Solución y criterios de corrección. Examen de mayores de 25 años Matemáticas aplicadas a las ciencias sociales.
|
|
- Julio Espinoza Ferreyra
- hace 2 años
- Vistas:
Transcripción
1 Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas. El número de especadores de la sala es el doble de la suma de especadores de las salas A y B. También el número de especadores de la sala es veces la diferencia enre los que acudieron a la sala B y los que fueron a la sala A. a Planea el sisema que nos permie averiguar cuánas personas acudieron a cada una de las salas de cine., punos b Resuelve el sisema planeado en el aparado anerior. puno a x= número de persona que hay en la sala A y= número de personas que hay en la sala B z= número de personas que hay en la sala x y z z x y z y x x y z x y z x y z x y z b x y 7 soluciones: x=, y=4, z= x a. punos por cada ecuación bien planeada b puno por la resolución correca del sisema planeado en el aparado a Sea la función fx= x -x +9x+. a alcula los máximos y mínimos relaivos de fx.. punos b alcula los punos de inflexión.. punos c Obén los inervalos de concavidad y convexidad de la función dada..7 punos a f x x f x x, x 9 b f x x, f x x, c f x x,, Signo de x f es x f x, esun máximodela función f x, esun mínimo dela función f x x, 4 es un puno de inf lexión
2 a alcular la ª derivada:. punos alcular los valores que anulan la ª derivada:. punos alcular la segunda derivada.. punos omprobar que x= es un máximo:. punos omprobar que x= es un mínimo:. punos balcular que el valor que anula la segunda derivada es x=:. punos omprobar que,4 es un puno de inflexión viendo que la derivada ercera no Se anula para x=:. punos Esablecer los inervalos de concavidad y convexidad:. punos alcular el signo de la ª derivada en cada inervalo :. Decir si es cóncava o convexa en cada inervalo:. punos Se considera la función x si x f x x x si x Se pide: a alor de para que f sea coninua en x=- b Para =, represena gráficamene la función a f-= --+= + f x x x x x f x f x x x x x b la gráfica es la siguiene: x f x 4 4 a. punos por resolución correca b. punos rozo de la izquierda Lado derecho:. punos por los punos de core con el eje X. punos por calcular correcamene el mínimo punos por odo correco.
3 4 Según un esudio, el 8% de los hogares españoles iene eléfono móvil, el 7% iene eléfono móvil y fijo, y el 9% dispone del uno o del oro. a Se selecciona un hogar español al azar. uál es la probabilidad de que enga eléfono fijo? b Si se elige un hogar al zar y iene eléfono fijo, cuál es la probabilidad de que enga móvil? c Es independiene ener eléfono fijo y ener eléfono móvil? Razona u respuesa M= ener eléfono móvil F= ener eléfono fijo PM=,8 PM F=,7 M y F son compaibles PM F=,9 a PM F= PM+PF- PM F PF= PM F- PM+ PM F=,9-,8+,7 =,8 P M F.7 b PM/F=. 87 P F.8 c Los sucesos M= ener eléfono móvil y F= ener eléfono fijo son independienes si : PM F= PM PF PM F=,7 y PM PF=,8,8 =,4 POR TANTO SON DEPENDIENTES. a. punos por el planeamieno;. punos por resolución correca b. punos por el planeamieno;. punos por resolución correca c. punos por resolución correca.
4 BLOQUE B Dadas las marices B A a alcula la mariz raspuesa de A, punos b alcula A -B+I, siendo I la mariz idenidad de orden puno c alcula la mariz X al que X=I, siendo I la mariz idenidad de orden puno a A I B A b X IX I X c a alcular A :, punos balcular A :, punos; alcular B:, punos; alcular A -B+I:, punos c Despejar X= - :, punos; alcular - :, punos La función = 4 9, 4,, represena la velocidad de una parícula medida en m/s, en función del iempo que ranscurre desde que la parícula inicia el movimieno, medido en horas. a uál es la velocidad de la parícula a las horas = de haber iniciado su marcha?. punos b alcula los inervalos de crecimieno y decrecimieno de la velocidad de la parícula para <<4,. punos c uándo alcanza su velocidad máxima? uál es la velocidad máxima alcanzada? puno s m y la velocidad máxima alcanzada es horas las a máxima Alcanza su velocidad corresponde a un mínimo función la de máximo un es c s m a / 4,, 8 4, 4 8 / 8 4 9
5 b,, 4 4, 4, Signo de Signo de Signo de es creciene decreciene creciene aalcular =8 m/s :, punos balcular la ª derivada :. punos alcular los valores que anulan la ª derivada:. punos Esablecer los inervalos de crecimieno o decrecimieno:. punos Decir el signo de la ª derivada en cada inervalo:. punos Decir si la función es creciene o decreciene en cada inervalo:. punos c alcular la derivada segunda :. alcular que = corresponde a un máximo:. punos alcular =:. punos Dada la función: x si x f x x 4 x si x Se pide: a Deerminar el dominio de fx b Esudiar si es coninua en x= c alcular el límie de fx cuando x iende a infinio.
6 x a Dom f= R, f x es una función racional, no esá definida para x=4, pero esá fuera x 4 ese valor de donde esá definida la función en ese rozo: x<. fx=x - es una función polinómica, por ano esá definida para odo nº real, en paricular para x b f= -= x f x x x x 4 4 f x x x x omo los límies laerales son iguales f x x omo f x f, enonces f es coninua en x= x x x c f x x x x x x x 4 x x 4 x 4 x x x a. punos por resolución correca. b. punos por definición de coninuidad y planeamieno;.7 punos por resolución correca. c.7 punos por resolución correca 4 Según una encuesa realizada a los adolescenes de una ciudad, la probabilidad de que un adolescene fume es., la probabilidad de que ayude en las areas de casa es de. y la de que fume y ayude en las areas de casa es de.. a alcula la probabilidad de que un adolescene fume o ayude en casa. b Si se elegimos un adolescene al azar y sabemos que fuma, cuál es la probabilidad de que ayude en casa? c Son independienes fumar y ayudar en las areas de la casa? Razona u respuesa P fumar =,; P ayudar =,; P fumar ayudar=, a P fumar ayudar=pfumar+payudar- P fumar ayudar=,+,-,=,9 P fumar ayudar, b Payudar/ fumar=, P fumar. c Dos sucesos Fumar y Ayudar son independienes si : P fumar ayudar= P fumar P ayudar,,, los sucesos Fumar y Ayudar no son independienes O bien: Dos sucesos Fumar y Ayudar son independienes si P ayudar= Payudar/ fumar,, los sucesos Fumar y Ayudar no son independienes a. punos por el planeamieno;. punos por resolución correca b. punos por el planeamieno;. punos por resolución correca c. punos por resolución correca.
TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,
TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y
De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.
EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que
Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por
Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen
Ecuaciones diferenciales, conceptos básicos y aplicaciones
GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos
Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.
Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el
DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9
4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con
Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.
1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria
{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.
. Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,
Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase
Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,
01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones
01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y
LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.
LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden
Funciones exponenciales y logarítmicas
89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos
2 El movimiento y su descripción
El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina
C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x
Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.
Física 2º Bach. Tema: Ondas 27/11/09
Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00
ACTIVIDADES UNIDAD 7: Funciones elementales
ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura
PRÁCTICA 3: Sistemas de Orden Superior:
PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se
Práctica 2: Análisis en el tiempo de circuitos RL y RC
Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN
IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.
IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de
= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A
Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un
TEMA I: FUNCIONES ELEMENTALES
TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)
Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.
ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés
PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO
PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.
DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =
DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula
MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS
1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,
Capítulo 4 Sistemas lineales de primer orden
Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden
FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.
Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad
PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)
Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +
Resolución Prueba Oficial
JUEVES 6 DE sepiembre DE 01 en n 1 on el maerial de esa edición podrás revisar ocho pregunas del Área emáica de Funciones siee de Geomería. El jueves 1 de sepiembre publicaremos la ercera pare de la resolución
Construcción de señales usando escalones y rampas
Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne
Modelo de regresión lineal simple
Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos
Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.
Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca
Medición del tiempo de alza y de estabilización.
PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición
prepara TU SElECTIVIDAD
prepara TU SElECTIVIDAD Se considera la función f ( ) = ( + a) e a siendo a un parámero real. a) Razone a qué es igual el dominio de f ( ). b) Deermine el valor de a para que la gráfica de f() pase por
UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás
UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?
TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.
T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas
MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.
Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d
Cobertura de una cartera de bonos con forwards en tiempo continuo
Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................
Métodos de Previsión de la Demanda Datos
Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco
FUNCIONES VECTORIALES CON DERIVE.
FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con
Capítulo 5 Sistemas lineales de segundo orden
Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d
Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito
Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio
Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:
Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES
DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS
DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una
TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS
TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores
El comportamiento del precio de las acciones
El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2013). Materia: Matemáticas aplicadas a las ciencias sociales
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2013). Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B) de cuatro preguntas cada uno. El alumno
1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...
Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.
Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:
3. Matrices y álgebra matricial
Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas
GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME
INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del
1. Derivadas de funciones de una variable. Recta tangente.
1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias
Análisis espectral Tareas
Análisis especral Tareas T3.1: Implemenación y represenación del periodograma El objeivo de esa area es que los alumnos se familiaricen con la función más sencilla de análisis especral no paramérico. Programe
REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA
Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios
Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR
Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN
Aplicaciones de ED de segundo orden
CAPÍTULO 5 Apliaiones de ED de segundo orden 5.. Vibraiones amoriguadas libres Coninuando el desarrollo del esudio de las vibraiones, supongamos que se agrega ahora un disposiivo meánio (amoriguador) al
MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO
MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO VAR: GENERAL Represenación del modelo VAR: () + + = e e A A A A w w c c c c L L L L L L L L ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( Selección:.
TOPOLOGÍA. De la misma forma se puede generalizar el concepto de convergencia, que para sucesiones
Muy, muy cerca: Coninuidad y convergencia Una función f : IR IR es coninua en a si valores muy, muy cercanos a a se ransforman en valores muy, muy cercanos a f(a). Dicho de oro modo, por muy exigenes que
CAPÍTULO 3: INFILTRACIÓN
27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del
1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA
hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado
FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica
FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones
Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO
Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador
Las derivadas de los instrumentos de renta fija
Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa
Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz
Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con
Crecimiento Discreto Denso-Independiente
Ecología General: 25M 76 Modelos de Crecimieno. Crecimieno Discreo Denso-Independiene 2. Crecimieno Coninuo Denso-Dependiene Crecimieno Discreo Denso-Independiene - Reproducción Discrea - Ambiene esable
x: acciones tipo A y: acciones tipo B función a optimizar: R(x,y)= 0.01x + 0.05y x 10000 y 8000 x + y 15000 x 0 y 0 x = 10000 x + y = 15000 x = 7000
4 6 8 4 6 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Septiembre. SEPTIEMBRE Opción A.- Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo
Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finitas
Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finias F. S. Guzmán Insiuo de Física y Maemáicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3,
Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan
Tema 3. El modelo neoclásico de crecimieno: el modelo de Solow-Swan Inroducción Esquema El modelo neoclásico SIN progreso ecnológico a ecuación fundamenal del modelo neoclásico El esado esacionario Transición
Tema 8: SERIES TEMPORALES
Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas
ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)
ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo
BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas
BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por
IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera
CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan
ELECTRONICA DE POTENCIA
LTRONIA D POTNIA TIRISTORS Anonio Nachez A4322 LTRONIA IV A4.32.2 lecrónica IV 2 3 INDI 1. onmuación naural 2. onmuación forzada 3. Méodos de apagado: lasificación 4. lase A: Auoconmuado por carga resonane
Guía de Ejercicios Econometría II Ayudantía Nº 3
Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85
Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández
Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,
Sus experiencias con el cáncer
Número de OMB: 0935-0118 Fecha de vencimieno de la aprobación: 01/31/2013 Sus experiencias con el cáncer l Esa encuesa es acerca de las secuelas o efecos secundarios del cáncer y de los raamienos para
Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.
El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.
Sistemade indicadores compuestos coincidentey adelantado julio,2010
Sisemade indicadores compuesos coincideney adelanado julio,2010 Sisema de Indicadores Compuesos: Coincidene y Adelanado SI REQUIERE INFORMACIÓN MÁS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICARSE A: Insiuo
Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)
Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación
Metodología de Cálculo Mensual de los Índices de Precios de Comercio Exterior
Meodología de Cálculo Mensual de los Índices de Precios de Comercio Exerior Dirección Técnica de Indicadores Económicos Dirección Ejecuiva de Índices de Precios LIMA PERÚ Ocubre de 2013 1 ÍNDICE Pág. Inroducción
SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.
SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,
6. ALGEBRAS DE BOOLE
6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier
Examen funciones 4º ESO 12/04/13
Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +
MIDI S-35. Canal MIDI 1 Melodía Canal MIDI 2 Bajo Canal MIDI 10 Baterías MIDI IN. Canal de recepción MIDI =1 Ejecuta la melodía.
/ VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qué es la MIDI? La sigla MIDI significa Inerfaz Digial para los Insrumenos Musicales, que es el nombre de una norma mundial para las señales
UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.
D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada
3 Aplicaciones de primer orden
CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la
LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR
1 LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR José Luis Moncayo Carrera 1 Ec. Manuel González 2 RESUMEN El presene documeno iene como objeivo, presenar la aplicación de écnicas economéricas en
DOCUMENTO DE TRABAJO. www.economia.puc.cl. Determinantes Económicos de la Fecundidad de Corto Plazo en Chile. Carla Castillo Laborde.
Insiuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO 2005 Deerminanes Económicos de la Fecundidad de Coro Plazo en Chile Carla Casillo Laborde. www.economia.puc.cl
domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas
2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro
Definición. Elementos de un Sistema de Control
TEORÍA DE CONTROL. Tema 1. Inroducción a los Sisemas de Conrol Sisema de Conrol Los conroles auomáicos o sisemas de conrol consiuyen una pare muy imporane en los procesos indusriales modernos, donde se
Soluciones Acotadas para Ecuaciones Diferenciales Ordinarias de Orden 2
Divulgaciones Maemáicas Vol. 7 No. 1 (1999), pp. 49 57 Soluciones Acoadas para Ecuaciones Diferenciales Ordinarias de Orden 2 Bounded Soluions for Second Order Ordinary Differenial Equaions Raúl Naulin
BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN.
BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN. INSTITUTO DE ACTUARIOS ESPAÑOLES. 5 de junio de 2014. 0 Inroducción
Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente).
Auorización SHCP: 09/11/2010 Fecha de publicación úlima modificación: 29/08/2014 Fecha de enrada en vigor: 05/09/2014 Condiciones Generales de Conraación del Conrao de Fuuro sobre el Índice de Precios
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.