24. Estudia la continuidad de la siguiente función: Dominio : . 3. lim f(x) lim. 3x 1. x 2. x x

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "24. Estudia la continuidad de la siguiente función: Dominio : . 3. lim f(x) lim. 3x 1. x 2. x x"

Transcripción

1 . Estudi l continuidd de l guiente unción: () Dominio : Dom () : ( ),, Present discontinuiddes en, y () () Presentun discontinuidd ntótic de primer especie de slto ininito.., : ( ) () () No está deinid. Presentun discontinuidd de segundespecie. : () No está deinid. () Presentun discontinuidd de segundespecie.

2 5. A prtir de l unción (), obtén el vlor de que veriique que l unción en = se:. Continu. () () () : b. Discontinu evitble. No eiste ningún vlor de que hg que l discontinuidd se evitble. c. Discontinu inevitble.., donde

3 6. Estudi l continuidd de l unción etremos reltivos, los tiene. 6 () y hll los Dom () : () 6 () 6 () Hy un discontinuidd de slto inito en,por lo quel unciónes contínuen {}. Etremos : '() '() '' 6 ( ) ( ) 6 ( ) ( ) ''() ''() 6 ( ) ( ) 6 6 ( ) ( ) máimo, mínimo, () ( ) M () N,, mínimo,,, máimo

4 . Conder l unción derivble en todo R. ( ) () y justiic es continu y Dom () : () () () Es continuen. ( ) '() : '() '() ( ) Es derivble en ( ) { }. No es derivble.

5 8. Se l unción: (). Estudi el dominio y l continuidd de (). Dominio : (, ) : ( ) () () : () Es continu. () () Es continuen {}. Dom () {}. Discontinuidd ntótic. b. Identiic y clic ls discontinuiddes de l unción. Discontinuidd ntótic de primer especie de slto ininito cundo =. c. Hll los etremos reltivos. '() () '() () ''() () ''() mínimo, () () 5 N, 5, mínimo

6 9. Dd l unción de epreón: (). Estudi l continuidd y derivbilidd de ().. Es derivble en No es derivble. ) ( 6 '() '() : ) ( 6 '() Derivbilidd:. Es continuen Es continu. 6 ) ( () 6 () 6 : Continuidd :

7 b. Hll los máimos y mínimos locles de (). ) ( 6 '(). 6, en Hy un mínimo locl máimo,, B () máimo, 6 () ' ' máimo A,, () máimo, () ' ' 6 () ' '

8 SOLUCIONES PÁG. 9. Estudi l continuidd y l derivbilidd de l guiente unción: ( ) () Dom () Continuidd : : () ( ) Es continu. () Es continu en. Derivbilidd: '() ( ) : '() No es derivble. '() ( ) Es derivble en.

9 . Conder l unción () e guientes pregunts: y contest rzondmente ls. Es continu en el punto =? : () () e Es continu. b. Es derivble en el punto =? '() e : '() '() e No es derivble. ( ) c. Alcnz lgún etremo? es creciente y e tiene un mínimo cundo es decreciente. Como l unción es continu en el punto. Por. Se l unción: () 6 tnto,n(, ) es un mínimo.,. Encuentr su dominio y los pobles puntos de discontinuidd. ( )( ) Dom () {, } b. Determin lgun de ls discontinuiddes es evitble. 6 ( ) () ( )( ) ( ) ( )( ) () ( )( ) ( )( )( ) En =, l discontinuidd es evitble. ( ) ( )( )

10

11 . Hll el dominio de l unción () y estudi su continuidd. }, { Dom () 8 9 ininito. de primer esp e cie de slto discontinuidd ntótic () () : discontinuidd evitble. () () : ) )( ( ) ( () Continuidd :

12 . Dd l unción () = 5 + 6, indic ls vriciones en l continuidd y derivbilidd que presentn ls unciones () y (). () () Continuidd : 5 6, () 5 6, 5 6, : () () 5 6 Es continu. () 5 6 : () () 5 6 Es continu. () 5 6 Continu en Derivbilidd: 5, '() 5, 5, : : 5 6, 5 6, Dom (), 5 6 '() 5 No es derivble. '() 5 derivble en todo su dominio. '() 5 No es derivble. '() 5 Derivble en,

13 5. Clcul el vlor de pr que () se continu en todo R, teniendo en cuent que () corresponde l guiente unción: () ln( ) : () ( ) () ln( ) ln 6. Hll el vlor de k pr que l guiente unción se continu: e () k : k () () e e ( e ) k. Determin pr qué vlores de l guiente unción es continu en = : e ( ) () : () e e, indeterminción,l'hôpitl e ( ), indeterminción,l'hôpitl e ()

14 8. A prtir de l unción k ln () hll el vlor de k pr que () se continu en R. k ln ln ln, indeterminción,l'hôpitl ln, indeterminción ln () k k) ( () k : 9. Determin los vlores de y b pr que l unción () se continu en = y teng un mínimo en = : b () b b b () ' b () ' : un mínimo en Hy b b 5 ) ( () b 5 ) b ( () b 5 :

15 . Conder l unción: (). Hll el vlor de pr que () se continu. Es derivble pr ese vlor? : 9 () ( ) () ( ) 8 () '() :,,,, '() No es derivble. '() ( ) b. Determin los puntos en los que ' () =. '() 5 c. Clcul el máimo y el mínimo bsolutos de () en el intervlo [, 8]., 8 5 pertenece l intervlo, ''(), ''(5) máimo, (), (5) M 5, (8) mínimo bsolutoen el intervlo,n 8,. Se tiene un unción, (), que no es derivble en =.. Puede presentr en dicho punto un etremo reltivo? Sí. b. Si l respuest del prtdo nterior es potiv, cómo se reliz el cálculo de dicho etremo no pueden usrse los procedimientos de derivción? En este cso h de estudirse el gno de l derivd izquierd y derech del punto =. Tmbién puede plicrse l deinición de etremo reltivo.

16 . Dd l guiente unción: () e. Determin el vlor de pr que () se continu en =. : () () e e b. Pr ese vlor estudi l derivbilidd de () en =. () e ( ) '() e : '() '() No es derivble. ()

17 . Se l unción: () ln( ) e. Clcul () y (). () e e, indeterminción,l'hôpitl, indeterminción,l'hôpitl e e () ln( ) ln( ) () () ln( ) e b. Hll el vlor de pr que () se continu en todo R. : c. Estudi l derivbilidd de () y clcul ' () donde se poble. Es continu en = =. Es derivble en R {}. '() e

18 . A prtir de l unción: () e. Determin, eiste, el vlor de pr que () se continu en =. : () () e No eiste ningún vlor de pr que () se continu, pues los límites lterles no coinciden. b. Comprueb l unción es derivble en = pr lgún vlor de. '() ( ) e ( ) '() e ( ) '() No eiste ningún vlor de pr el que l unción se derivble en =.

19 SOLUCIONES PÁG Se l unción: () 8 5. Clcul el vlor de pr que () se continu en =. : () () 5 b. Pr = estudi l continuidd y l derivbilidd de (). () : No es continu. : () () ( ) No es continu. () ( 8 5) Es continuen, y derivble en,

20 b 6. Dd l unción () b, donde b R:. Clcul el vlor de b pr que () se continu en =. : b () b b b b b () b b b. Pr b = determin los etremos reltivos de l unción. b () '() ''() ''( ) máimo, '(), ( ) M,, máimo c. Es derivble en =? : '() '() No es derivble. ( )

21 e e. Conder l unción (), con b R:. Indic de orm rzond en qué vlor de l unción no está deinid. No está deinid en =, y que este vlor de nul el denomindor. b. Clcul el vlor del prámetro b R pr que l unción se continu, endo el vlor nteriormente obtenido. () g() b e g() () e e 6 e e, indeterminción,l'hôpitl g() b b 8. Determin los vlores de y b pr que () se continu y derivble en =. () b Dom () Continuidd : : e () () ( ) b b () ( b ) b Derivbilidd: '() b :,, '() ( ) b b () ( b) b

22

a) Determínense los valores de a y b que hacen que f sea continua en x = 1 y que f = ( ) ( ) ( ) 1 b

a) Determínense los valores de a y b que hacen que f sea continua en x = 1 y que f = ( ) ( ) ( ) 1 b Modelo 4. Problem B.- (Cliicción máim: puntos) Se b > ) Determínense los vlores de y b que hcen que se continu en y que 4. Pr que l unción se continu en, se debe cumplir: ( ) ( b) b b : b b Además, b 4

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD Límite de un unción en un punto. Medinte tbls clcul: b c d 9. Teniendo en cuent l gráic de l unción, clcul los guientes límites: b c. A prtir de l gráic de l unción, comprueb que :. Clcul sen tg ý, teniendo

Más detalles

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior. MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen

Más detalles

( ) ( ) Teniendo en cuenta que para que exista límite en un punto, deben existir los laterales y ser iguales, la definición anterior se extender a:

( ) ( ) Teniendo en cuenta que para que exista límite en un punto, deben existir los laterales y ser iguales, la definición anterior se extender a: Modelo 0. Prolem B.- (Cliicción máim: puntos) L igur represent l gráic de un unción : [ 6; 5] R. Contéstese rzondmente ls pregunts plnteds. d) En qué vlores de ( 6; 5) no es derivle? d. Gráicmente, ls

Más detalles

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5 UNIDAD 5: LÍMITES Y CONTINUIDAD. 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Fíjte en el comportmiento de l unción ( x ) x 1 tom vlores cercnos. cundo x Si x se proxim, l unción tom vlores cercnos 5. Se escribe:

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

TEMA 8. DERIVADAS. Derivadas laterales: Derivada por la derecha: Derivada por la izquierda:

TEMA 8. DERIVADAS. Derivadas laterales: Derivada por la derecha: Derivada por la izquierda: I.E.S. Tierr de Ciudd Rodrio TEMA 8. DERIVADAS Deinición de derivd de un unción en un punto. Consideremos un unción, se un punto de su dominio. Se llm derivd de l unción en el punto se desin por l siuiente

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso.

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso. Límite de un unción en un punto Diremos que () b si podemos logrr que los vlores de ( ) sen tn próimos b como quermos, con tl de tomr vlores de tn próimos como se preciso. Podemos dr un deinición más orml

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO. 5.- ANÁLISIS (1ª PARTE).- Límites, Continuidad, Derivadas y aplicaciones.

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO. 5.- ANÁLISIS (1ª PARTE).- Límites, Continuidad, Derivadas y aplicaciones. MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO 5.- ANÁLISIS ª PARTE.- Límites, Continuidd, Derivds y plicciones..- MODELO DE PRUEBA Conceptos de unción continu en un punto y derivd de un unción

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

CONTINUIDAD PUNTUAL DE UNA FUNCIÓN REAL.

CONTINUIDAD PUNTUAL DE UNA FUNCIÓN REAL. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: Conceptul y ejercitción PERIODO GRADO FECHA

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) = f ( ), lo que se

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A.

CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A. CÁLCULO DIFERENCIAL MATEMÁTICAS II Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 1.- CONCEPTO DE DERIVADA. Se un unción rel deinid en un entorno del punto. Deinición: Se dice que es derivle en

Más detalles

CONTINUIDAD PUNTUAL DE UNA FUNCIÓN REAL.

CONTINUIDAD PUNTUAL DE UNA FUNCIÓN REAL. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: Conceptul y ejercitción PERIODO GRADO N FECHA

Más detalles

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bch 1 LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de un función en un punto f () l Se lee: El

Más detalles

1. Representa gráficamente la siguiente función y estudia su continuidad en x = 1:

1. Representa gráficamente la siguiente función y estudia su continuidad en x = 1: Mtemátics II UNIDAD : Continuidd de ls unciones ACTIVIDADES INICIALES-PÁG 96 Represent gráicmente l guiente unción y estudi su continuidd en : > En l imgen oservmos que l unción es discontinu en Los ites

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL º BT Mt I CNS FUNCIONES REALES DE VARIABLE REAL Función rel de vrible rel.- Un unción rel de vrible rel es un plicción de D en R, siendo D un subconjunto de R distinto del conjunto vcío D Φ. Al conjunto

Más detalles

LÍMITE DE UNA FUNCIÓN

LÍMITE DE UNA FUNCIÓN LÍITE DE UNA FUNCIÓN. Limite de un unción en un punto.. Límites lterles.. Limites ininitos.. Límites en el ininito.. Propieddes de los límites. 6. Operciones con ininito. 7. Cálculo de límites. 8. Cálculo

Más detalles

BLOQUE 3. FUNCIONES REALES DE UNA VARIABLE REAL. LÍMITES Y CONTINUIDAD DE FUNCIONES

BLOQUE 3. FUNCIONES REALES DE UNA VARIABLE REAL. LÍMITES Y CONTINUIDAD DE FUNCIONES BLOQUE 3 FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES Funciones reles de un vrile rel Límite de un unción rel Continuidd de un unción rel Con este tem se inici el estudio de

Más detalles

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1. Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8

Más detalles

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1 II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,

Más detalles

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.2. LÍMITES

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.2. LÍMITES Águed Mt Miguel Rees, Dpto. de Mtemátic Aplicd, FI-UPM. 2. FUNCINES REALES DE UNA VARIABLE REAL 2.2.. Límite de un unción en un punto 2.2. LÍMITES Se = () un unción deinid en un entorno del punto R (unque

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOE) EXAMEN MODELOCURSO - MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

Ejercicios para el tema de Continuidad. 1. En cada uno de los siguientes casos, encontrar un tal que, f ( x) iv)

Ejercicios para el tema de Continuidad. 1. En cada uno de los siguientes casos, encontrar un tal que, f ( x) iv) Ejercicios pr el tem de Continuidd. En cd uno de los siguientes csos, encontrr un tl que, f ( ) l pr todo que stisfce 0 i) ii) f ( ) ; l f( ) ;, l iv) f( ) Sen ; 0, l 0 v) f ( ) ; 0, l 0 iii) f ( ) ;,

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales FUNCIONES ELEMENTALES LÍMITES Y CONTINUIDAD DERIVADAS APLICACIONES DE LAS DERIVADAS Mtemátics º de Bchillerto Ciencis Sociles Proesor: Jorge Escribno Colegio Inmculd Niñ Grnd www.coleinmculdnin.org TEMA.-

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles

TASA DE VARIACIÓN MEDIA

TASA DE VARIACIÓN MEDIA el blo de mte de id CSI: erivds. Pá. TASA E VARIACIÓN MEIA L siuiente tbl orece el número de ncimientos en cd mes lo lro de un ño en un determind poblción: Meses 7 8 9 0 Ncimientos 0 70 8 0 0 00 98 0 9

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

4. PRUEBA DE SELECTIVIDAD-MODELO

4. PRUEBA DE SELECTIVIDAD-MODELO Pruebs de Selectividd de Ciencis PRUEB DE SELECTIVIDD-MODELO-- OPCIÓN : ) Hll l longitud de los ldos del triángulo isósceles de áre máim cuo perímetro se m Perímetro b h h re h ( ) Derivmos : bse crece

Más detalles

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1)

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1) INTEGRACIÓN. Análisis Mtemático (Grupo ). Clcul ls siguientes integrles indefinids: ( R) ( ) + 4 + 6 4 (e) ln (g) (j) e (m) sen (o) + (h) cos ( ) (k) ln (n) e sen b (p) e sen sen sen (l) (ñ) cos sen rctn

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

1. Lección 9 - Extensiones de la Integral

1. Lección 9 - Extensiones de la Integral Apuntes: Mtemátics Empresriles I. Lección 9 - Extensiones de l Integrl.. Integrles impropis En l deinición de integrl deinid que hemos propuesto en l lección nterior, nos reerímos unciones cotds en intervlos

Más detalles

a b c =(b a)(c a) (c b)

a b c =(b a)(c a) (c b) E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

el blog de mate de aida. MATE I. Derivadas. Pág. 1

el blog de mate de aida. MATE I. Derivadas. Pág. 1 el blo de mte de id. MATE I. erivds. Pá. TASAS E VARIACIÓN L siuiente tbl orece el número de ncimientos en cd mes lo lro de un ño en un determind poblción: Meses 7 8 9 Ncimientos 7 8 98 9 8 7 Pr sber,

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

Tasa de variació n media. Cónceptó de derivada

Tasa de variació n media. Cónceptó de derivada Unidd 0 Derivds lsmtemticseu Pedro Cstro Orteg mteriles de mtemátics Mtemátics I - º Bchillerto Ts de vrició n medi Cónceptó de derivd y L ts de vrición medi de un unción L TVM de TVM, b, b en un intervlo

Más detalles

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1)

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1) º BACHILLERATO. Resuelve los siguientes ites: Opión A ) L= os sen (Indeterminión) g Pr resolver est indeterminión se pli l órmul: Por tnto, L os sen os sen e e Se resuelve el siguiente ite: os sen (Indeterminión)

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS Oposiciones de Secundri TEMA 8 ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A LA REPRESENTACIÓN GRÁFICA DE FUNCIONES.. Introducción.. Dominio. 3. Continuidd. 4. Puntos de Corte con los

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Límite de funciones. Continuidd MATEMÁTICAS II 1 1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor? En generl, pr tener un ide de l respuest

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Límite de funciones. Continuidad MATEMÁTICAS II 1

Límite de funciones. Continuidad MATEMÁTICAS II 1 Límite de funciones. Continuidd MATEMÁTICAS II LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor 0? En generl, pr tener un ide de l respuest

Más detalles

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción

Más detalles

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd

Más detalles

( 3) ( 4) NÚMEROS REALES. 1. Realiza las siguientes operaciones: 2. Calcula y simplifica: = 3 + = + = = =

( 3) ( 4) NÚMEROS REALES. 1. Realiza las siguientes operaciones: 2. Calcula y simplifica: = 3 + = + = = = IS Jun Grcí Vldemor TMA: NÚMROS RALS º SO MATMÁTICAS B NÚMROS RALS. Reliz ls guientes operciones: 0 ( : [ ] [ ( ] ( ( : [ ] [ ( ( ] ( ( : ( [ ] b : ( ( ( ( ( : ( ( ( ( ( ( ( ( c ( 0 : ( ( ( : ( ( 0 : (

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Pr Grdos en Ingenierí Cpítulo 4: Integrción en un vrible Domingo Pestn Glván José Mnuel Rodríguez Grcí Índice 4. Integrción en un vrible 4.. Cálculo de primitivs..................................

Más detalles

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3 º BACHILLERATO A TEMA. DETERMINANTES..Clcul los determinntes de ests mtrices:. Determin el vlor de x 4 x 3 3 = b x 5 = 3. Clcul los siguientes determinntes: A = ( 3 5 5 4 B = ( 3 4 b 3 9 3 c 4 3 d 3 3

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x CURSO 4-5. de myo de 5. ) Clcul los siguientes ites: (+e ) / sen(/) ) Estudi l continuidd de l siguiente función: +e/ f() -e / si si ) Hll l ecución de l rect tngente l gráfic de l siguiente función en

Más detalles

FUNCIONES MONÓTONAS EN UN INTERVALO Siempre aumenta en I Conserva las desigualdades en I Siempre disminuye en I Invierte las desigualdades en I

FUNCIONES MONÓTONAS EN UN INTERVALO Siempre aumenta en I Conserva las desigualdades en I Siempre disminuye en I Invierte las desigualdades en I APLICACIONES DE LAS DERIVADAS FUNCIONES MONÓTONAS es estrictmente creciente p, q D, p < q ( p < ( q es estrictmente decreciente p, q D, p < q ( p > ( q Siempre ument Conserv ls desigulddes Siempre disminuye

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = rues de cceso Enseñnzs Universitris Oiciles de Grdo Mteri: MTEMÁTCS CDS S CENCS SOCES El lumno deerá contestr un de ls dos opciones propuests o. Se podrá utilizr culquier tipo de clculdor. ropuest. Queremos

Más detalles

Límite y Continuidad de Funciones

Límite y Continuidad de Funciones CAPÍTULO 6 Límite Continuidd de Funciones 6.1. Límite de un función L noción de ite es l bse del cálculo. Decir que f) = L signific que es posible hcer que los vlores de f) sen tn cercnos l número L como

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

EJERCICIOS DE INTEGRALES IMPROPIAS

EJERCICIOS DE INTEGRALES IMPROPIAS EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n

Más detalles

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas.

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas. Universidd Simón Bolívr. Deprtmento de Mtemátics Purs Aplicds. MA-.Tipo A Nombre: Crnet Sección: TERCER EXAMEN PARCIAL MA- (0% Conteste ls siguientes pregunts justiicndo detlldmente sus respuests..- (

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

3 CONTINUIDAD. ( x) Introducción

3 CONTINUIDAD. ( x) Introducción CONTINUIDAD Introducción Inormalmente hablando, una unción deinida sobre un intervalo I es continua la curva que la representa, es decir el conjunto de los puntos (x, (x)), con x pertenecientes a I, está

Más detalles

Examen de Álgebra = 2. x 2x

Examen de Álgebra = 2. x 2x MATEMÁTICAS º BACHILLERATO CIENCIAS Emen de Álgebr. Resuelve l ecución: 6. puntos. Resuelve ls siguientes inecuciones: ) b) puntos. Resuelve ls ecuciones: X X ) b) log ( ) 9 puntos log log log. Resuelve

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

TEMA 2: LÍMITES Y CONTINUIDAD

TEMA 2: LÍMITES Y CONTINUIDAD MATEMATICAS TEMA CURSO 4/5 CONCEPTO DE LÍMITE: Límite de un función en un punto: TEMA : LÍMITES Y CONTINUIDAD El símbolo ( y se lee tiende hci ) y signific que elegimos vlores muy próimos l vlor, (tn próimos

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

11.1. Derivabilidad. Derivadas laterales. Continuidad y derivabilidad. f (a)

11.1. Derivabilidad. Derivadas laterales. Continuidad y derivabilidad. f (a) - Derivd III. L derivd +.. Derivbilidd. Derivds lterles. Continuidd y derivbilidd. L derivdes un límite f f(+h) f() () = lím y por tnto podemos plnternos los límites lterles h 0 h que este límite determin,

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Pequeña síntesis de conceptos sobre sucesiones y series para la cátedra de Matemática II.

Pequeña síntesis de conceptos sobre sucesiones y series para la cátedra de Matemática II. Pequeñ síntesis de conceptos sobre sucesiones y series pr l cátedr de Mtemátic II. Altmirnd Enzo - enzo.lt@gmil.com - V1.0 15 de diciembre de 2010 Este texto fue hecho en L A TEX con los puntes tomdos

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVRSIDDS ÚLICS D L COUNIDD D DRID RUD CCSO LS NSÑNZS UNIVRSITRIS OFICILS D GRDO Curso - (Septiemre) TRI TÁTICS LICDS LS CINCIS SOCILS II INSTRUCCIONS Y CRITRIOS GNRLS D CLIFICCIÓN Después de leer tentmente

Más detalles

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas. SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N 3

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N 3 GUIA DE TRABAJO PRACTICO Nº PAGINA Nº 6 GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N OBJETIVOS: Lorr que el Alumno: Interprete el concepto de Modelos Mtemáticos. Distin modelos mtemáticos epresdos medinte

Más detalles

MATEMÁTICAS (II) JUNIO 2002

MATEMÁTICAS (II) JUNIO 2002 MTEMÁTICS (II) JUNIO El emen present dos opciones, B. El lumno deberá elegir UN Y SÓLO UN de ells resolver los cutro ejercicios de que const. No se permite el usó de clculdors con cpcidd de representción

Más detalles

Límite - Continuidad

Límite - Continuidad Nivelción de Mtemátic MTHA UNLP Límite Definición (informl) Límite - Continuidd L función f tiende hci el ite L cerc de, si se puede hcer que f() esté tn cerc como quermos de L hciendo que esté suficientemente

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Análisis II: Derivadas y sus aplicaciones. 1. Determina la función derivada de las siguientes funciones: 3 1

Análisis II: Derivadas y sus aplicaciones. 1. Determina la función derivada de las siguientes funciones: 3 1 I.E.S. Jun Crlos I Ciempozuelos Mdrid Mtemátics II * Análisis II: Derivds y sus plicciones *. Determin l función derivd de ls siguientes funciones: f ' 7 9 f 7 b f c f d e f ' f f ' f ' ' ' f ' f f g f

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

f(x + h) f(x) 2) f(x) = 1 p x (a) = lim 2 ; a = 2, a = 2 2) f(x) = : 2x 4 si x > 2 8 < x 2 si x 0 3) f(x) = : x 2 si x > 0 ; a = 0 4) f(x) =

f(x + h) f(x) 2) f(x) = 1 p x (a) = lim 2 ; a = 2, a = 2 2) f(x) = : 2x 4 si x > 2 8 < x 2 si x 0 3) f(x) = : x 2 si x > 0 ; a = 0 4) f(x) = I) De nición de derivd ) Use l de nición de derivd Universidd del Norte División de Ciencis Básics Deprtmento de Mtemátics y Estdístic Tller de Cálculo I Preprción pr el Tercer Prcil 0-0 f 0 () = lim h!0

Más detalles