Propuesta A. 1. Dadas las matrices: C = B = A =

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Propuesta A. 1. Dadas las matrices: C = B = A ="

Transcripción

1 Pruebas de Acceso a Enseñanzas Univerarias Oiciales de Grado 6 Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá conesar a una de las dos opciones propuesas A ób. Se podrá uilizar cualquier ipo de calculadora. Propuesa A. Dadas las marices: A 3 B C 3 a Realiza la guiene operación: A B C T donde C T es la mariz ranspuesa de C.. pos b.poseplicalarazón por la cual las dos marices guienes no ienen inversa: M N 4 6. Ciero dulce radicional esá compueso ecluvamene por res ingredienes: harina de rigo, huevo y miel. El porcenaje de harina es el riple de la suma de los porcenajes de los oros dos ingredienes. Además, la dierencia enre el porcenaje de harina y el de huevo es seis veces el porcenaje de miel. a Planea el sema de ecuaciones que nos permia averiguar el porcenaje de cada ingrediene en ese dulce.. pos b Resuelve el sema planeado en el aparado anerior.. pos { 3. Se condera la unción 3 > a Para qué valor de la unción es coninua en?. pos b Para, calcula los eremos relaivos de la unción en el inervalo,..pos c Para, calcula los inervalos de crecimieno y decrecimieno de la unción en,..pos 4. De la unción a 3 b c d sabemos que iene un máimo relaivo en el puno, y que iene un puno de inleión en el puno,. Con esos daos, halla los valores de los parámerosa,b,cyd..pos. En una empresa de Toledo se producen dos modelos de vajillas: A y B. El % de las vajillas son del modelo A y el 9 % del modelo B. La probabilidad de que una vajilla del modelo A sea deecuosa es. y de que una vajilla del modelo B sea deecuosa es.. a Elegida una vajilla al azar, cuál es la probabilidad de que sea deecuosa?. pos b Se escoge al azar una vajilla y resula deecuosa, cuál es la probabilidad de que sea del modelo A?. pos 6. La longiud de un deerminado inseco gue una disribución normal de media desconocida y desviación ípica σ. cenímeros. Se oma una muesra aleaoria de amaño 4 y se calcula la media muesral, endo esa igual a.4 cenímeros. a Calcula el inervalo de conianza para la media poblacional con un nivel de conianza del 9 %. po b Es razonable que la media de la longiud del inseco sea μ., con un nivel de conianza del 9 %? Obén un valor razonable para la media de la longiud de ese inseco μ con ese mismo nivel de conianza. Razona us respuesas. po

2 A.- Solución: b Tienen inversa las marices cuadradas cuyo deerminane es disino de. Como M no es cuadrada NO iene inversa. N Tampoco iene inversa porque aunque es cuadrada su deerminane es. A.- Solución: 4 6 TTano por cieno de harina de rigo, HTano por cieno de huevo, MTano por cieno de miel ª ª A3.- Solución: lim lim 3 > lim lim ± 3 para coninua en Para y, se raa de una sencilla rama de parábola con vérice en 3, b Luego mínimo en 3,. c Decreciene en, 3 y creciene en 3,

3 A4.- Solución: Los daos nos llevan a asegurar que la unción pasa por, y por, y que la derivada primera se anula para y la derivada segunda se anula para Luego 3 A.- Solución: 3 3 Llamaremos A al suceso Elegida una vajilla al azar resula que es de ipo A, llamaremos B al suceso Elegida una vajilla al azar resula que es de ipo B y D al suceso Elegida una vajilla al azar resula que es deecuosa Del enunciado obenemos que:,;,9;,;,,,,9,,,% 8% A6.- Solución: Para obener el inervalo de conianza debemos ener en cuena que: σ σ P zα / < µ < zα / α, donde -α es el nivel de conianza,9 en n n nuesro caso. la media de la muesra, en nuesro caso,4 cm ; σ la desviación ípica, ahora,; n el amaño de la muesra, 4. α,9 α, α /, zα /,96 ya que,,9 Ver abla a Luego el inervalo pedido es: σ σ zα /, zα / 4 96, , 63 n n 4 4 bluego el valor µ no es razonable con un nivel de conianza del 9% Sí lo sería cualquier valor del inervalo 3, 63

4 Propuesa B. Un aicionado a la aresanía dedica su iempo libre a decorar boijos y jarrones. Cada mes decora un máimo de boijos yunmáimo de jarrones. Dedica una hora a decorar un boijo y horas a decorar un jarrón. Puede dedicar cada mes un máimo de 4 horas a esa aición. Vende oda su producción mensual, y cobra 6 euros por cada boijo y 8 euros por cada jarrón. Se propone obener el máimo beneicio mensual poble con las condiciones mencionadas. a Epresa la unción objeivo.. pos b Escribe mediane inecuaciones las resricciones del problema y represena gráicamene el recino deinido.. pos c Halla el número de boijos y jarrones que debe decorar cada mes para obener un beneicio máimo e indica a cuáno asciende ese beneicio máimo.. pos. Los precios de mis res ruos secos avorios son: almendras a 6 euros/kg; avellanas a 6 euros/kg y cacahuees a euros/kg. En el supermercado he omado algunos kilos de cada uno de esos ruos secos y he llenado una caja de 9 kilos, por la que he pagado 9 euros. En esa caja, la suma de los kilos de avellanas más los de cacahuees es igual al doble de los kilos de almendras. a Planea el sema de ecuaciones que nos permia averiguar cuános kilos de cada ruo seco he comprado.. pos b Resuelve el sema planeado en el aparado anerior.. pos < 3. Se condera la unción > a Halla el valor de para que sea coninua en..pos b Para, represena gráicamene la unción. po 4. Al comenzar el año ponemos en marcha el esudio de la evolución de la población de un ipo de insecos. Hemos llegado alaconcluón de que esa población se ajusa a la unción: donde esá en meses, con y esá en decenas de individuos. a Calcula cuános insecos enemos al comenzar el esudio ycuános al erminarlo..pos b Deermina en qué inervalo la población crece y en cuál decrece.. pos c Deermina en qué momeno la población de insecos es máima y a cuános individuos asciende.. pos. Se sabe que una máquina deerminada iene una probabilidad de ener una avería de.. Tenemos una empresa con 4 máquinas como las aneriores que uncionan de orma independiene. a Cuál es la probabilidad de que las cuaro engan una avería?. pos b Cuál es la probabilidad de que ninguna enga una avería?.pos c Cuál es la probabilidad de que al menos una de las máquinas enga una avería?. pos 6. Se sabe que las punuaciones de los alumnos en la PAEG guen una disribución normal de desviación ípica σ. Los guienes daos represenan las punuaciones de alumnos elegidos al azar:.8, 6.8, 6., 6.,.4, 8.,.9, 6.9,., 8.3,.,., 6.,. y.. a Deermina el inervalo de conianza para la media poblacional de la punuación en la PAEG con un nivel de conianza del 9 %. po b Sería razonable pensar que esa muesra proviene de una población normal con media μ 6 con un nivel de conianza del 9 %? Y con un nivel de gniicación igual a.8? Razona us respuesas. po

5 B.- Solución: Llamaremos b al nº de boijos y j al nº se jarrones 4, , , 8, 6 8, 6 á 4 B.- Solución: Llamaremos al nº de kilos de almendras pedido, y al nº de kilos de avellanas y z al nº de kilos de cacahuees ` ª ª

6 B3.- Solución: > < ± > < que se unen en, -son dos ramas de parábolas sencillas Para para coninua en lim lim lim lim B4.- Solución: máimo. noveno mes 99 insecos se alcanza el En el. 9,99 9 9, y decreciene en 9,] creciene en [,9 3 9,, insecos * * 3 insecos * * Máimo Luego b decenas decenas a < >

7 B.- Solución: Av Tener avería en la máquina,., Av 4 Tener avería en la máquina 4. A v No ener avería en la máquina,., Av 4 No ener avería en la máquina 4.,,.9,66,,9999 B6.- Solución: Para obener el inervalo de conianza debemos ener en cuena que: σ σ P zα / < µ < zα / α, donde -α es el nivel de conianza,9 en n n nuesro caso. la media de la muesra, en nuesro caso, sumamos los valores y dividimos por ; σ la desviación ípica, ahora ; n el amaño de la muesra,. α,9 α,3 α /, zα /, ya que,,98 Ver abla a Luego el inervalo pedido es: z α σ σ /, zα /, n n 66, 68 b En ese caso NO se puede admiir que la media poblacional sea 6 con un nivel de conianza del 9%, porque 6 no perenece al inervalo obenido. Si el nivel de gniicación es,8 enonces el nivel de conianza es -,8,9 o sea 9% α,9 α,8 α /,4 z / < ya que,4,96 Ver abla α En ese caso el inervalo de conianza sería de anchura menor y por ano TAMPOCO se puede admiir que la media poblacional sea 6.

Propuesta A. y B = 1 0

Propuesta A. y B = 1 0 Pruebas de cceso a Enseñanzas Univerarias Oiciales de Grado Maeria: MEMÁIS PLIDS LS IENIS SOILES II El alumno deberá conesar a una de las dos opciones propuesas o. Se podrá uilizar cualquier ipo de calculadora..

Más detalles

Propuesta A B = M = (

Propuesta A B = M = ( Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (016) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A ó B. Se

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3 Pruebas de Acceso a Eseñazas Uiverarias Oiciales de Grado Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá coesar a ua de las dos opcioes propuesas A ób. Se podrá uilizar cualquier

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SS. II 2007/2008 ÁLGEBRA. a) Plantee, sin resolver, un sistema de ecuaciones asociado al siguiente problema:

MATEMÁTICAS APLICADAS A LAS CC. SS. II 2007/2008 ÁLGEBRA. a) Plantee, sin resolver, un sistema de ecuaciones asociado al siguiente problema: MATEMÁTICAS APLICADAS A LAS CC SS II ÁLGEBRA 1 Un cliene de un supermercado ha pagado un oal de 156 euros por 24 liros de leche, 6 kg de jamón serrano y 12 liros de aceie de oliva Planee y resuelva un

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos Geomería del espacio ecuaciones de recas planos; posiciones relaivas MATEMÁTICAS II TEMA Ecuaciones de recas planos en el espacio. Posiciones relaivas Problemas propuesos Ecuaciones de recas planos. Halla,

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

PRÁCTICA 2: Ejercicios del capítulo 4

PRÁCTICA 2: Ejercicios del capítulo 4 PRÁCTICA : Ejercicios del capíulo 4. Un psicólogo clínico desea evaluar la eficacia de una erapia para reducir la ansiedad de los ejecuivos que padecen esrés en la oma de decisiones empresariales. Para

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

Estimación puntual ± Margen de error

Estimación puntual ± Margen de error Esimación Punual Para esimar el valor de un parámero poblacional se calcula la caracerísica correspondiene de la muesra, a lo que se le conoce como esadísico muesral. A la media muesral x se le idenifica

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

prepara TU SElECTIVIDAD

prepara TU SElECTIVIDAD prepara TU SElECTIVIDAD Se considera la función f ( ) = ( + a) e a siendo a un parámero real. a) Razone a qué es igual el dominio de f ( ). b) Deermine el valor de a para que la gráfica de f() pase por

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

Autómata Finito de 4 Estados y una Variables de Entrada.

Autómata Finito de 4 Estados y una Variables de Entrada. Auómaa Finio de 4 Esados y una Variables de Enrada. Vamos a diseñar un Auómaas Finio (AF) mediane el Procedimieno General de ínesis y a implemenarlo usando bieables D y cuanas pueras lógicas sean necesarias..

Más detalles

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08 Esadísica Convocaoria de Junio Faculad de Ciencias del ar. Curso 007/08 /07/08 El galludo (Squalus egalops) es una especie de iburón de aguas empladas a ropicales, que habia la plaaforma coninenal exerior

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

1 Las funciones y sus gráficas

1 Las funciones y sus gráficas 1 Las funciones y sus gráficas Página 113 1. Observa la gráfica del helicópero y responde: a) Qué alura lleva cuando va del embalse al incendio? b) A qué alura esaba a los min? A qué alura baja para coger

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD a) Duración: 1 hora y 30 minuos b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida c) En cada ejercicio, pare o aparado se indica la punuación máxima que le corresponde

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 Página 214 Qué emperaura había a las 12 del mediodía? A qué horas la emperaura ha sido de 14? 26 C A las de la mañana y a las 23:30, aproimadamene. Cuáles han sido la emperaura máima y la mínima

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES ES Padre Poveda (Guadi) Maemáicas plicadas a las SS EJEROS UNDDES : MTRES Y DETERMNNTES (-M--) Sean las marices D a) ( punos) Resuelva la ecuación maricial D ( D) b) ( puno) Si las marices D son las marices

Más detalles

Facultad de Ciencias Exactas. UNLP Página 1

Facultad de Ciencias Exactas. UNLP Página 1 ANÁLISIS MATEMÁTICO I. CIBEX-FÍSICA MÉDICA. Primer cuarimesre 0 UNIDAD I. GUÍA FUNCIONES. DOMINIO. GRÁFICA Comenzaremos nuesro curso repasando el concepo de función. Las funciones represenan el principal

Más detalles

( ) Análisis de la fórmula para la calificación de pruebas tipo test multi-respuesta. J. L. González-Santander y G. Martín

( ) Análisis de la fórmula para la calificación de pruebas tipo test multi-respuesta. J. L. González-Santander y G. Martín ereis Revisa Iberoamericana Inerdisciplinar de Méodos, Modelización y Simulación 3 53-59 Análisis de la fórmula para la calificación de pruebas ipo es muli-respuesa Fecha de recepción y acepación: 9 de

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

x 1; Soluciones dobles

x 1; Soluciones dobles EJERCICIOS TIPO EXAMEN ECUACIONES INECUACIONES Y SISTEMAS.- Resuelve las ecuaciones siguienes, facorizando previamene en los casos que eso sea posible: a) Solución: Por raarse de una ecuación de grado

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

UNIVERSIDAD DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Seleividad ndaluía. Maemáias pliadas a las ienias Soiales II. JUNIO 5. UNIVERSIDD DE NDLUÍ PRUE DE ESO L UNIVERSIDD URSO 4-5 MTEMÁTIS PLIDS LS IENIS SOILES II Insruiones: EJERIIO a) Duraión: hora y minuos.

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBADE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso - (JUNIO) MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA Funciones Vecoriales Insiuo Poliécnico Nacional 1. Para cada función vecorial, calcule r' ( r ''( 1.1 r( (sin cos i cos j sink (Res r' ( cosi sin j cosk 1. r( (cos i e j (1/ k (Res. r'( sin i e j (1/ k.

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

ESTIMACIÓN DE LA EVASIÓN EN EL IMPUESTO AL VALOR AGREGADO MEDIANTE EL MÉTODO DEL CONSUMO Asesoría Económica - DGI Mayo 2009

ESTIMACIÓN DE LA EVASIÓN EN EL IMPUESTO AL VALOR AGREGADO MEDIANTE EL MÉTODO DEL CONSUMO Asesoría Económica - DGI Mayo 2009 ESTIMACIÓN DE LA EVASIÓN EN EL IMPUESTO AL VALOR AGREGADO MEDIANTE EL MÉTODO DEL CONSUMO 2000-2008 Asesoría Económica - DGI Mayo 2009 1. Jusificación y meodología empleada El objeivo del esudio de la evasión

Más detalles

6.7. ENSAYOS EN FLUJO CONVERGENTE

6.7. ENSAYOS EN FLUJO CONVERGENTE Clase 6.7 Pág. 1 de 1 6.7. ENSAYOS EN FLUJO CONVERGENTE 6.7.1. Principios Los pasos que deben seguirse para efecuar un ensayo de flujo convergene son: 1. Se bombea en un puno hasa conseguir que las condiciones

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO hp://comunidad.udisrial.edu.co/elecriciyprojecudisrial/ Elecriciy Projec UD 2017 CORRIENTE ELÉCTRICA La corriene es la asa de variación de la carga respeco al iempo [1]. La Unidad de medida es el Ampere

Más detalles

M = 3I + A 2 = 3 M = X B = I X B B -1 = I B -1 X I= B -1 X = B -1

M = 3I + A 2 = 3 M = X B = I X B B -1 = I B -1 X I= B -1 X = B -1 -3 - - 0 3 4 www.clasesalacarta.com Universidad de Castilla la Mancha PU/LOGSE Reserva-.03 RESERV 03 Opción - 0.- adas las matrices: -3 y -3 0 a) Calcula la matriz M (3I ), donde I es la matriz identidad

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

, obtén la expresión de la matriz X del apartado anterior. (0.5 ptos) 3 4. (0.5 ptos) (0.25 ptos por la inversa)

, obtén la expresión de la matriz X del apartado anterior. (0.5 ptos) 3 4. (0.5 ptos) (0.25 ptos por la inversa) Evaluación para el Acceso a la Universidad Convocatoria de 017 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se podrá

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

Crecimiento Discreto Denso-Independiente

Crecimiento Discreto Denso-Independiente Ecología General: 25M 76 Modelos de Crecimieno. Crecimieno Discreo Denso-Independiene 2. Crecimieno Coninuo Denso-Dependiene Crecimieno Discreo Denso-Independiene - Reproducción Discrea - Ambiene esable

Más detalles

h + para cualquier m 1, 5.2. Modelo E-GARCH Introducción

h + para cualquier m 1, 5.2. Modelo E-GARCH Introducción 5.2. Modelo E-GARCH Inroducción Los modelos GARCH exponenciales nacen a parir de la publicación de Daniel Nelson (99) sobre heerocedasicidad condicional en los modelos de renabilidad de acivos. Dicho auor

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

M O D E L O S D E I N V E N T A R I O

M O D E L O S D E I N V E N T A R I O nvesigación Operaiva Faculad de iencias Exacas - UNPBA M O E L O E N V E N T A O El objeivo de la eoría de modelos de invenario es deerminar las reglas que pueden uilizar los encargados de gesión para

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC ANEXO A LA PRÁTIA ARGA Y DESARGA DE UN APAITOR EN UN IUITO Inroducción. En esa prácica se esudia el comporamieno de circuios. En una primera pare se analiza el fenómeno de carga y en la segunda pare la

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk Deerminación de las garanías para el conrao de fuuros de soja en pesos. Value a Risk Gabriela acciano inancial Risk Manager gfacciano@bcr.com.ar Direcora Deparameno de Capaciación y Desarrollo de Mercados

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

GUÍA DE EJERCICIOS DE VARIABLES ALEATORIAS

GUÍA DE EJERCICIOS DE VARIABLES ALEATORIAS PROBABILIDAD Y ESTADÍSTICA MAT GUÍA DE EJERCICIOS DE VARIABLES ALEATORIAS. El vendedor de un pueso de periódicos asigna las siguienes probabilidades de demanda de la revisa Fine: Suceso : Demanda de ejemplares

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS º DE BACHILLERATO MÉTODO DE GAUSS Soluciones -- SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS. Resolver los siguienes siseas de ecuaciones aplicando el éodo de Gauss. a) 8 8 b) c) -- SOLUCIONES MÉTODO DE GAUSS

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

Respuesta A.C. del BJT 1/10

Respuesta A.C. del BJT 1/10 Respuesa A.. del BJT 1/10 1. nroducción Una ez que se ubica al ransisor denro de la zona acia o lineal de operación, se puede uilizar como amplificador de señales. n base a un ransisor BJT NPN en configuración

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

CAPÍTULO II. Conceptos de Confiabilidad

CAPÍTULO II. Conceptos de Confiabilidad CAPÍTULO II Concepos de Confiabilidad CAPÍTULO II CONCEPTOS DE CONFIABILIDAD Una de las áreas de ingeniería de confiabilidad es la modelación de la misma, debido a que los procesos en general se comporan

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

Ecuaciones de Primer Orden e Intervalo Maximal

Ecuaciones de Primer Orden e Intervalo Maximal 2 Ecuaciones de Primer Orden e Inervalo Maximal 2.1 Algunos Méodos de Resolución En general, es muy difícil resolver ecuaciones diferenciales de primer orden. Pero hay cieros ipos canónicos de ésas para

Más detalles

LOGARITMOS. 2.- Calcula las siguientes potencias y escríbelas en forma de logaritmo, tal y como se indica en el. d)

LOGARITMOS. 2.- Calcula las siguientes potencias y escríbelas en forma de logaritmo, tal y como se indica en el. d) LOGARITMOS.- Calcula las siguienes poencias y escríbelas en forma de logarimo, al y como se indica en el ejemplo: = log = a) 7 b) c) 9 d) e) 0 f) 7 g) h) i).- Calcula las siguienes poencias y escríbelas

Más detalles