en los casos que eso sea posible: a) Solución: Por raarse de una ecuación de grado

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS º DE BACHILLERATO MÉTODO DE GAUSS Soluciones -- SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS. Resolver los siguienes siseas de ecuaciones aplicando el éodo de Gauss. a) 8 8 b) c) -- SOLUCIONES MÉTODO DE GAUSS

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS Maemáicas Problemas resuelos por el Méodo de Gauss PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS ) Resolver el siguiene sisema por Gauss Para resolver el sisema por el méodo de Gauss, hemos de riangulariarlo.

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una lera (incógnia o variable). El valor de la variable que

Más detalles

9. SISTEMAS DE ECUACIONES LINEALES.

9. SISTEMAS DE ECUACIONES LINEALES. Sisemas de ecuaciones lineales. 15 9. SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

9. SISTEMAS DE ECUACIONES LINEALES.

9. SISTEMAS DE ECUACIONES LINEALES. Prácicas de Maemáicas II con DERIVE-5 16 9. SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES ES Padre Poveda (Guadi) Maemáicas plicadas a las SS EJEROS UNDDES : MTRES Y DETERMNNTES (-M--) Sean las marices D a) ( punos) Resuelva la ecuación maricial D ( D) b) ( puno) Si las marices D son las marices

Más detalles

Unidad 0: Sistemas de ecuaciones lineales

Unidad 0: Sistemas de ecuaciones lineales RSOLUCIÓN D LOS JRCICIOS Y PROBLMAS BÁSICOS 1. Se considera el sistema de ecuaciones lineales con dos incógnitas: + = = a) Añade una tercera ecuación con dos incógnitas de manera que el sistema resultante

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

Ing. Edgar Vargas Ruíz y Lic. Claudia C. Poveda Medina

Ing. Edgar Vargas Ruíz y Lic. Claudia C. Poveda Medina GUÍA DE ESTUDIO No. UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: ALGEBRA MATRICIAL CONCEPTOS DE MATRICES. COMPETENCIA Resolver sisemas de ecuaciones lineales homogéneos

Más detalles

Propuesta A. 1. Dadas las matrices: C = B = A =

Propuesta A. 1. Dadas las matrices: C = B = A = Pruebas de Acceso a Enseñanzas Univerarias Oiciales de Grado 6 Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá conesar a una de las dos opciones propuesas A ób. Se podrá uilizar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES PROLEMS RESUELTOS SELECTIVIDD NDLUCÍ 06 MTEMÁTICS PLICDS LS CIENCIS SOCILES TEM : MTRICES Junio, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva 3, Ejercicio, Opción Reserva

Más detalles

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación.

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación. Gráficos con Maple Maple incluye poenes capacidades gráficas que permien realizar represenaciones bidimensionales, ridimensionales e incluso animaciones. El programa es muy flexible en lo que a la enrada

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

GRADO TURISMO TEMA 6: SERIES TEMPORALES

GRADO TURISMO TEMA 6: SERIES TEMPORALES GRADO TURISMO TEMA 6: SERIES TEMPORALES Prof. Rosario Marínez Verdú 1 TEMA 6: SERIES TEMPORALES 1. Componenes de una serie emporal. 2. Análisis de la Tendencia. 3. Análisis de las Variaciones Esacionales.

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Asignatura: Matemática II (Lic. Economía) - U.N.R.N. Año: x 3

Asignatura: Matemática II (Lic. Economía) - U.N.R.N. Año: x 3 Trabajo Prácico Nº : Sisemas de ecaciones lineales Asignara: Maemáica II (Lic. Economía) - U.N.R.N. Año: 0 ) Resoler los sigienes sisemas por ssición, igalación, eliminación gráficamene a) d) ) En na fiesa,

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales Lección Inroducción a los sisemas no lineales de ecuaciones diferenciales Un modelo de Gierer-Meinhard para ecuaciones de ipo Acivador-Inhibidor Modelo G-M: con = [A], = [B]. k = k = k = k 4 = A B A +

Más detalles

PROPORCIONALIDAD. Ejemplo: Son magnitudes: La longitud, el peso, el precio, el tiempo, el número de objetos, etc.

PROPORCIONALIDAD. Ejemplo: Son magnitudes: La longitud, el peso, el precio, el tiempo, el número de objetos, etc. PROPORCIONALIDAD MAGNITUD.- Es cualquier fenómeno observable que se pueda medir. Ejemplo: Son magniudes: La longiud, el peso, el precio, el iempo, el número de objeos, ec. No son magniudes: La inensidad

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Ecuaciones Matriciales y Determinantes.

Ecuaciones Matriciales y Determinantes. Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR)

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) ESPECIFICACION La meodología VAR es, en ciera forma, una respuesa a la imposición de resricciones a priori que caraceriza a los modelos economéricos keynesianos:

Más detalles

LETRAS DEL TESORO. Los rendimientos de estos activos financieros, se pueden obtener de dos formas distintas:

LETRAS DEL TESORO. Los rendimientos de estos activos financieros, se pueden obtener de dos formas distintas: 1 LETRAS DEL TESORO 1.- DEFINICION : Son acivos de rena fija, (rendimienos deerminados de anemano), emiidos por El TESORO al descueno, es decir, su precio de adquisición es inferior a su precio de amorización.

Más detalles

Dinamica Curso de Verano 2005 Cinetica: Ecuaciones de Impulso y Momentum

Dinamica Curso de Verano 2005 Cinetica: Ecuaciones de Impulso y Momentum Dinámica: Cineica Impulso y Momenum Dinamica Curso de Verano 25 Cineica: Ecuaciones de Impulso y Momenum ITESM Campus Monerrey Deparameno de Ingenieria Mecanica Documeno preparado por: Ing. Jovanny Pacheco

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

Tj = Jmax - Jmin = = 170 µm. Agujero. teje

Tj = Jmax - Jmin = = 170 µm. Agujero. teje Máquinas, Méodos y Conrol Dimensional del Procesamieno 1 AJUSES EJEMPLOS DE CÁLCULO I. Se desea deerminar un ajuse con juego, según el sisema ISO, siendo los daos los siguienes: medida nominal 90 mm, juego

Más detalles

{3 x 2 y 2 z=3. {x y z = 2. {2 x y m z= 2. {x 9 y 5z = 33. Ejercicios. 8. [S/01] Resuelva el sistema siguiente en cuanto al número de soluciones:

{3 x 2 y 2 z=3. {x y z = 2. {2 x y m z= 2. {x 9 y 5z = 33. Ejercicios. 8. [S/01] Resuelva el sistema siguiente en cuanto al número de soluciones: Ejercicios 1. [S/99] Resuelva el sistema de ecuaciones x y 2 z=0 x y z=0 x 2 z= 1 2. [S/99] Resuelva y clasifique el siguiente sistema: 2 x 2 y 4 z= 2 x 2 y 3 z=1 x 4 y 5 z=1 3. [S/99] Sea el sistema de

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es:

Por ejemplo, la línea que deberemos escribir para definir la forma de onda de la figura, para una frecuencia de 50Hz, es: Prácica S4: Especro de Fourier 1. Objeivos Los objeivos de la prácica son: 1.- Uilizar el simulador Pspice para el esudio de la respuesa en frecuencia de circuios elécricos pasivos, aplicando la serie

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos Geomería del espacio ecuaciones de recas planos; posiciones relaivas MATEMÁTICAS II TEMA Ecuaciones de recas planos en el espacio. Posiciones relaivas Problemas propuesos Ecuaciones de recas planos. Halla,

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 EREHOS ÁSIOS E PRENIZJE Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7+ 7 7 7 7 7 0 Realiza conversiones de unidades de una magniud

Más detalles

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones. Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD a) Duración: 1 hora y 30 minuos b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida c) En cada ejercicio, pare o aparado se indica la punuación máxima que le corresponde

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

PARTE COMÚN FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN FUNDAMENTOS DE MATEMÁTICAS Consejería de Educación, Ciencia y Cultura CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Septiembre 2010 Resolución de 22 de marzo de 2010 (DOCM del día

Más detalles

Prácticas de Tecnología de Fluidos y Calor (Departamento de Física Aplicada I - E.U.P. Universidad de Sevilla)

Prácticas de Tecnología de Fluidos y Calor (Departamento de Física Aplicada I - E.U.P. Universidad de Sevilla) TERMOGENERADOR DE SEMICONDUCTORES. Objeivos Poner de manifieso el efeco Seebeck. Deerminar el coeficiene Seebeck, α, la f.e.m, la resisencia inerna, r, y el rendimieno, η, del ermogenerador (o ermopila).

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

Sol: 35 de A, 20 de B y 15 de C.

Sol: 35 de A, 20 de B y 15 de C. 1. Un galerista de arte adquiere 70 litografías de tres pintores por 6.630. Las del pintor A las ha pagado por 90 cada una, las del pintor B a 120 cada una y las del pintor C a 72 cada una. Averigua el

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES. Resuelva la siguiene ecuación aricial: X B C, siendo, 4 C.. Deerine la ari X de orden al que: X.. Se considera la ari. a) Calcule los valores de para los que no eise la inversa de.

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica Méodos de Previsión de la Demanda Pronósico para Series Temporales Niveladas Represenación Gráfica REPRESENTACIÓN GRÁFICA DE LA SERIE DE DATOS Período i Demanda Di 25 2 2 3 225 4 24 5 22 Para resolver

Más detalles

Autómata Finito de 4 Estados y una Variables de Entrada.

Autómata Finito de 4 Estados y una Variables de Entrada. Auómaa Finio de 4 Esados y una Variables de Enrada. Vamos a diseñar un Auómaas Finio (AF) mediane el Procedimieno General de ínesis y a implemenarlo usando bieables D y cuanas pueras lógicas sean necesarias..

Más detalles

Guías y tutoriales/compresores/winrar

Guías y tutoriales/compresores/winrar g coordinación de uoriales: Graciela Sosisky exo: Horacio Marínez Philipps edición: Gabriela Tenner diseño: CAFE Guías y uoriales/compresores/winrar Los orígenes de ese programa se remonan a las experiencias

Más detalles

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES hp://elefonica.ne/web/imm EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES.- En las ecuaciones lineales en diferencias, enemos el modelo de la elaraña, que se refiere a la versión discrea

Más detalles

MACROECONOMÍA II ADE GRUPOS 20 Y 21 (ECTS) FECHA DE ENTREGA: Martes 11 de Mayo de 2010 Práctica nº 5: Hoja de problemas sobre Tipos de cambio

MACROECONOMÍA II ADE GRUPOS 20 Y 21 (ECTS) FECHA DE ENTREGA: Martes 11 de Mayo de 2010 Práctica nº 5: Hoja de problemas sobre Tipos de cambio MACROECONOMÍA II ADE GRUPOS 20 Y 21 (ECTS) FECHA DE ENTREGA: Mares 11 de Mayo de 2010 Prácica nº 5: Hoja de problemas sobre Tipos de cambio 1. A parir de los siguienes daos sobre el ipo de cambio nominal

Más detalles

Aptitud Matemática RESOLUCIÓN FRACCIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN = = = RPTA.: E RPTA.

Aptitud Matemática RESOLUCIÓN FRACCIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN = = = RPTA.: E RPTA. . Efecuar: + ) D) FRCCIONES 0 0 B) 99 00 E) 0 C) 6 + 6 0 + = 0 6 0 + = = 0 0 RPT.:. Efecuar: 9 ) B) C) 60 60 60 D) E) 0 0 99 + + = = =, + + 90 90 9 90 RPT.:. Efecuar: + + + ) D) 0 B) 6 E) 0 C) 0 + = +

Más detalles

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO EUSKAL ESTATISTIKA ERAKUNDEA INSTITUTO VASCO DE ESTADISTICA Donosia-San Sebasián, 1 01010 VITORIA-GASTEIZ

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES 1- a) Los tres profesores de matemáticas de un instituto, María, Ana y Carlos, tienen edades cuya suma es 1 años. La suma de las edades de María y Ana es

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación)

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación) .1. ASPECTOS GENERALES DE LA DINÁMICA (coninuación).1.3. Sobre un plano inclinado (ángulo de inclinación alfa), esá siuado un cuerpo de masa M. Suponiendo despreciable el rozamieno enre el cuerpo y el

Más detalles

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD Pronósicos II Un maemáico, como un pinor o un poea, es un fabricane de modelos. Si sus modelos son más duraderos que los de esos úlimos, es debido a que esán hechos de ideas. Los modelos del maemáico,

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden Ejercicios de Ecuaciones Diferenciales con Malab: Ecuaciones diferenciales de primer orden 8 de marzo de 9. Consideremos la ecuación diferencial ẋ = f(x, λ). Calcular los punos de bifurcación y dibujar

Más detalles

1.1 Utilizando sistemas modulares, resolver la ecuación + =.

1.1 Utilizando sistemas modulares, resolver la ecuación + =. 5. 5. 1. Sisemas de la forma: Una ecuación con dos o más variables. 1.1 Uilizando sisemas modulares, resolver la ecuación + =. La ecuación 3 +5 =23 es equivalene a 3 23 ó.5, eso es, planeamos conocer el

Más detalles

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal SISTEMAS DE ECUACIONES DE ENUNCIADO VERBAL CON 3 INCÓGNITAS 001. Se juntan 30 personas entre hombres, mujeres y niños. Se sabe que entre los hombres y las mujeres duplican al número de niños. También se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

PANDEO LOCAL EN SECCIONES DE PAREDES DELGADAS

PANDEO LOCAL EN SECCIONES DE PAREDES DELGADAS Faculad de Ingeniería Universidad Nacional de La Plaa ESTRUCTURAS IV PANDEO LOCAL EN SECCIONES DE PAREDES DELGADAS Auores: Ing. Julián J. Rimoli Ing. Marcos D. Acis Ing. Alejandro J. Paanella 1 TENSIONES

Más detalles

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones)

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones) TEMA 2.- SISTEMAS DE ECUACIONES 1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS La ecuación 2x 3 5 tiene un término en x (el término 2x), otro en y (el término -3y) y un término independiente (el 5) Este

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles