EVALUACIÓN DE EXPRESIONES ALGEBRAICAS CON VARIABLES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EVALUACIÓN DE EXPRESIONES ALGEBRAICAS CON VARIABLES"

Transcripción

1 Algoritmos y Estruturs de Dtos Fundmentos de Progrmión 2 : 1 sesión (S8: del 16 l 20 de myo) EVALUACIÓN DE EXPRESIONES ALGEBRAICAS CON VARIABLES En est práti proederemos evlur expresiones esrits en form infij (el operdor está situdo entre los operndos) on préntesis y on operndos que serán vriles (d vez que deseemos evlur l expresión pediremos l usurio que nos dé los vlores onretos de ls vriles pr es evluión). Ls operiones válids que evluremos serán ls operiones inris, -,, /. Expresiones válids evlur serán, por ejemplo: ( - ) / d, () / (-d) e, OBJETIVOS. Utilizión del tipo strto de dtos Arol inrio.. Reutilizión de ódigo (reutilizión de l lse Pil ).. Utilizión de ódigo no desrrolldo por el usurio (funión infij posfij y lse TlSimolos ). d. Trjo on funiones reursivs. 1. INTRODUCCIÓN Un mner deud de representr expresiones ritmétis es trvés de los ároles inrios de expresiones. Est representión retiene de mner nturl l preedeni y l soitividd de los operdores ritmétios. En un árol inrio de expresiones d nodo ontiene l informión de un elemento de l expresión (un operndo o un operdor) y l propi estrutur del árol viene determind por l form de l expresión ritméti. Un ejemplo de esto lo tenemos en los siguientes ároles de expresiones: (25) Se puede ver que dependiendo de l oloión de los préntesis se fuerz el mio de preedeni de los operdores y ls expresiones genern ároles distintos. Tmién es importnte resltr que en el árol lrmente no son neesrios los préntesis, y que l preedeni en ls operiones viene dd por l estrutur del árol. L evluión de ls expresiones, es deir, l otenión de su resultdo, se onsigue reorriendo el árol de expresiones en form postfij y relizndo pr d nodo que ontiene un operdor dih operión sore sus hijos. De heho, si exminmos el árol en reorrido post-orden imprimiendo en pntll el Práti 6: Evluión de expresiones lgeris on vriles 1/5

2 Algoritmos y Estruturs de Dtos Fundmentos de Progrmión 2 ontenido de d nodo, otendremos lo que se denomin l expresión postfij de l expresión. Ls expresiones postfijs de los ároles del ejemplo son ls siguientes: Pr l expresión infij (25)31, l expresión postfij es Pr l expresión infij 2531, l expresión postfij es Nótese que l expresión postfij, l igul que ourrí en el árol, no neesit utilizr préntesis. De l mism form que podemos otener l expresión postfij prtir del árol de expresiones, tmién podemos her lo ontrrio, es deir, otener el árol de expresiones prtir de un expresión postfij. Este heho v ser utilizdo en l presente práti. 2. REALIZACIÓN DE LA PRÁCTICA.- Otenión de l expresión postfij y l tl de vriles. El progrm deerá empezr pidiendo l expresión ritméti en form infij que desemos evlur. Un vez gurdd l expresión en un vrile de tipo string psremos l expresión su form postfij y extreremos de l expresión un tl on ls vriles utilizds en l expresión Utilizremos pr ello un funión proporiond por el profesor de prátis infijo posfijo. El prototipo de est funión es: ool infijo posfijo (string, string &, TlSimolos &); Est funión tiene un entrd que es l den de l expresión infij. Como slids de l funión tenemos tres vlores (dos devueltos por refereni y uno omo resultdo de l funión): L primer slid (segundo prámetro de l funión) es l den on l expresión postfij. L segund slid (terer prámetro de l funión) es un ojeto de tipo TlSimolos que es l tl donde se lmenn los identifidores orrespondientes los nomres de d vrile. L terer slid (vlor devuelto por l funión) es un vlor ooleno. L funión devuelve true si l expresión est sintátimente ien formd o flse si hí lgún error sintátio en ell de estos dos tipos: - Nos hemos dejdo lgún préntesis sin errr - El número de operdores o de operndos no es el orreto L funión no detet errores omo que el orden entre operndos y operdores se inorreto.. Pso de l expresión postfij su representión medinte un árol de expresión. El árol que vmos utilizr pr gurdr l expresión tendrá omo informión en d uno de sus nodos un ráter, tl y omo hemos visto en l introduión. Pr relizr el pso de l expresión postfij su representión en el árol vmos neesitr un pil (de ároles inrios) pr onstruir el árol inrio que gurdrá l expresión. Pr onseguirlo relizremos el siguiente proeso: Pr d uno de los elementos de l expresión postfij tenemos que her lo siguiente: Si el elemento nlizdo es un operndo (vrile), onstruimos un árol inrio de un únio nodo que ontiene omo informión el ráter que represent l vrile y omo hijos dos suároles víos. Este árol lo pilmos en l pil. Si el elemento nlizdo es un operdor, onstruiremos un nuevo árol de l siguiente mner: Práti 6: Evluión de expresiones lgeris on vriles 2/5

3 Algoritmos y Estruturs de Dtos Fundmentos de Progrmión 2 Extremos dos elementos de l pil (d elemento puede ser un árol omplejo si este proedimiento se h heho y nteriormente). El primer elemento extrído de l pil será el hijo dereho del nuevo árol. El segundo elemento extrído será el hijo izquierdo del nuevo árol L informión del nodo ríz del nuevo árol es el ráter que represente l operión. Un vez onstruido el árol lo pilmos en l pil. En el diujo se detll el proeso seguido pr l otenión del árol de expresión pr l expresión lgeri postfij d d d d d Un vez nlizdos todos los elementos de l expresión en l pil se enontrrá un únio árol que es el orrespondiente árol de expresión. Se puede ompror l orret ejeuión de este pso si reorriendo de form postfij el árol otenemos l expresión postfij originl.. Evluión de l expresión. L evluión onsistirá ásimente en dos tres:.1. Pedir los vlores de ls vriles que ontiene l expresión. Pr relizr est tre nos serviremos de los métodos púlios de l lse TlSimolos. L interfz de l lse es l siguiente: lss TlSimolos { puli: //Construtor TlSimolos (); //Anydir un simolo l tl //devuelve flse si l tl est llen o si el simolo y est en l tl ool NuevoSimolo (hr); //Devuelve el vlor numerio soido on un simolo //devuelve NN si el simolo no est en l tl flot VlorSimolo (hr); //Modifi el vlor numerio soido on un simolo //devuelve flse si el simolo no est en l tl ool CmirVlorSimolo (hr, flot); //Devuelve todos los simolos lmendos en l tl //en form de den de rteres string TodosLosSimolos (); privte:.??. }; Práti 6: Evluión de expresiones lgeris on vriles 3/5

4 Algoritmos y Estruturs de Dtos Fundmentos de Progrmión 2 A prtir de l interfz vemos que l tre que tenemos que relizr onsistirá en pedir l ojeto que nos dig que elementos ontiene utilizndo pr ello el método string TodosLosSimolos (). A prtir del string que nos devuelve el método, iremos preguntndo l usurio uál es el vlor que quiere signr l símolo y ontinuión lo gurdmos on el método ool CmirVlorSimolo (hr, flot)..2. A prtir de estos vlores otener el vlor numério de operr ls vriles on ls operiones indids en el árol. Pr evlur l expresión trvés del árol sólo neesitmos reorrer el árol en orden postfijo hiendo lo siguiente: Si el nodo evlur es un operndo (vrile), l funión que reorre el árol dee devolver el vlor de l vrile orrespondiente onsultndo el vlor en l tl de vriles (utilizndo el método flot VlorSimolo (hr)). Si el nodo evlur es un operdor, se pli este operdor sore los vlores numérios otenidos de evlur sus hijos y l funión devolverá diho vlor. Cundo termine el reorrido, el vlor finl otenido orresponderá l evluión de l expresión omplet. Est evluión podrá repetirse tnts vees omo desee el usurio on vlores distintos de ls vriles. 3. REQUISITOS PARA PODER ENTRAR A REALIZAR LA PRÁCTICA Antes de poder empezr relizr ulquier de ls prátis es neesrio presentr ls hojs de espeifiión de progrms (formulrio de doumentión de progrms) on ls tres que se vn relizr en l práti, explindo revemente omo se vn soluionrse los prolems que se plnten. En este formulrio irán reflejdos los siguientes detlles del progrm: ls tres lses que se vn utilizr en l práti: Clse Pil / Clse Arol / Clse TlSimolos (unque est últim no l hymos desrrolldo nosotros vmos utilizr sus métodos púlios y deemos doumentrlos). Ls funiones en que vmos dividir el progrm prinipl y que vmos utilizr lo lrgo de nuestro progrm, espeifindo lrmente ls entrds y slids de ls misms, sí omo l tre que desrroll ontd muy revemente. En est práti se reomiend dividir el progrm prinipl en fundmentlmente tres funiones que tiendn d un de ls tres espeifids en el punto 2 relizión de l práti (l primer funión es l que orresponde l que os proporionrá el profesor de prátis). Los digrms de flujo tnto del progrm prinipl omo de quells funiones que onsideremos más interesntes o omplejs. En est práti se reomiend l relizión del digrm de flujo de l funión prinipl, sí omo de l funión que onstruye el árol inrio. Tmién se reomiend l relizión en pseudoódigo de l funión que evlúe el árol inrio pr otener el vlor finl de l expresión. 4. ENTREGA DE PROGRAMAS Cino dís después de relizd l sesión de prátis se entregrá l profesor l siguiente informión: 1) Arhivo on el progrm prinipl (##evluion.pp) 2) Arhivos on l lse Pil (##Pil.h y ##Pil.pp) 3) Arhivos on l lse Arol (##Arol.h y ##Arol.pp) Práti 6: Evluión de expresiones lgeris on vriles 4/5

5 Algoritmos y Estruturs de Dtos Fundmentos de Progrmión 2 dónde ## es el número signdo l prej (01, 02,...) en d grupo de prátis. Al omenzr l siguiente sesión de prátis se entregrá l profesor el formulrio on l doumentión definitiv de l práti reflejndo todo el trjo relizdo relmente en l práti. ENTREGA DE PROGRAMAS: Los dís 21, 22, 23, 24 y 25 de myo de 2005, orrespondientes on ls fehs de relizión de prátis 16, 17, 18, 19 y 20 de myo respetivmente. ENTREGA DE FORMULARIOS DEFINITIVOS DE DOCUMENTACIÓN: Los dís 23, 24, 25, 26 y 27 de Myo de 2005, orrespondientes on ls fehs de relizión de prátis 16, 17, 18, 19 y 20 de myo respetivmente Práti 6: Evluión de expresiones lgeris on vriles 5/5

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

Estructuras de datos. Estructuras de datos. Estructuras de datos. Estructuras de datos

Estructuras de datos. Estructuras de datos. Estructuras de datos. Estructuras de datos Existen dos tipos de list on un uso muy freuente en el desrrollo de pliiones de softwre. El primero son ls pils uyo omportmiento es el de un list que insert y elimin sus elementos por el mismo extremo

Más detalles

Programación: el método de bisección

Programación: el método de bisección Progrmión: el método de iseión Este texto fue esrito por Egor Mximenko y Mri de los Angeles Isidro Perez. Ojetivos. Enter l ide del método de iseión, progrmr el método de iseión usndo un ilo while, pror

Más detalles

Teoría de Autómatas y Lenguajes Formales

Teoría de Autómatas y Lenguajes Formales Teorí de Autómts Lengujes Formles Ingenierí Téni en Informáti de Sistems Segundo urso, segundo utrimestre Curso démio: 2010 2011 Deprtmento de Informáti Análisis Numério Esuel Politéni Superior Universidd

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

ÁLGEBRA DE BOOLE. Algebra de Boole

ÁLGEBRA DE BOOLE. Algebra de Boole ÁLGEBRA DE BOOLE Alger de Boole George Boole 854 desrrolló un herrmient mtemáti que se utiliz pr el estudio de omputdores. L pliión en omputdores es del tipo inrio 0/ El estdo de un elemento del iruito

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos.

CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos. CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) OBJETIVO Anlizr los utómts de estdo finito y sus omponentes, sí omo ls diferentes forms de representrlos. JUSTIFICACION L definiión de los utómts de estdo finito

Más detalles

Álgebra Booleana y Propiedades

Álgebra Booleana y Propiedades Álger Boolen y Propieddes Se B ={;}. Deinimos l sum y el produto y omplemento pr los elementos de B omo + =. + = + = + =.. = =. =.. = Un vrile es un vrile oolen si sólo tom vlores de B. en onseueni + =

Más detalles

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES. PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Preguntas y respuestas para la evaluación continua 2008/2009

Preguntas y respuestas para la evaluación continua 2008/2009 Pregunts y respuests pr l evluión ontinu 28/29 Dr. Arno Formell Universidd de Vigo Deprtmento de Informáti Áre de Lengujes y Sistems Informátios E-324 Ourense http://www.ei.uvigo.es/ formell formell@ei.uvigo.es

Más detalles

SECCIÓN 1 NOCIONES DE ESCRITURA MATEMÁTICA

SECCIÓN 1 NOCIONES DE ESCRITURA MATEMÁTICA SEMANA SECCÓN NOCONES DE ESCRTURA MATEMÁTCA L mtemáti es l ieni que trt de ls ntiddes, onstituid por un lenguje ifrdo onvenido universlmente, medinte el ul nos omunimos, on relión los álulos numérios plidos

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

determinante haciendo todos los productos, Tema 8. Determinantes.

determinante haciendo todos los productos, Tema 8. Determinantes. Tem. Determinntes.. Definiión de determinntes.. Propieddes de los determinntes.. Cálulo de determinntes de orden myor que (No entr en seletividd).. Rngo de un mtriz.. Mtriz invers... Definiión del determinnte

Más detalles

6 INTEGRAL DEFINIDA - ÁREAS

6 INTEGRAL DEFINIDA - ÁREAS 6 INTEGRL DEFINID - ÁRES INTRODUCCIÓN Histórimente, el álulo integrl surgió de l neesidd de resolver el prolem de l otenión de áres de igurs plns. Los griegos lo ordron, llegndo órmuls pr el áre de polígonos,

Más detalles

CONJUNTOS, RELACIONES Y GRUPOS

CONJUNTOS, RELACIONES Y GRUPOS CONJUNTOS, RELACIONES Y GRUPOS. CONJUNTOS. Conjunto Un onjunto está ien definido undo se posee un riterio que permit firmr si un elemento pertenee o no diho onjunto.. Inlusión Un onjunto B está inluido

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

Ejemplo para transformar un DFA en una Expresión Regular

Ejemplo para transformar un DFA en una Expresión Regular Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.

Más detalles

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1 MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole

TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole TEMA 1 Eletróni digitl. Ciruitos ominiones. Álger de Boole 1. Introduión Un iruito ominionl es quel que en d instnte present un estdo de slid que depende únimente del estdo de sus entrds. Un señl nlógi

Más detalles

ELECTRÓNICA DIGITAL 0 FALSO APAGADO CON INTERRUPTOR

ELECTRÓNICA DIGITAL 0 FALSO APAGADO CON INTERRUPTOR I.E.S Sntos Iss Deprtmento de Tenologí ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN Y CÓDIGOS 3. ALGEBRA DE BOOLE 4. FUNCIONES LÓGICAS 5. SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. INTRODUCCIÓN

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c}

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c} Funiones El onepto de Funión es un de ls ides undmentles en l Mtemáti. Csi ulquier estudio que se reier l pliión de l Mtemáti prolems prátios o que requier el nálisis de dtos, emple este onepto mtemátio.

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICA. ASIGNATURA: MATEMATICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

PLATAFORMA SAYHUITE REGIONAL APLICATIVO SIGPROA - EDUCACIÓN

PLATAFORMA SAYHUITE REGIONAL APLICATIVO SIGPROA - EDUCACIÓN PLATAFORMA SAYHUITE REGIONAL APLICATIVO SIGPROA - EDUCACIÓN 1. INGRESO AL SISTEMA. Ingresr l siguiente direión desde el nvegdor (Chrome, Firefox, Oper) http://syhuite.regionlim.go.pe:8081. Esriir usurio

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

Reinaldo Núñez Universidad Sergio Arboleda

Reinaldo Núñez Universidad Sergio Arboleda ACERCA DEL TRIÁNGULO DE PASCAL Reinldo Núñez Universidd Sergio Aroled reinldo.nunez@us.edu.o, reinldonunez@gmil.om El Triángulo de Psl es un onepto que se ve en l seundri undo se desrroll ( ) n o lguns

Más detalles

Unidad 2 Determinantes

Unidad 2 Determinantes Unidd Determinntes PÁGIN SOLUCIONES. Ls mtries usds son ls siguientes: 5 Est mtriz no tiene invers.. Hiendo eros eslonmos ls mtries, oteniendo:, luego el rngo es. 4 4 4 El rngo es. PÁGIN 45 SOLUCIONES.

Más detalles

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2013/15 Confereni de los Estdos Prte en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 30 de septiemre de 2013 Espñol Originl: inglés Quinto período de sesiones Pnmá,

Más detalles

Tema 1: ÁLGEBRA DE MATRICES

Tema 1: ÁLGEBRA DE MATRICES ÁLGER DE MTRIES Tem : ÁLGER DE MTRIES Índie. Mtries... Definiión de mtriz... lsifiión de ls mtries... Tls, grfos y mtries.. Operiones on mtries... Sum de mtries... Multipliión de un número por un mtriz...

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

CONSTRUCCION DE TRIANGULOS

CONSTRUCCION DE TRIANGULOS ONSTRUION DE TRINGULOS INTRODUION Ls exigenis que se imponen un figur que se dese onstruir son ls siguientes: 1) l mgnitud de segmentos, ros, ángulos y áres. 2) l posiión reltiv de puntos y línes. 3) l

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

Operación Matemática Conceptos y definiciones básicas Operaciones binarias

Operación Matemática Conceptos y definiciones básicas Operaciones binarias ... onceptos y definiciones ásics... onjunto Llmremos conjunto, o clse culquier colección de ojetos llmdos elementos. Si es un elemento que pertenece l conjunto, se denot por. Si x no pertenece l conjunto,

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

TEMA 7: DETERMINANTES

TEMA 7: DETERMINANTES lonso Fernández Glián TEM : DETERMINNTES El determinnte de un mtriz udrd es ierto número que se lul prtir de ell y que ontiene informión signifitiv sore l mtriz.. DETERMINNTES DE ORDEN Y El álulo de determinntes

Más detalles

PROGRAMA EDUCATIVO: INGENIERÍA EN COMPUTACIÓN ELABORÓ: LILIA OJEDA TOCHE

PROGRAMA EDUCATIVO: INGENIERÍA EN COMPUTACIÓN ELABORÓ: LILIA OJEDA TOCHE DIAPOSITIVAS AUTÓMATAS DETERMINISTAS Y NO DETERMINISTAS (EJERCICIOS) UNIDAD DE APRENDIZAJE: AUTÓMATAS Y LENGUAJES FORMALES PROGRAMA EDUCATIVO: INGENIERÍA EN COMPUTACIÓN ESPACIO ACADÉMICO: FACULTAD DE INGENIERÍA

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

IE DIVERSIFICADO DE CHIA GRADO 11 TALLER DE REPASO CON NUMEROS REALES, ALGEBRA, GEOMETRIA Y TRIGONOMETRIA

IE DIVERSIFICADO DE CHIA GRADO 11 TALLER DE REPASO CON NUMEROS REALES, ALGEBRA, GEOMETRIA Y TRIGONOMETRIA IE DIVERSIFICADO DE CHIA GRADO Chí, Enero de 0 Señores estudintes Grdos UNDECIMOS A ontinuión enontrrán un serie de ejeriios los ules dee relizr lgunos en lse y los otros en hojs udriulds pr l feh y dí

Más detalles

( ) [ ( )( ) ] ( ) ( ( ) ) =

( ) [ ( )( ) ] ( ) ( ( ) ) = Ejeriios pr reuperr º ESO Nomre : Deprtmento de mtemátis Grupo: º Clulr el resultdo de ls siguientes epresiones: ; : ( [ ( ( ] ( ( ( º Clulr el resultdo de ls siguientes epresiones : ; 9 0 [( ( ( ] [ (

Más detalles

OBJETIVOS ALGUNAS CONSIDERACIONES SOBRE WINDLX

OBJETIVOS ALGUNAS CONSIDERACIONES SOBRE WINDLX Arquitetur de Sistems Prlelos 3 er urso de Ingenierí Téni en Informáti de Sistems Práti: Proesdor segmentdo DLX. Bloqueos de dtos y ontrol Curso 2006/2007 OBJETIVOS En est práti se pretende estudir el

Más detalles

Variable Conjunto al que pertenece

Variable Conjunto al que pertenece Por Más Mtemáti istem de euiones ituión : Césr Ymil horrron $ 00 Complet el udro Inógnits Cntidd de dinero horrdo por 00 Cntidd de dinero horrdo por Ymil Vrile Conjunto l que pertenee Plnteo de l situión

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

Es una sucesión de lados que van de un vértice x a un vértice w (los lados son distintos).

Es una sucesión de lados que van de un vértice x a un vértice w (los lados son distintos). CAMINOS Y CIRCUITOS En un grfo se puede reorrer l informión de diferentes mners pr llegr de un punto otro. Todo reorrido es un mino y l longitud del mino o del iruito es el número de vérties que se ton

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemáti Trjo Prátio N 2: PROPORCIONALIDAD Y SEMEJANZA TEOREMA DE PITÁGORAS RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Segundo Año 1) Clulen x en los siguientes gráfios si te informn

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

CUESTIONES RESUELTAS

CUESTIONES RESUELTAS CUETIONE EUELTA ) Cuál es l principl diferenci entre un circuito de control nlógico y otro digitl? ) Indicr y justificr l principl ventj de uno frente otro. (electividd ndluz). Un circuito nlógico funcion

Más detalles

TEMA 5: ELECTRÓNICA DIGITAL

TEMA 5: ELECTRÓNICA DIGITAL Deprtmento de Tecnologí. IE Ntr. r. de l Almuden. Mª Jesús iz TEMA 5: ELECTRÓNICA DIGITAL L electrónic se divide en dos grupos: electrónic nlógic y electrónic digitl. En l electrónic nlógic los vlores

Más detalles

1.Calcula el número decimal equivalente al binario Calcula el decimal equivalente al número binario

1.Calcula el número decimal equivalente al binario Calcula el decimal equivalente al número binario ITEMA DE NUMERACIÓN.Clul el número deiml equivlente l inrio 2 2. Clul el deiml equivlente l número inrio 2 3. Clul el inrio nturl y el BCD nturl equivlentes l deiml 45 4. Clul el deiml equivlente l inrio,

Más detalles

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos:

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos: TRIGONOMETRIA NOCIONES PREVIAS Si onsidermos tres vrills,, tles que puede onstruirse on ells un triángulo (siempre que se umpl que l medid de d vrill se menor que l sum de ls otrs dos mor que l difereni)

Más detalles

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado)

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado) CC2A Computción II Auxilir 5 Iván Bustmnte Clse Auxilir 5 Aútomts Finitos Determinísticos (Digrms de Estdo) Un utómt finito determinístico es un modelo de un sistem que tiene un cntidd finit de estdos

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

Introducción al álgebra en R

Introducción al álgebra en R Autor: hristin ortes Introuión l álger en R.- El álger trt e nties omo en l ritméti pero en form más generl; que mientrs que l ritméti utili nties enots por números on un solo vlor efinio el álger us letrs

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si

Más detalles

COMPRENSIÓN ESPACIAL

COMPRENSIÓN ESPACIAL COMPRENSIÓN ESPACIAL El áre e COMPRENSIÓN ESPACIAL pretene evlur ls estrezs el spirnte pr periir y omprener, trvés e l Representión Gráfi: 1.- Forms y Cuerpos Geométrios ásios y ls reliones entre sus respetivos

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Identidades y Ecuaciones Trigonométricas

Identidades y Ecuaciones Trigonométricas MB0003 _ML_Identiddes Versión: Septiemre 0 Revisor: Ptrii Crdon Torres Identiddes y Euiones Trigonométris por Oliverio Rmírez Juárez En l tividd de prendizje nterior, se definieron ls funiones trigonométris

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Vamos a representar a un árbol con etiquetas en sus aristas mediante el siguiente tipo de dato: data LTree a = Nin(a, [(Char, LTree a)])

Vamos a representar a un árbol con etiquetas en sus aristas mediante el siguiente tipo de dato: data LTree a = Nin(a, [(Char, LTree a)]) Prigms e Lengujes e Progrmión o Cutrimestre e 00 Trjo Prátio N o - Progrmión Funionl Feh e entreg: Jueves e septiemre, hst ls hs. Los vieo juegos no tienen ningun influeni sore los niños. Si el P-Mn huiese

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles