( 32 x )= 53 arcsen ( 32 x ) sen x +7 cos x 1 dx. x x. e 2 x +1 dx. 5x 7 dx. x sen x dx. x 4 x x 1 dx. x 2 dx. dxx. x x x dx. 1 x.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( 32 x )= 53 arcsen ( 32 x ) sen x +7 cos x 1 dx. x x. e 2 x +1 dx. 5x 7 dx. x sen x dx. x 4 x x 1 dx. x 2 dx. dxx. x x x dx. 1 x."

Transcripción

1 IES Jun Clos I Mmáics II Cimpozulos Mdid * nálisis III: Ingls Ingls inmdis o csi inmdis: b d c d d d sn d f sn cos d g g d h d i d j d k cos bd l d m n d o d p q d C d sn d cos sn d cos d dcos sn d d d d cos bd cos b d sn b d d d ln C d d d d d g d g d dg ln C ln * d d d d ln C dcg d d d csn csn

2 s d d u d v d w d d cn d ln d ln d d d d y d z d Divd d un cocin d ln d ln ln ln Ingls d funcions compuss / cmbio d vibl: d d d d d b d c d d d cos sn f d d d d ln ln d d d d h d i ln d ln d d d d d ln ln d sn d d sn d cos d d sn cos d g d sn d cos d d d d sn d d d ln ln dln ln ln

3 d j k ln d l m d sn cos n o p q d d csn d d d d s sn d ln d d d ln d d sn d cos d d u d v g g d w g d d y z d ln d d d d ln d d d d d d ln ln g C cos d sn d d ln ln cos ln sc d d ln d d cn ln ln sn d cos d d ln dcn cn d sn cos d d cos g d g d sn d d d cos d d d d csn d d d d ln cos d sn d d d d d ln ln d d d d d d csn d d d cn ln cos

4 Ingls po ps: b c d d u u ' v ' v d u u d v ' d u ' v d u ' v v ' u ' u v v ' d d d d u u ' v v ' d u v ' d u ' u v ' v u ' v d ln d ln d ln ln ln d ln ln u ' v uln v ' f ln d v ' g h i ln d v u ln u ' ln ln d Iln I I ln I ln u ln u ' v' vln I d u ' u v ' v d d u u ' v ' v d v ' u u ' v d j k l sn d d cos d u u ' v ' sn v cos cos cos d cos sn sn d u v ' cos u ' vsn I Icos sn I Isn cos I sn cos u v ' u 'ln v u u ' v ' cos v sn ln ln d I ln ln I I I sn sn d sn cos ln ln

5 m sn d sn sn d u sn v 'sn I u ' cos sn cos cos cos dsn cos cos d v cos sn cos sn dsn cos d sn d Isn cos I sn cos I n cn d u cn v v ' o d cn d cn cn d d ccos d u ccos ccos u ' v v ' p cn u ' ln d uln v ' ln v u ' d d d ln ln d ccos d ccos ccos u ln u ' v ' v ln ln d ln ln q d u u ' v ' v d d u u ' v ' v ln d v ' v s u ' ln ln d ln uln d ln d uln v ' ln d u ' v ln ln Ingls cionls: d b d d d d d ln ln ln d d d ln ln ln C : Rso : c d d C d d d d ln ln ln C C

6 d d d d d d d ln ln ln d : Rso : d d d d ln ln ln f d C d d d C d ln ln ln g d C d d d ln ln ln h C C d C d d d ln ln ln C C d d d d lnln ln i d j d k C d d d d ln ln ln ln ln d d d d d ln ln ln C

7 l d C d d d C d ln ln ln m d C D d d n D d D C D C D d ln ln ln d C d d d C C d ln ln o d d d : Rso : C d d ln ln ln ln p C d C d d d d ln ln ln q d d d d d C d ln ln d d d d d C d ln cn C C

8 s d d d d ln ln C dd d d d d d C d d ln ln cn C u d C d d d d d d d dln cn C C d d v d C D d d D d D C D d ln cn C w d C d d d d d d d d dln ln C C d d d C d d d d C C d d d d d ln cn d d y d d d d C d d d d C C d d d d d ln ln cn C d d

9 z d d d d d d d d ln cn d Ingls igonoméics: b c cos d cos d sn d ln ln sn C sn d cos d sn cos d sn sn d cos g sn d cos d sn sn sn sn cog d d f cos cos d sn cos d d d cos cos d sn d d cos cos C cos dsn d g d sncos d sn C sn cos sn d cos cos sn d d sn sn dcos d d d cos sn cos cos d sn d d d cos cos sn cos d sn d ln ln cos cos cos d sn cos cos d sn sn cos d d d sn d cos d sn sn h i d cos sn cos sn cos d cos d d d sn sn sn d cos d d sn sn dsn sn sn sn d d d d sn sn sn cos cos d sn cos cos d sn d n sn d n n Cn sc cos cos

10 j sn d cos d d d d d d sn cos d sn cos sn cos cos cos d d sn cos sn cos n n n n n n sn cos d n sn cos cos n n d n n Tmbién con l cmbio n d d d sn cos n Dmin ls siguins ingls po l méodo qu consids más convnin: d d d d d ln d ln d c ln d v ' v u ln u ' ln d ln ln u ln u ' v ' v d cos ln d ln d d I ln d ln cos ln d d cn cn ln C ucos ln u ' snln v ' v cosln snln d cos ln v ' v u snln u ' cosln snln cosln I cosln snln I I f d : Rso: b d cn cn ln d dln sn d cos d sn cos cos cos d I u cos u 'sn v ' cos v sn cosln sn ln sn cos sn d sn cos cos d sn cos d I I sn cos csn csn I sn cos cos csn g h d d d d d d d d d d dlnln ln

11 i d d d d d u u ' v ' v d C j d d d d d d d ln ln ln Clcul l función f qu cumpl qu f'', f y f f ' f ' ' d f f ' d D f D f f Encun l fmili d funcions qu inn como sgund divd f'' sbindo qu inn un máimo livo n - Dmin cuál d ls funcions d l fmili ps po l puno f ' f ' f ' ' d f f ' d D, Po l puno, Fmili: f D Máimo f usc un pimiiv F d l función f qu vifiqu qu F, F d Si hcmos C ndmos: F ℝ Hll f sbindo qu: f ' ' cos f ' dsn f sn dcos D f ' cos f f ' C f cos f D f, g, h Clcul l á ncd n l gáfic d ls funcions g f d g h d d d uds Ingls dfinids: sn d b cos cos cos ln d v u ln u ' v ' c d ln ln d ln ln si si > d d

12 d d u u ' v ' v ln d d d d d ln d v ' v función p u ln u ' d d ln d j d i ln d d h d d d si si > g d f d d d cn Dds l pábol y y l c y, psn y clcul l á d los siguins cinos: Rcino codo limido po mbs cuvs Inscción d funcions: d d uds b Rcino codo limido po l pábol l izquid, l c l dch y l j OX po dbjo d d uds c Rcino codo limido po l j OY l izquid, l pábol l dch, l c po ncim y l j OX po dbjo d d uds Clcul l á ncd n ls gáfics d ls siguins funcions n cd cso: f g Inscción d funcions: ± d Función d uds p b f g Inscción d funcions: ± d Función d uds p

13 c f g Inscción d funcions: d d uds d g f Inscción d funcions: d ln ln uds f sn g cos con Inscción d funcions:sn cos n º º sn cos d cos sn uds f f g d d d si si > Inscción d funcions: uds g f g Inscción d funcions: d d uds Hll l á dl cino codo limido po ls gáfics d ls funcions f, g y l j OY Inscción: d uds Consid l á d l gión ncd n l pábol y y l c y Es gión s divid mdin un c hoizonl y Dmin qu hc qu dich gión qud dividid n mids d igul supfici Inscción con y: ± Inscción con y : ± TOTL d uds Á bjo y: d TOTL Dduc l fómul dl á d un cículo d dio y No: Un cicunfnci d dio

14 cnd n l oign in po cución y qu, p vlos d y posiivos, pud pss como y Dspués n n cun l simí Inscción con j : ± Á bjo l cuv: d sn θ d θ p cos θd θ sn θ θ d Función d d d d snθ d cosθd θ cos θ cos θ d θ d θ Es á s sólo l mid supio dl cículo: CÍRCULO Dduc l fómul dl volumn d un sf d dio No: Consid qu l sf s gn como un cupo d volución pi d un smicículo qu gi sob un diámo; v jcicio Considmos un sf como l cupo gndo l o un smicículo con spco l j OX Considmos l función f qu dmin un smicicunfnci ingmos n - y b V f d d d Sólido d volución Consid l pábol y Dmin l cución d ls cs ngns dich pábol n los punos d bscis y - y clcul l á dl cino codo limido po l pábol y mbs ngns Tngns: : y y : y y Inscción d ls ngns : d d uds f ' Clcul l á limid po l j OX, l gáfic d l función f y ls cs vicls y Clcul l lími d s ingl cundo inp l suldo d d d d uds lim lim uds Es un cino infinio con á fini Dmin l volumn ngnddo l gi un lóbulo d l función sn lddo dl j OX b V f d sn d cos d Sólido d volución cos d sn udv cos d

15 S consid l pábol y Comp l volumn d los dos cupos ngnddos l hc gi con spco l j OX y l j OY spcivmn l cino plno ncdo n l pábol y l j OX Cos con l j OX : y Límis d ingción: b - Ej d gio OX : V f d d d Sólido d volución udv b - Ej d gio OY : V f d d udv Sólido d volución Si s hc gi con spco l j OX l cino plno ncdo n l popio j OX, l gáfic d l función f > y ls cs y s obin un cupo con fom d mbudo Dmin l vlo d p qu l volumn d s cupo s d unidds d volumn b V f d d d udv Sólido d volución ln ln Tnindo n cun qu l clción s l divd d l vlocidd y qu és s l divd dl dsplzmino con spco l impo, d dduci l cución dl dsplzmino n un MRU No: Ing l iguldd v', y lugo s'v nindo n pcución con ls consns d ingción y su inpción cundo v ' v d - Cundo s in v v vlocidd inicil Cv v v s ' v s v d v - Cundo s in ss posición inicil Cs s v s PU P cd vlo d c>, clcul l á d l gión cod compndid n l gáfic d l función f c, l j OX y ls cs, c c c d c c uds c c c b Hll l vlo d c p l cul l á obnid n l pdo s mínim d c ' c dc d c c dc c ' c c c ' ' c > c> Mínimo locl c

16 PU Dd l función f s pid: Dibuj l gáfic d f sudindo l ccimino, dccimino, punos d inflión y sínos Vicls : No psn y qu Domf ℝ Hoizonls : sínos: Oblicus : l dch: lim lim lim y l izquid: lim No is l dch: No is puso qu hy síno hoizonl l izquid: pndin m lim lim No is Ccimino: f ' Poduco Cuvu: f ' ' Poduco f dcc ℝ }, f ' ' > f cóncv - Puno d inflión n, f ' ' < f conv - Puno d inflión n, f ' ' > f cóncv f d b Clcul d u u ' v ' v d u u ' v ' v d f d PU Clcul ln d dond ln s l logimo npino d ln d u ln u ' v ' v ln ln d ln ln ln d Indicción: P dshc l cmbio d vibl uiliz ln d d d p clcul b Uiliz l cmbio d vibl d d d d d ln PU Dd l función f clcul l á d l gión cod ncd po su gáfic y l j OX ± Sán los límis d ingción f <, Á: f d d Función d p Cos con j OX: Dom f ℝ d d d d cn cn uds d cn d d d cn cn

17 PU Dd l función f dmin un función F l qu su divd s f y dmás F d d d F C F ln F d d d ln ln PU Dd l función f, s pid: Hll un vlo > l qu l c ngn l gáfic d f n l puno, f s pll l c y- P qu l ngn y l c sn plls sus pndins hn d s iguls, d modo qu buscmos l qu f ' f ' > b Hll l á d l gión cod limid po l gáfic d f y l p posiiv dl j OX Cos con j OX: Sán los límis d ingción Dom f ℝ d PU Clcul Á: d uds f >, d d d d ln ln ln ln d d ln ln ln PU Dd l función f, s pid: Dibuj su gáfic indicndo su dominio, sínos, invlos d ccimino y dccimino, máimos y mínimos livos, invlos d concvidd y convidd y punos d inflión Vicls : No psn y qu Dom f ℝ Hoizonls : sínos: Oblicus : l dch: lim No is l izquid: lim lim y l izquid: No is puso qu hy síno hoizonl l dch: pndin m lim lim No is f ' < f dccin - Mínimo locl n, f ' > f ccin, Ccimino: f ' Poduco Cuvu: f ' ' Poduco, f ' ' < f conv - Puno d inflión n -, f ' ' > f cóncv

18 b Clcul l á compndid n l j OX y l gáfic d f cundo d d u u ' v ' v f < < f > > f d f d uds PU f Esudi y psn gáficmn l función Dominio: Dom f ℝ },, sínos: Hoizonls : lim f y Vicls : lim ± ± Oblicus : No isn po isi sínos hoizonls, f ' > f ccin, f ' < f dccin - f no s nul No hy máimos ni mínimos locls f ' ' > Dom f f cóncv n odo su dominio Ccimino: f ' Cuvu: f ' ' b Hll l á d l gión cod compndid n l gáfic d l función nio y ls cs Inscción f y c y: f d y, ± < < DISC > d uds PU Dd l función f : Hll sus máimos y mínimos locls y/o globls f f ', Signo d f':,, PRODUCTO f ' < f dccin f in máimo locl n y mínimo locl n Son mbién mos bsoluos f ' > f ccin b Dmin l vlo dl pámo > p l cul s f d d d d d ± > PU S f un función divbl n, y coninu n, l qu f y f ' d Uiliz l fómul d ingción po ps p hll f ' d u u ' v ' f ' v f f ' > f ccin f ' ± f d f f d f f d f d f d

19 PU Clcul un polinomio d c gdo p b c d sbindo qu vific: i Tin un máimo livo n ii Tin un puno d inflión n l puno d coodnds, p d iii } p' b c p' ' b Ps po puno, : Máimo n : p' b c b d c p Inflión n : p ' ' b p d p d d PU S consid l función f p : Clcul los mos locls y/o globls d l función f f ' Signo d f':, f ' > f ccin f in máimo locl n Es mbién mo bsoluo, f ' < f dccin f ' COCIENTE f d b Dmin l vlo dl pámo l qu d d d d ln f, g PU S considn ls funcions Rpsn f y g n l mismo gáfico b Clcul l ángulo qu fomn n los punos d co Vmos qu l poblm psn simí p Esudimos l smij posiivo y ndmos conclusions l ngivo Inscción : En l puno d co: f ' únic solución > Ángulo f: cn,º Ángulo g: º Ángulo f, g,º o bin Ángulo f, g,º c Clcul l á compndid n l gión cod n ls dos funcions PR d d PU Dmin los invlos d concvid y convidd, p f cos f ' sn uds,, d l función, f ' ' > f cóncv f ' ' cos INFLEX cos, ±, f ' ' < f conv, f ' ' > f cóncv

20 b Esboz l gáfic d l función nio n l mismo invlo c Hll l á compndid n ls gáfics d l función nio f, g cos y ls cs, Inscción f con g : cos cos ±, f >g, f g d d ln ln ln uds PU S consid l función f Clcul ls sínos, l máimo y l mínimo bsoluos d l función f f vicl:no psn Domf ℝ hoizonl: lim f lim ± ± f ' COCIENTE y Dch izd f ' > f ccin, f ' < f dccin, f ' > f ccin, b Clcul f d d d d d ln ln d d PU S l función f Hll sus máimos y mínimos livos y sus sínos f vicl:no psn Domf ℝ ℝ hoizonl: lim f y ± Dch izd f ' COCIENTE, f ' < f dccin Mínimo n, f ' > f ccin Máimo n, f ' < f dccin b Dibuj l gáfic d l función uilizndo l infomción obnid n l pdo nio, nindo n cun, dmás, qu f in cmn s punos d inflión cuys bsciss son spcivmn,, Mínimo n Máimo n

21 c Clcul l á dl cino limido po l gáfic d l función f, l j OX, l c, y l c En l invlo l función no co l j OX y s posiiv d d d d uds PU Clcul: b sn cos d cos d sn d d si si c d ln ln d d d PU Clcul l ingl indfinid d d d d d d d d d ln ln PU S consid l función f : Hll l c ngn su gáfic n l puno d inflión d bscis posiiv f ' ' Inflión n ± f f ' Rc ngn n : y f f ' y y b Clcul l á dl cino limido po l gáfic d f, l c nio y l j En l invlo, l c ngn qud po ncim d l función d d d d d d d cn cn uds PU Dd l pábol y, s consid l iángulo cángulo T fomdo po los js coodndos y l ngn l pábol n l puno d bscis > Hll p qu T ng á mínim

22 f f ' Rc ngn n : y f f ' y y Ej OX : Cos d l c con los js : El á dl iángulo sá T y Ej OY : y y Dsollndo : T T ' EXTREMOS T ' ' T ' ' > El mo ncondo s un mínimo b Clcul l á d l gión dlimid po l pábol, su ngn n l puno d bscis, y l j vicl En l invlo, l c ngn qud po ncim d l función - Rc: yf f ' y y d d d uds PU S consid l función f Esudi y psn gáficmn l función f Vicls : No psn y qu Dom f ℝ Hoizonls : sínos: l dch: lim No is Oblicus : l izquid: lim lim y l izquid: No is puso qu hy síno hoizonl l dch: pndin m lim lim No is, Ccimino: f ' Poduco f ' < f dccin - Mínimo locl n, f ' > f ccin, Cuvu: f ' ' Poduco f ' ' < f conv - Puno d inflión n, f ' ' > f cóncv b Sbindo qu l á d l gión dmind po l gáfic d f y l j OX n y p p> vl d u u ' v ' v uds clcul l vlo d p d p f > > p p d p p p PU S consid l función l d vibl l f Dmin sus máimos y mínimos livos f ' ±, f ' < f dccin Signo d f': f in mínimo locl n - y máimo locl n, f ' > f ccin Son mbién mos bsoluos, f ' < f dccin f ' COCIENTE

23 b Clcul l vlo d > p l cul s vific l iguldd f d d d d d ln ln ln f PU S l función f d Clcul d dz dz zz z z z dz d d d z dz z z z dz zz z z dzlnzln z ln z z b S dfin g f d Clcul lim g f d g lim lim L ' Hôpil g ' g' g pimiiv d f f PU S l función f sn Clcul > l qu l á ncd po l gáfic d f, l j y, y l cs y s En l invlo, l función sn no co l j OX y s posiiv uscmos n pincipio, : sn dcos cos cos, b Clcul l cución d l ngn l gáfic d f n l puno d bscis y Rc ngn : y f f ' y sn cos y c Clcul l á d l supfici ncd po l ngn nio, l gáfic d l función f y ls cs y sn d cos cos cos u En l invlo, l función sn qud po dbjo d l c ngn

24 PU Hll l vlo d l ingl dfinid d d d d d b Clcul l ingl indfinid d l función f mdin un cmbio d vibl d z dz d d d z dz z z z dz z z dz z z dz zz z z dzlnzlnz ln z z PU Dmin l á dl cino plno codo compndido n ls gáfics d ls funcions f, g y l c Inscción f con g : f <g > g f d d uds

Lím. = Lím. 1 e. x 1. x 0

Lím. = Lím. 1 e. x 1. x 0 UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO MODELO Cuso / MTERI: MTEMTICS II El lumno consá los cuo jcicios d un d ls dos opcions ( o ) qu s l ofcn.

Más detalles

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( ) SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la José Aulio Pin Romo JULIO MII www.pin.s EXAMEN DE ELECTIVIDAD JULIO. MATEMÁTICA II OPCIÓN A Poblm A.. Obtn ondmnt scibindo todos los psos dl onminto utilido: ) El vlo dl dtminnt d l mti ( puntos) l mti

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

GUÍA DE EJERCICIOS III

GUÍA DE EJERCICIOS III Fculd d Ingnií UCV Álg Linl Gomí Anlíic Ciclo Básico GUÍA DE Vifiqu n cd cso si l conjuno ddo s un spcio vcoil Si no lo s indiqu qu iom no s cumpl ) El conjuno d mics digonls d odn n con l sum d mics muliplicción

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades:

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades: ES STER BDJOZ Emn Junio d (Gnrl) nonio Mngino orcho UNVERSDD DE MUR MTEMÁTS MTEMÁTS Timpo máimo: hor minuos nsruccions: El lumno lgirá un d ls dos opcions propuss d un d ls curo cusions d l opción lgid

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + )

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + ) I.E.S. Mdirráno d Málg Julio Jun Crlos lonso Ginoni OPCIÓN.- S l unción ) Clculr pr qu () ng un rmo n l puno (, ). (, punos) ) Clculr los rmos d l unción () cundo. ( puno) R R Crcin ) ln ln ln ) ( ) (

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID JUNIO El mn pnt o opcion, B. El lumno bá lgi UN Y SÓLO UN ll olv lo cuto jcicio qu cont. No pmit l uó clculo con cpci pntción gáfic. PUNTUCIÓN: L clificción

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. Cmbio d vribl.. Por prs.. Funcions rcionls Cono

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4 IES Mditáno d Málg Solución Sptim 7 Jun Clo lono Ginontti Opción..- S qu l gáic d l unción () c l qu pc n l diujo - - - - - - - - ) Dtmin l unción [ punto] ) Clcul l á d l unción omd [ punto] [ ] [ ] [

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

1. LÍMITES, CONTINUIDAD, CÁLCULO DIFERENCIAL Y APLICACIONES

1. LÍMITES, CONTINUIDAD, CÁLCULO DIFERENCIAL Y APLICACIONES U LÍMITS CONTINUIDD CÁLCULO DIFRNCIL Y LICCIONS JUNIO FS GNRL OCIÓN Obén limco g pnos cos cos sn limco g lim lim sn sn cos sn cos lim lim cos sn sn sn cos lim cos cos cos sn sn Indminción Opndo l vmos

Más detalles

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e.

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e. Hll l función F() l qu F ( ) y s primiiv d l función f ( ) + S r d nconrr l ingrl I d, qu si nos dmos cun d qu ( + ), s + inmdi: F( ) d ln( + ) + C +, si no nos dmos cun d so, l cmbio l convir n un rcionl

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

MECANICA CELESTE PASO A PASO

MECANICA CELESTE PASO A PASO MCANICA CLST PASO A PASO (Un nfoqu Pdgógico po Iván Mcín F v3.0 G M m m M Mcánic Nwonin 684 Iván Mcín Mcánic Cls pso Pso Copyig 005-007 CURRICULUM ( v Cuiculum Dlldo IVAN CARLOS MACHIN MORRA Licncido n

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática Tm : Pincipios d l lctostátic, Antonio Gon nzálz Fná ándz Antonio Gonzálz Fnándz Dptmnto d Físic Aplicd III nivsidd d Svill Pt 6/7 Engí lctostátic Engí, tbjo y clo: l pim pincipio i i d l tmodinámic i

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A I.E.S. CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LERES JUNIO (RESUELTOS po nonio Mnguiano) MTEMÁTICS II Timpo máimo: hoas minuos Consa mana claa aonaa una las os opcions popusas. Caa cusión s punúa

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior. MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b =

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b = TEMA 7: DERIVADAS 7. Concpto d drivd. Función drivd. 7. Rgls d drivción. 7. CONCEPTO DE DERIVADA. FUNCIÓN DERIVADA. Est concpto mtmático no sólo nos prstrá un yud primordil n l rprsntción d funcions y

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia Un ct B s mu n dicción ppndicul su dicción cn lcidd cnstnt. En su mimint, ct un cicunfnci fij d cnt di n l punt ibl. Supnind qu l ct l cicunfnci pmncn n un pln únic n td instnt: B Hll l lcidd clción dl

Más detalles

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente.

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente. LAS FUNCIONES DE ONDA PARA EL HIDROGENO qq Ddo qu : U k dpnd solnt d l distnci dil nt l núclo y l lctón, lgunos d los stdos pitidos p st átoo pudn s psntdos dint funcions d ond qu solo dpndn d L s sipl

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Medieáneo de Málg Soluión Junio Jun Clos lonso Ginoni OPCIÓN..- Clul l se l lu del iángulo isóseles de peímeo áe máim h Máimo. d d u u h u Si d d.h h IES Medieáneo de Málg Soluión Junio Jun Clos lonso

Más detalles

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab .- Se F () ( ) d, enonces: cos Cálculo Inegrl ) F'() -(cos ) sen b) F'() cos c) F'() cos si.- Se f( ) - < si enonces: ) f no es inegrble en, pues no es coninu. b) f es inegrble en, y f( ) d. c) f es inegrble

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0 FUNCIONES FUNCIÓN: RELACIÓN ENTRE DOS MAGNITUDES X E Y TAL QUE A CADA VALOR DE X LE CORRESPONDE UN ÚNICO VALOR DE Y X: vrible independiente Y: vrible dependiente f()= Notción: f(2)=4, si =2, entonces =4

Más detalles

# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas.

# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas. intgrls dfinids 7 rsulv sts intgrls dfinids. ) + ( ) d b) d + ) + + ( ) d b) d + ln ln + ln + + 8 clcul ls intgrls dfinids. π ) ( sn ) d b) d ) ( sn ) d cos ( ) ( ) b) d ln + ln + ln 9 clcul, utilizndo

Más detalles

GEOMETRÍA 1º BACHILLERATO

GEOMETRÍA 1º BACHILLERATO GEOMETRÍA º AHILLERATO ) Dmin c co l coo pi ) A() A =() hll () - = = - = = ) () A =(--) hll A A() - =- = - =- = ( ) A( ) c) (-) A =() hll A A() - = = + = =- ) S lo co li ( ) ( ) w ( ) hz l pción gáfic

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son:

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: Memáics II Deerminnes PVJ7. Se l mriz 8 9 7 Se B l mriz que resul l relizr en ls siguienes rnsformciones: primero se muliplic por sí mism, después se cmbin de lugr l fil segund y l ercer y finlmene se

Más detalles

operacional de Laplace (F5.3)

operacional de Laplace (F5.3) 9.4.8 Már d Enyo n Vulo MÁSTER DE ENSAYOS EN VUELO Y CERTIFICACIÓN N DE AERONAVES Curo 8/9 El méodo m oprcionl d Lplc F5. Már d Enyo n Vulo L rnormd d Lplc 9.4.8 Y L y y d { } Már d Enyo n Vulo L rnormd

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1. Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1 II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS Unidd. Ingrls Indfinids TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. mbio d vribl.. Por prs..

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

CAPÍTULO V MOMENTOS DE INERCIA. El momento de inercia de un área tiene la forma

CAPÍTULO V MOMENTOS DE INERCIA. El momento de inercia de un área tiene la forma sistci d Mtils. Cpítul V. CPÍTULO V MOMENTOS DE NEC 5.. Mmts d ici d ás El t d ici d u á ti l fm Mmt d ici spct dl j : Mmt d ici spct dl j : Nt qu l cdd qu v l itgd s l cti l j spct dl qu s clcul l t d

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a Divd d ucio u vibl l 5 LA DERIVADA, DERIVADAS LATERALES Diició 5 S : lr lr u ució, Dom, dimo qu divbl d í it y iito lim D D y d Si divbl t tbjo umo l otcio, d d p dci l divd d Ejmplo: Sí lim lim 8 Obvció:

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Cuso - Sepiembe MTERI: MTEMTICS II INSTRUCCIONES GENERLES Y VLORCION El lumno conesá los cuo ejecicios

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO OCIÓN A Cd lumno lgiá obligtoimnt un d ls dos opcions qu s poponn. L puntución máxim s d 3 puntos p cd poblm y d puntos p cd custión. OBLEMAS. ) Si l luz sol td n pomdio 8,33 minutos n llg l Ti,,7 minutos

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León IES diáo d álg Jio J Clo loo Gioi P d cco l Uividd d Cill Ló TEÁTICS II To p lo lmo Nº pági INDICCIONES:.- OPTTIVIDD: El lmo dá cog d l do opcio pdido doll lo co jcicio l od q d..- CLCULDOR.- S pmiiá l

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina Nmbr: Curs: 1º Bachillra B Eamn XII Fcha: 11 d juni d 018 Trcra Evaluación Anción: La n plicación clara y cncisa d cada jrcici implica una pnalización dl 5% d la na 1.- ( puns) Calcula la función plinómica,

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem

Más detalles

Modelo monocompartimental. Administración oral. Tema 11

Modelo monocompartimental. Administración oral. Tema 11 Modlo monocomprimnl. dminisrción orl Tm 11 Índic d connidos 2 Inroducción Curvs concnrción-impo Ecucions dl modlo Prámros frmcocinéicos Fcors qu fcn l prfil concnrción-impo Timpo d lnci Fnómno flip-flop

Más detalles

24. Estudia la continuidad de la siguiente función: Dominio : . 3. lim f(x) lim. 3x 1. x 2. x x

24. Estudia la continuidad de la siguiente función: Dominio : . 3. lim f(x) lim. 3x 1. x 2. x x . Estudi l continuidd de l guiente unción: () Dominio : Dom () : ( ),, Present discontinuiddes en, y () () Presentun discontinuidd ntótic de primer especie de slto ininito.., : ( ) () () No está deinid.

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles