Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran."

Transcripción

1 Actvdad: Elabora u resume de la formacó que se muestra a cotuacó y aalza los procedmetos que se muestra. Fudametos matemátcos de la electróca dgtal Sstemas de umeracó poscoales E u sstema de esta clase, u úmero se represeta por medo de ua cadea de dígtos, dode cada poscó del dgto tee u peso asocado. Así, el valor del úmero es ua suma poderada de los dígtos. E u sstema poscoal geeral, la base puede ser cualquer etero b 2, y u dgto e la poscó tee u peso b ; u puto base permte que se utlce tato potecas egatvas como postvas de la base. La forma de expresó de u úmero N cualquera es: aa 1 a a0 a 1 a p Dode exste dígtos a la zquerda del puto base y p dígtos a la derecha. S el puto se omte, se supoe que se ecuetra a la derecha del dgto del extremo derecho. El valor de dcho úmero puede represetarse como ua suma de potecas de la base, de la sguete maera: p N a. b a 1. b a. b a0. b a 1. b a p. b a. b p Sedo a u úmero perteecete al sstema y que, por lo tato, cumple la codcó 0 a b. Excepto por la posbldad de teer ceros al prcpo o al fal, la represetacó de u úmero e u sstema de umeracó poscoal es úca. El dgto que esta e el extremo zquerdo se deoma dgto más sgfcatvo y el dgto que esta e el extremo derecho se deoma dgto meos sgfcatvo. Sstema decmal: Este es u sstema de base, dode se utlza símbolos (que forma la sucesó moótoa crecete 0,1,2,3,4,5,6,7,8,9) para represetar úmeros. Cada peso es ua poteca de que correspode a la poscó del dgto. U puto decmal permte que se utlce tato potecas egatvas como postvas de. La forma de expresó de u úmero D e esta base y su valor está dados por: dd 1 d d0 d 1 d p p p p D d. d. d. d. d. d. d. Sstema baro: Este es u sstema de base 2, dode solo se emplea 2 símbolos (0 y 1, llamados bts, por la cotraccó de las palabras bary dgts ). Cada peso es ua poteca de 2 que correspode a la poscó del dgto. U puto baro permte que se utlce tato potecas egatvas como postvas de 2. El sstema baro se emplea para represetar señales e u sstema dgtal, ya que dchas señales se ecuetra ormalmete e uo de dos estados: alto (1) o bajo (0). La forma de expresó de u úmero B e esta base y su valor está dados por: b b b b b b p p p p B b.2 b.2 b.2 b.2 b.2 b.2 b.2 El bt que esta e el extremo zquerdo de u umero baro se cooce como el bt más sgfcatvo (MSB, most sgfcat bt), y el bt que se ecuetra e el extremo derecho se cooce como el bt meos sgfcatvo (LSB, least sgfcat bt)..

2 Sstema octal: Este es u sstema de base 8, que ecesta 8 símbolos para represetar úmeros, de modo que se emplea los dígtos del 0 al 7 del sstema decmal. Este sstema es útl para represetar úmeros de múltples bts, ya que su base es ua poteca de 2. Puesto que ua cadea de 3 bts puede tomarse e 8 dferetes combacoes, se sgue que cada cadea de 3 bts puede represetarse de maera úca por u dgto octal. El sstema umérco octal o se utlza mucho e la actualdad, a cosecueca de la prepoderaca de las maquas que procesa bytes compuestos de 8 bts. Sstema hexadecmal: Este es u sstema de base 16, que ecesta 16 símbolos para represetar úmeros, de modo que se emplea los dígtos del 0 al 9 del sstema decmal co las letras de la A hasta la F. Este sstema es útl para represetar úmeros de múltples bts, ya que su base es ua poteca de 2. Puesto que ua cadea de 4 bts puede tomarse e 16 dferetes combacoes, se sgue que cada cadea de 4 bts puede represetarse de maera úca por u dgto hexadecmal. E base al crtero ateror, e el sstema umérco hexadecmal, dos dígtos represe-ta u byte de 8 bts, y 2 dígtos represeta ua palabra de bytes; e este cotexto, u dgto hexadecmal de 4 bts se deoma a veces u bble (medo byte). Coversó de u sstema a otro Cosderacoes prelmares: E geeral, la coversó etre dos bases o puede hacerse por smple susttucó; se requere operacoes artmétcas. Aquí eucaremos ua regla para covertr u úmero e cualquer base a u úmero e base, y vceversa. - De base r a base : Partmos del hecho coocdo de que el valor de u úmero e cualquer base esta dado por la formula: N p a. r Dode r es la base del sstema e el cual se halla el úmero y exste dígtos a la zquerda del puto base y p dígtos a la derecha. De esta forma, el valor del umero puede ecotrarse al covertr cada dgto del umero a su equvalete e base, y expadr la formula utlzado artmétca de base. Escrbmos la formula de expasó de maera adada: N (( (( a ). r a ). r ). r a ). r a 1 1 0

3 Esto es, comezamos co ua suma de 0; cado co el dgto que esta e el extremo zquerdo, multplcamos la suma por r, y agregamos el sguete dgto a la suma, reptedo este proceso hasta que todos los dígtos haya sdo procesados. - De base a base r: Ahora, partmos de la formula ateror para fudametar u método para covertr de u umero e base a cualquer base. Para esto, cosderemos que ocurre s dvdmos la formula etre r? Puesto que la parte etre parétess de la formula es gualmete dvsble etre r, el cocete será: Q ( (( a ). r a ). r ). r a 1 1 Y el resduo será d 0. De este modo, d 0 puede calcularse como el resduo de la dvsó larga de N etre r. Adcoalmete, el cocete Q tee la msma forma que la formula orgal; por lo tato, dvsoes sucesvas etre r os proporcoa dígtos sucesvos de N de derecha a zquerda, hasta que todos los dígtos de N haya sdo dervados. Coversó de Baro a - Octal: Se hace a través de ua susttucó drecta. Desde el puto baro, se separa el úmero baro e grupos de 3 bts, que se reemplaza por su correspodete dgto octal Hexadecmal: Se hace a través de ua susttucó drecta. Desde el puto baro, se separa el úmero baro e grupos de 4 bts, que se reemplaza por su correspodete dgto hexadecmal D Decmal: Se hace a través de la suma, covrtedo cada dgto del úmero a su equvalete e base de acuerdo a la poscó que ocupa, y luego sumádolos Coversó de Octal a - Baro: Se hace a través de ua susttucó drecta, reemplazádose cada dgto octal por su equvalete grupo de 3 bts Hexadecmal: Se coverte prmero el úmero octal a baro, reemplazádose cada dgto octal por su correspodete grupo de 3 bts. Luego, a partr del puto baro, se separa el úmero baro e grupos de 4 bts, que se reemplaza por su correspodete dgto hexadecmal C16 - Decmal: Se hace a través de la suma, covrtedo cada dgto del úmero a su equvalete e base de acuerdo a la poscó que ocupa, y luego sumádolos.

4 Coversó de Hexadecmal a - Baro: Se hace a través de ua susttucó drecta, reemplazádose cada dgto hexadecmal por su equvalete grupo de 4 bts. C0DE Octal: Se coverte prmero el úmero hexadecmal a baro, reemplazádose cada dgto hexadecmal por su correspodete grupo de 4 bts. Luego, a partr del puto baro, se separa el úmero baro e grupos de 3 bts, que se reemplaza por su correspodete dgto octal. C0DE Decmal: Se hace a través de la suma, covrtedo cada dgto del úmero a su equvalete e base de acuerdo a la poscó que ocupa, y luego sumádolos C0DE Coversó de Decmal a - Baro: Se hace a través de la dvsó resduo 0 ( ) ( ) 2 13 ( resduo 1) 2 6 ( resduo 1) 2 3 ( resduo 0) 2 1 ( resduo 1) 2 27 resduo Octal: Se hace a través de la dvsó ( resduo 4) 8 1 ( resduo 5) Hexadecmal: Se hace a través de la dvsó.

5 ( resduo 12) 8 6C 168 REGLA PRÁCTICA: 1) Dvdr por el valor decmal de la base el úmero decmal a covertr, así como los sucesvos cocetes, hasta obteer u cocete meor al valor de la base. 2) Este últmo cocete y los restos de las dvsoes efectuadas costtuye, e ese orde, el úmero buscado. Operacoes co úmeros baros Suma de úmeros baros: La sguete es ua tabla de sumar para úmeros baros: Para sumar dos úmeros baros X y Y, sumamos jutos los bts meos sgfcatvos, co u acarreo cal de 0, producedo bts de suma y bts de acarreo. Cotuamos procesado bts de derecha a zquerda, sumado el acarreo (s lo hubere) fuera de cada columa a la suma de la sguete columa. Resta de úmeros baros: La sguete es ua tabla de restar para úmeros baros: La resta bara se realza de maera smlar a la suma, pero empleado acarreos egatvos ( prestamos ) desde ua columa a la columa ateror cuado el muedo de esa columa sea u 0 y el sustraedo sea u 1. Para restar dos úmeros baros X y Y, restamos jutos los bts meos sgfcatvos co u préstamo cal de 0, producedo bts de resta y bts de préstamo. Cotuamos procesado bts de derecha a zquerda, restado el bt de préstamo (s lo hubere) a la sguete columa. Los valores del muedo baro se modfcara cuado se presete el préstamo. Cada vez que se pde u 1 a la sguete poscó del muedo, este pasara a ser 0. E el caso de que la sguete també sea 0, pasara a ser 1, debédose pedr uevamete u 1 a la subsguete poscó, que també pasara a ser 1 s es 0, y así, sucesvamete, s hay 0 e el muedo se trasformara e 1 hasta llegar a u 1 que pasara a ser 0.

6 Multplcacó, dvsó y potecacó de úmeros baros: La sguete es la tabla de multplcar para úmeros baros: Multplcar e baro es muy secllo: se repte el multplcado desplazado a la zquerda, coforme a la poscó que ocupe los uos del multplcador. Luego se realza la suma co los sumados así ordeados. La dvsó se puede realzar co el método de las dferecas sucesvas, sedo que cada sustraedo se obtee multplcado por 1 al dvsor s este ultmo es meor o gual que el resto parcal e cuestó, o por 0 s el msmo es mayor que dcho resto. Es mportate señalar que cada vez que se multplca o se dvde u úmero etero baro por la base 2 =2, se agrega o se quta u cero, respectvamete. Co respecto a la potecacó, e cualquer base, sempre que se tega p factores guales de u umero, se podrá escrbr xxx x= p. Segú sea la base, varará la represetacó de y p. Debe teerse presete que e cualquer base, la udad seguda de p ceros puede expresarse como la base a la poteca p, smbolzádose la base e todos los sstemas umércos ( ) )

7 Represetacó de úmeros baros sgados Aplcacó de matemátcas dscretas AMAD-02 Báscamete, exste muchas formas de represetar úmeros sgados, pero las dos mas empleadas so la represetacó de magtud y sgo, y los sstemas umércos de complemeto. Represetacó de magtud co sgo: El sstema de magtud co sgo se aplca a los úmeros baros hacedo uso de ua poscó de bt extra para represetar el sgo (bt de sgo); tradcoalmete, el MSB de ua cadea de bts es empleado como el bt de sgo (0=sgo más, 1=sgo meos), y los bts de meor orde cotee la magtud. Ejemplos: El sstema de magtud co sgo tee u úmero détco de eteros postvos y egatvos. U etero de magtud co sgo de bts esta stuado detro del tervalo que va desde (2-1 -1) hasta +(2-1 -1), y exste dos represetacoes posbles del cero. Sstemas umércos de complemeto: Metras que el sstema de magtud co sgo coverte e egatvo u úmero al cambar su sgo, u sstema umérco de complemeto coverte e egatvo u úmero tomado su complemeto como defdo por el sstema. E el caso del sstema de umeracó baro, los sstemas umércos de complemeto más empleados so el complemeto a 1 y el complemeto a 2. - Complemeto a 1: Se obtee complemetado cada bt del úmero baro, es decr, cambado cada 0 por 1 y vceversa. - Complemeto de 2: Se obtee tomado el complemeto a 1 y sumádole 1 al LSB del úmero baro. - Represetacó de úmeros co sgo medate el complemeto a 2: El sstema complemeto a 2 para represetar úmeros co sgo trabaja de la sguete maera: S el úmero es postvo, la magtud esta represetada por su equvalete baro verdadero y se agrega u 0 ates del MSB. S el úmero es egatvo, la magtud esta represetada por su equvalete e complemeto a 2 y se agrega u 1 ates del MSB.

8 El sstema de complemeto a 2 se emplea para represetar úmeros co sgo porque permte efectuar la operacó de resta de úmeros baros medate ua suma. E geeral, la operacó complemeto a 2 de u umero co sgo cambara u umero postvo por uo egatvo y vceversa. La recoversó de u úmero e el sstema complemeto a 2 a su valor baro verda-dero se efectúa smplemete sguedo el msmo proceso que se empleo para obteer el complemeto. - Caso especal de la represetacó e complemeto a 2: Sempre que u úmero co sgo tee u 1 e el bt de sgo y todos los bts de magtud so 0, su decmal equvalete es -2, dode es el úmero de bts que hay e la magtud. De este modo, podemos decr que el tervalo completo de valores que se puede represetar e el sstema complemeto a 2 que tee bts de magtud es -2 hasta +(2-1). E total, exste 2 +1 valores dferetes, cludo el cero. Suma y resta e el sstema complemeto a 2 Suma: Es mportate observar que el bt de sgo de cada úmero se opera e la msma forma que la parte de la magtud. - CASO I: dos úmeros postvos. Notemos que los bts de sgo del cosumado y del sumado so 0, y el bt de sgo de la suma es 0, lo que dca que la suma es postva. Notemos asmsmo que el cosumado y el sumado se forma co el msmo úmero de bts; esto sempre debe llevarse a cabo e le sstema complemeto a 2. - CASO II: umero postvo y umero egatvo meor.

9 E este caso, el bt de sgo del sumado es 1. Observemos que el bt de sgo també partcpa e el proceso de adcó; de hecho, se geera u acarreo e la últma poscó de la suma. Este acarreo sempre se descarta. - CASO III: úmero postvo y úmero egatvo mayor. Aquí, la suma tee u bt de sgo 1, lo que dca u úmero egatvo. Como la suma es egatva, debemos teer e cueta que esta se ecuetra e su forma complemeto a 2, de forma que los últmos cuatro bts represeta e realdad el complemeto a 2 de la suma. Para ecotrar la magtud verdadera de la suma, debemos tomar uevamete el complemeto a 2. - CASO IV: dos úmeros egatvos. Este resultado fal vuelve a ser egatvo, y esta e forma complemeto a 2 co bt de sgo 1. - CASO V: úmeros guales y opuestos. El resultado es obvamete 0, como se esperaba. Resta: La operacó de sustraccó que emplea el sstema complemeto a 2 e realdad comprede la operacó de adcó. Cuado se resta u úmero baro (sustraedo) a otro úmero baro (muedo), el procedmeto es el sguete: 1. Se toma el complemeto a 2 del sustraedo, cluyedo el bt de sgo. S el sustraedo es u úmero postvo, este se trasformara e uo egatvo e forma complemeto a 2. S el sustraedo es u úmero egatvo, este se trasformara e uo postvo e forma bara verdadera. E otras palabras, se altera el sgo del sustraedo. 2. Después de tomar el complemeto a 2 del sustraedo, este se suma al muedo. El muedo se coserva e su forma orgal. El resultado de esta adcó represeta la dfereca que se pde. El bt de sgo de esta dfereca determa s es postva o egatva, y s se ecuetra e forma bara verdadera o e forma complemeto a 2. Recordemos que ambos úmeros debe teer el msmo úmero de bts.

10 Se camba el sustraedo a su forma complemeto a 2 (110), lo que represeta (-4). Ahora, se suma esto al muedo: Cuado el sustraedo se camba por su complemeto a 2, e realdad se coverte e -4, así que sumamos +9 a -4, que es lo msmo que restar +4 de +9. por lo tato, cualquer operacó de sustraccó se coverte e realdad e ua de adcó cuado se emplea el sstema complemeto a 2.

TEMA 4: NÚMEROS COMPLEJOS

TEMA 4: NÚMEROS COMPLEJOS TEMA : COMPLEJOS 1 EN FOMA BINÓMICA 1.1 DEFINICIONES Sabemos que la resolucó de alguas ecuacoes de º grado coduce a ua raíz cuadrada de u º egatvo. Dcha raíz o tee setdo e el cojuto de los úmeros reales.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax + bx + c = 0 se aalzó el sgo

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE - INTRODUCCION Es tecó aalzar e este trabajo las coocdas relacoes costo-volume-utldad para el caso e que sus compoetes sea: w : costo varable utaro

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Núeros Coplejos PREGUNTAS MÁS FRECUENTES. Qué es la udad agara? Es u eleeto del que cooceos úcaete su cuadrado:.obvaete, o se trata de u úero real.. Qué es u úero coplejo? Es

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

Ejercicios resueltos de funciones generatrices. Matemática discreta 4º Ingeniería Informática

Ejercicios resueltos de funciones generatrices. Matemática discreta 4º Ingeniería Informática Ejerccos resueltos de fucoes geeratrces. Matemátca dscreta º Igeería Iformátca. Determa la fucó geeratrz para el úmero de formas de dstrbur 5 moedas de u euro etre cco persoas, s (a o hay restrccoes; (b

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 47 Meddas Descrptvas Numércas Frecuetemete ua coleccó de datos se puede reducr a ua o uas cuatas meddas umércas secllas que resume al cojuto

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Itroduccó a la Programacó Leal Clauda Llaa Daza Garzó cldaza@uversa.et.co Trabajo de Grado para Optar por el Título de Matemátco Drector: Pervys Rego Rego Igeero Uversdad Nacoal de Colomba Fudacó Uverstara

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Regla de Bayes. Pedro J. Rodríguez Esquerdo

Regla de Bayes. Pedro J. Rodríguez Esquerdo Regla de Bayes Pedro J. Rodríguez Esquerdo Isttuto de Estadístca y Sstemas Computadorzados de Iformacó Facultad de Admstracó de Empresas y Departameto de Matemátcas Facultad de Cecas Naturales Recto de

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

Cálculo Integral. LA INTEGRAL

Cálculo Integral. LA INTEGRAL Cálculo Itegral. LA INTEGRAL Durate la seguda mtad del sglo XVII, Newto y Lebz dero u paso decsvo e la matemátca de las magtudes varables, al setar las bases del cálculo dferecal e tegral. "Este fue el

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

ANALISIS DE SISTEMAS LINEALES CONTINUOS EN EL ESPACIO DE ESTADO

ANALISIS DE SISTEMAS LINEALES CONTINUOS EN EL ESPACIO DE ESTADO U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSE DE SUCRE VICE RECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERIA ELECTRONICA ANALISIS DE SISTEMAS LINEALES CONTINUOS EN EL ESPACIO

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO LEY FINANIEA E ESUENTO SIMPLE AIONAL. ESUENTO BANAIO Profesor: Jua Atoo Gozález íaz epartameto Métodos uattatvos Uversdad Pablo de Olavde www.clasesuverstaras.com Ley Facera de escueto Smple acoal La ley

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! INTRODINTRODUCCIÓN D etro del estudo de muchos feómeos de

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó

Más detalles

Capítulo 1. CAPITALIZACIÓN SIMPLE

Capítulo 1. CAPITALIZACIÓN SIMPLE Curso de Cotabldad y Matemátcas Faceras 2ª parte: Matemátcas Faceras Capítulo. CAPITALIZACIÓN SIMPLE Capítulo. CAPITALIZACIÓN SIMPLE Ídce de cotedos Pága CAPÍTULO CAPITALIZACIÓN SIMPLE 3. CONCEPTO Y FÓRMULAS

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

q q q q q q n r r r qq k r q q q q

q q q q q q n r r r qq k r q q q q urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO jsalcedo@u.edu.pe Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

Estudio y optimización del algoritmo de ordenamiento Shellsort

Estudio y optimización del algoritmo de ordenamiento Shellsort Estudo y optmzacó del algortmo de ordeameto Sellsort Bejam Bustos Departameto de Cecas de la Computacó, Uversdad de Cle bebustos@dcc.ucle.cl Resume Este estudo aalza, e forma empírca, el desempeño del

Más detalles

UNIVERSIDAD DE BUENOS AIRES

UNIVERSIDAD DE BUENOS AIRES NIVERSIA E BENOS AIRES FACLTA E INGENIERÍA EPARTAMENTO E IRÁLICA Cátedra de Costruccoes dráulcas Tuberías e Sere y e Paralelo Ig. Lus E. Pérez Farrás - Novembre 003 - epartameto de dráulca Cátedra de Costruccoes

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 0 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

ALGORITMOS Y PROCESADORES ARITMÉTICOS

ALGORITMOS Y PROCESADORES ARITMÉTICOS ALGORITMOS Y PROCESADORES ARITMÉTICOS. - INTRODUCCIÓN - Procesador artmétco - Característcas - Nveles de descrpcó fucoal - Nvel abstracto - Nvel de algortmo artmétco - Nvel de mplemetacó.2 - SISTEMA DE

Más detalles

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES. TEMA : PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.. INTRODUCCIÓN Hasta ahora hemos vsto cómo se puede resumr los datos obtedos del estudo de ua muestra (o ua poblacó) e ua tabla estadístca

Más detalles

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES Itroduccó a la Trasformada Wavelet DESCOMPOSICIÓN DE SEÑALES Trasformada Wavelet Curso 006 Itroduccó Para ua mejor compresó de los capítulos sguetes desarrollaremos aquí alguos coceptos matemátcos ecesaros

Más detalles

R-C CARGA Y DESCARGA DE UN CONDENSADOR

R-C CARGA Y DESCARGA DE UN CONDENSADOR RC CARGA Y DESCARGA DE UN CONDENSADOR CONTENIDOS Estado trastoro de carga y descarga. Cálculo de la costate de tempo. Método de cuadrados mímos. Errores que se comete durate la evaluacó de τ OBJETIVOS

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve?

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve? 1.1. El cocepto de Estadístca. Qué es y para qué srve? La Estadístca se ocupa de la recoleccó, agrupacó, presetacó, aálss e terpretacó de datos. A meudo se llama estadístcas a las lstas de estos datos,

Más detalles

GENERACION DE NUMEROS ALEATORIOS

GENERACION DE NUMEROS ALEATORIOS GENERACION DE NUMEROS ALEATORIOS U paso clave e smulacó es teer rutas que geere varables aleatoras co dstrbucoes especfcas: epoecal, ormal, etc. Esto es hecho e dos fases. La prmera cosste e geerar ua

Más detalles

LAS MATEMÁTICAS DE LOS SISTEMAS ELECTORALES

LAS MATEMÁTICAS DE LOS SISTEMAS ELECTORALES Rev.R.Acad.Cec.Exact.Fís.Nat. (Esp) Vol. 101, Nº. 1, pp 21-33, 2007 VII Programa de Promocó de la Cultura Cetífca y Tecológca LAS MATEMÁTICAS DE LOS SISTEMAS ELECTORALES FCO. JAVIER GIRÓN GONZÁLEZ-TORRE

Más detalles

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO CURO PROBABILIDAD Y ETADITICA FM75 PROFEOR RODOLFO TORO DEPARTAMETO DE FIICA Y MATEMATICA UIVERIDAD ACIOAL ADRE BELLO EL MÉTODO CIETÍFICO La Estadístca, costtuye así, ua dscpla cetífca extremadamete ampla

Más detalles

2.2 Distribuciones de frecuencias unidimensionales.

2.2 Distribuciones de frecuencias unidimensionales. Itroduccó a la Estadístca Empresaral Capítulo - Aálss de ua varable CAPITULO - AALISIS DE UA VARIABLE Itroduccó E este capítulo se dará u cojuto de strumetos que permtrá el aálss descrptvo de ua varable

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Sistema binario. Disoluciones de dos componentes.

Sistema binario. Disoluciones de dos componentes. . Itroduccó ermodámca. ema Dsolucoes Ideales Ua dsolucó es ua mezcla homogéea, o sea u sstema costtudo por ua sola fase que cotee más de u compoete. La fase puede ser: sólda (aleacoes,..), líquda (agua

Más detalles

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información MATEMÁTICA Udad 4 Resolvamos desgualdades Iterpretemos la varabldad de la formacó Objetvos de la Udad: Propodrás solucoes a problemas relacoados co desgualdades leales y cuadrátcas; y represetarás los

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

Topología General Capítulo 0-2 -

Topología General Capítulo 0-2 - Topología Geeral Topología Geeral apítulo - - - - Topología Geeral apítulo - 3 - Breve reseña hstórca Sus orígees está asocados a la obra de Euler, ator y Möbus. La palabra topología había sdo utlzada

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles