INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD."

Transcripción

1 NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas de estmar probabldades: el efoque clásco, el cual se aplca cuado todos los resultados posbles que se cosdera gualmete probables; el de frecuecas relatvas o probabldad empírca, se refere a la estmacó co base e u gra úmero de expermetos repetdos e las msmas codcoes. El efoque subjetvo basado e stuacoes especales, e las cuales o es posble repetr el expermeto y sólo usa u grado de cofaza persoal. OLDD CLÁSC O DE LLCE fes del sglo XV. ajo este cocepto defremos la probabldad de obteer u determado resultado, e u expermeto aleatoro como la relacó por cocete, etre el úmero de casos favorables a su ocurreca, y el úmero de casos posbles. S represetamos la probabldad de ocurreca del eveto, por, se tedrá: Casos favorables al eveto Casos posbles Esta es la defcó clásca o apror ates de, es de aplcacó fácl, pues o se ecesta de gú expermeto para su cálculo, so úcamete el coocmeto de las codcoes e que se realza el expermeto. Se supoe que todos los resultados posbles so coocdos, y que todos tee la msma probabldad de ocurrr. S ua ura cotee 0 esferas blacas, 5 azules y 5 rojas, la probabldad de extraer al azar ua esfera blaca, es: 0 0 Esta probabldad se basa e razoametos abstractos y o depede de la expereca, lo cual permte estmar probabldades s realzar ua gra catdad de expermetos. OLDD FECUENTST O DE VON MSES frecuecas relatvas 957 La probabldad expermetal de que ocurra u eveto es la frecueca relatva observada co que ocurre ese eveto. S u expermeto se realza veces, bajo las msmas codcoes y s ocurre resultados favorables al eveto, el valor estmado de la probabldad de que ocurra como resultado de la expermetacó, puede determarse de la maera sguete: DETMENTO DE CENCS ÁSCS M. e C. José Lus Herádez Gozález

2 NSTTUTO TECNOLÓGCO DE ZCO Estadístca Dode es el úmero de veces que se observó realmete el eveto, y es el úmero de veces que se efectuó el expermeto. La probabldad estmada, obteda e esta forma, se deoma probabldad expermetal. medda que aumeta el úmero de esayos o expermetos, la probabldad estmada de que ocurra u eveto, que se obtee a través de la frecueca relatva, se va acercado al valor apror. or medo del efoque de frecuecas relatvas, la probabldad se determa sobre la base de la proporcó de veces que ocurre u resultado favorable, e u úmero de observacoes o expermetos. No hay supuesto prevo de guales probabldades. De 70 alumos que se scrbero al curso de probabldad y estadístca e el semestre ateror. 5 o lo termaro, 0 obtuvero ua calfcacó de N y el resto lo aprobaro, Cuál es la probabldad de que u alumo acredte la matera? 5 70 OLDD SUJETV 969 La probabldad estmada medate los efoques cláscos y expermetal, so completamete objetvos, ya que se determa co base e hechos reales. E cambo, e alguos casos se preseta stuacoes e las cuales o es posble realzar expermetos repettvos y los resultados tampoco so gualmete probables. E estas codcoes, la probabldad de ocurreca de u eveto debe evaluarse e forma subjetva. Tales aprecacoes suele ser de crtero persoal, y por lo tato, dos persoas puede cuatfcar e forma dferete, la probabldad subjetva del msmo eveto. odemos etoces cosderar la probabldad subjetva como la evaluacó persoal de la ocurreca de u eveto certo, que se hace co base e crteros o experecas sobre casos semejates. XOMS DE OLDD Los axomas de la formulacó modera de la teoría de la probabldad costtuye ua base para deducr a partr de ellas u amplo úmero de resultados. DETMENTO DE CENCS ÁSCS M. e C. José Lus Herádez Gozález

3 NSTTUTO TECNOLÓGCO DE ZCO Estadístca La letra se utlza para desgar la probabldad de u eveto, sedo la probabldad de ocurreca de u eveto e u expermeto. XOM S es u eveto de S, etoces la probabldad del eveto es: 0 Como o podemos obteer meos de cero éxtos más de éxtos e expermetos, la probabldad de cualquer eveto, se represeta medate u valor que puede varar de 0 a. XOM S dos evetos so mutuamete excluyetes, la probabldad de obteer o es gual a la probabldad de obteer más la probabldad de obteer. Exclurse mutuamete quere decr que y o puede ocurrr smultáeamete e el msmo expermeto. sí, la probabldad de obteer águla o sol e la msma trada de ua moeda será. E geeral podemos decr que la suma de las probabldades de todos los posbles evetos mutuamete excluyetes es gual a :... XOM S es u eveto cualquera de u expermeto aleatoro y es el complemeto de, etoces: - Es decr, la probabldad de que el eveto o ocurra, es gual a meos la probabldad de que ocurra. TEOEMS DE L SUM DE OLDDES Supoedo que y represeta las probabldades para los dos evetos y, etoces sgfca la probabldad de que ocurra o. S represetamos los evetos y e u Dagrama de Ve co DETMENTO DE CENCS ÁSCS M. e C. José Lus Herádez Gozález

4 NSTTUTO TECNOLÓGCO DE ZCO Estadístca S Etoces y so cojutos dsjutos o mutuamete excluyetes, o sea que o puede ocurrr e forma smultáea E cambo, s ambos evetos tee putos muestrales e comú S - OLDD CONDCONL La probabldad codcoal se smbolza, que se lee probabldad de, dado, o la probabldad de que ocurra, codcoado a que haya ocurrdo. Se dce que dos o más evetos so depedetes etre sí cuado la probabldad de que ocurra uo o es fluda por la ocurreca de otro. S y represeta dos evetos y s la ocurreca de o afecta a la ocurreca de, y la ocurreca de o afecta a la ocurreca de, etoces se dce que y so depedetes. E este caso, la probabldad de que ocurra y es gual al producto de sus respectvas probabldades, y se expresa así: DETMENTO DE CENCS ÁSCS 4 M. e C. José Lus Herádez Gozález

5 NSTTUTO TECNOLÓGCO DE ZCO Estadístca E ua caja hay 5 esferas blacas, 4 rojas y egras. Se extrae ua esfera, se observa su color y se regresa a la caja. ajo estas codcoes, Cuál es la probabldad de que al extraer esferas, éstas sea de color rojo? x x 78 7 S dos evetos y o so depedetes, es decr, s y so depedetes, la probabldad compuesta de y o es gual al producto de sus probabldades respectvas. or lo cual, podemos decr, que para evetos depedetes: Es decr: o E ua caja hay 5 esferas blacas, 4 rojas y egras. S se extrae al azar esferas e forma cosecutva, s reemplazo, Cuál es la probabldad de que las sea de color rojo? Sea el eveto extraer ua esfera roja. 4 x x De la expresó despejamos y se obtee la probabldad codcoal de " dado ". E forma aáloga, la probabldad codcoal de " dado ", es : Ua caja cotee 00 focos, 50 azules y 50 rojos; de los cuales, 0 so defectuosos: 6 azules y 4 rojos. Cuál es la probabldad de que u foco elegdo al azar, sea defectuoso eveto D? 0 D S seleccoamos u foco al azar y se observa que éste es azul eveto, Cuál es la probabldad de que el foco sea defectuoso, dado que es azul? DETMENTO DE CENCS ÁSCS 5 M. e C. José Lus Herádez Gozález

6 NSTTUTO TECNOLÓGCO DE ZCO Estadístca Escrbremos D, para represetar la probabldad del eveto D, dado. Etoces, puesto que hay 50 focos azules y de éstos, 6 so defectuosos 6 D 50 5 TEOEM DE YES El procedmeto que se utlza para ecotrar probabldades posterores, a partr de probabldades prevas, se llama regla ayesaa. Las probabldades apror o prevas se cooce ates de obteer formacó algua del expermeto e cuestó. Las probabldades aposteror se determa después de coocer los resultados del expermeto. El teorema de ayes cosste e u método para ecotrar la probabldad de ua causa específca cuado se observa u efecto partcular. Esto es, s el eveto ha ocurrdo, Cuál es la probabldad de que fue geerado por el eveto que es ua causa posble o por el otra causa posble? S supoemos que los evetos,,,...,, forma ua partcó de u espaco muestral S; esto es, que los evetos so mutuamete excluyetes y su uó es S. hora, sea otro eveto, etoces : 4 S... Dode so evetos mutuamete excluyetes. E cosecueca:... Luego por la regla de multplcacó:... S,,,..., es ua partcó de S, y es cualquer eveto. Etoces para cualquer, DETMENTO DE CENCS ÁSCS 6 M. e C. José Lus Herádez Gozález

7 NSTTUTO TECNOLÓGCO DE ZCO Estadístca DETMENTO DE CENCS ÁSCS 7 M. e C. José Lus Herádez Gozález... Es decr: La expresó ateror puede terpretarse de la maera sguete: S u eveto puede ocurrr e más de ua forma, etoces la probabldad de que ocurra e ua forma partcular será gual a la razó de la probabldad de que se presete la forma respecto a la probabldad de que ocurra. Se tee dos cajas. La caja cotee esferas rojas y azules, e tato que la caja cotee esferas rojas y 8 azules. Se arroja ua moeda. S se obtee águla se saca ua esfera de la caja ; s se obtee sol se saca ua esfera de la caja. dca el eveto sacar ua esfera roja metras que y dca los evetos escoger caja y caja, respectvamete. Ua esfera roja puede resultar al escoger cualquera de las cajas. a Hallar la probabldad de sacar ua esfera roja b Hallar la probabldad de que se escogera la caja, dado que la esfera es, es decr que el resultado de arrojar la moeda sea águla. La persoa que arrojó la moeda o da a coocer s resultó águla o sol de tal maera que la caja de la cual se sacó la esfera se descooce pero dca que se extrajo ua esfera roja. uscamos la probabldad de que se escoja la caja y se sabe que se sacó ua esfera roja. Empleado el teorema de ayes, esta probabldad está dada por:

8 NSTTUTO TECNOLÓGCO DE ZCO Estadístca E u sttuto Superor, el 5 por ceto de los hombres y el 0 por ceto de las mujeres estuda ología. Las mujeres costtuye el 60 por ceto del estudatado. S se seleccoa e forma aleatora u estudate y resulta que está cursado ología, determar la probabldad de que sea mujer. H 0.40; M 0.60; H 0.5; M M DETMENTO DE CENCS ÁSCS 8 M. e C. José Lus Herádez Gozález

9 NSTTUTO TECNOLÓGCO DE ZCO Estadístca Factoral!-- ermutacoes de elemetos ermutacoes de elemetos e dferetes grupos de r elemetos. r!! r! ermutacoes dode o todos los elemetos so dferetes.,,..., k!!!... k! FOMULO Casos favorables al eveto Casos posbles xomas Teoremas de la suma de probabldades. Sí Sí ermutacoes crculares Combacoes c C r!! r! r! Fórmula bomal r a b a b r r 0 robabldad de u eveto r - robabldad codcoal depedetes Teorema de ayes... DETMENTO DE CENCS ÁSCS 9 M. e C. José Lus Herádez Gozález

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBABILIDAD 1. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBBILIDD. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó axomátca

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5 Modelos de Probabldades Estadístca stca Computacoal II Semestre 005 Profesores: Héctor llede (hallede@f.utfsm.cl

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

PARTE 1 - PROBABILIDAD

PARTE 1 - PROBABILIDAD arte - robabldad rof. María. tarell RTE - ROILIDD - robabldad. - Espacos muestrales y evetos. La Teoría de robabldades estuda los llamados expermetos aleatoros. Eemplos cláscos de expermetos aleatoros

Más detalles

PARTE 1 - PROBABILIDAD

PARTE 1 - PROBABILIDAD arte - robabldad rof. María. tarell RTE - ROILIDD - robabldad. - Espacos muestrales y evetos. La Teoría de robabldades estuda los llamados expermetos aleatoros. Ejemplos cláscos de expermetos aleatoros

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Experimento determinístico. Aquellos que dan lugar al mismo resultado siempre que se realicen bj bajo las mismas condiciones.

Experimento determinístico. Aquellos que dan lugar al mismo resultado siempre que se realicen bj bajo las mismas condiciones. Tema 3. Espacos de Probabldad. Defcó axomátca y propedades báscas de la Probabldad 3.. Itroduccó. Feómeos y expermetos aleatoros. Álgebra de sucesos E este tema se establece ls ocoes báscas para el desarrollo

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! Isttuto Tecológco de Apzaco Departameto de Cecas Báscas INSTITUTO

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2). TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores

Más detalles

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra Estmacó putual de parámetros. Parámetro( : Característca de la poblacó. E estadístca la forma fucoal de f ( ; es coocda pero se descooce total o parcalmete. La estmacó del parámetro ( debe ser fucó de

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA ema ta zabal zazu EUSKAL HERRIKO UNIBERTSITATEA UNIVERSIDAD DEL AIS VASCO MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA Resolucó del ejercco fal. rmera covocatora. Curso INDUSTRIA INGENIARITZA TEKNIKOKO UNIBERTSITATE

Más detalles

2. Censura y truncamiento

2. Censura y truncamiento 2. Cesura y trucameto Los datos de tempo de fallo se preseta e dferetes formas que crea problemas especales cuado se aalza. E muchas ocasoes o se cooce co exacttud el valor del tempo de fallo y úcamete

Más detalles

Evolución buena 0,7 0,3 Evolución mala 0,2 0,8 Cuál es el valor máximo de esta información?

Evolución buena 0,7 0,3 Evolución mala 0,2 0,8 Cuál es el valor máximo de esta información? APELLIDOS: DNI: EXAMEN DE TÉCNICAS CUANTITATIVAS III. NOMBRE: GRUPO: E todos los casos, cosdere u vel de cofaza del 95% (z=).. U empresaro quere estmar el cosumo mesual de electrcdad e ua comudad de 000

Más detalles

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

1.- DISTRIBUCIÓN BIDIMENSIONAL

1.- DISTRIBUCIÓN BIDIMENSIONAL º Bachllerato Matemátcas I Dpto de Matemátcas- I.E.S. Motes Oretales (Izalloz)-Curso 0/0 TEMAS 3, 4 y 5.- DISTRIBUCIONES BIDIMENSIONALES. CÁLCULO DE PROBABILIDADES. DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

SUCESOS Y PROBABILIDAD

SUCESOS Y PROBABILIDAD SUCESOS Y PROAILIDAD Notas Idce. OJETIVOS 2. CONCEPTOS ÁSICOS DE LA TEORÍA DE CONJUNTOS. ESPACIO MUESTRAL. ÁLGERA DE SUCESOS 4 4. PROAILIDAD 8 5. INDEPENDENCIA DE SUCESOS 4 ILIOGRAFÍA 4 APÉNDICE. NOTACIÓN

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA Epermeto aleatoro.- Se llama epermeto aleatoro a todo feómeo cuyos resultados o se puede predecr de atemao, au cuado cada prueba se repta bajo las msmas codcoes. Ejemplos de

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

Tema 12: Modelos de distribución de probabilidad: Variables Continuas

Tema 12: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema Tema : Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(; ) 3. MODELO CHI-CUADRADO DE PEARSON, k 4. MODELO t DE STUDENT, t

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: wschmd@ceam.mx Resume: De acuerdo al Teorema

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

Del correcto uso de las fracciones parciales.

Del correcto uso de las fracciones parciales. Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5: Modelos de Probabldad Estadístca Computacoal º Semestre 00 Profesor :Héctor llede Pága : www.f.utfsm.cl/~hallede

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( )

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( ) Los úmeros complejos surje a ra de ecuacoes de la forma x + 0 Exste u certo paralelsmo etre este cuerpo el plao, cocretamete, lo que ha es ua correspodeca buívoca, es decr, ua relacó bectva etre C R R

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

GENERALIDADES SOBRE MÓDULOS

GENERALIDADES SOBRE MÓDULOS GENERALIDADES SOBRE MÓDULOS Presetar el Z -módulo Z como cocete de u Z -módulo lbre Hacer lo msmo para el grupo de Kle Calcular los auladores de los sguetes módulos: a) El Z -módulo Z Z 6 b) El Z -módulo

Más detalles

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara 95 Teoremas límte Cosderemos el exermeto aleatoro que cosste e arrojar ua moeda equlbrada veces. Suogamos que se regstra la roorcó de caras. U resultado coocdo es que esta roorcó estará cerca de /. Formalzado

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA VARIABLE ALEATORIA Se llama varable aleatora a toda fucó defda e el espaco muestral de u epermeto aleatoro que asoca a cada elemeto del espaco u úmero real X : E R El cocepto de varable aleatora surge

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

En este capítulo 5 estudiaremos una serie de conceptos básicos, y que serán fundamentales para el posterior desarrollo de la inferencia estadística.

En este capítulo 5 estudiaremos una serie de conceptos básicos, y que serán fundamentales para el posterior desarrollo de la inferencia estadística. TEMA 5. Muestreo y dstrbucoes e el muestreo Nuestro objetvo fudametal es saber qué modelo va a segur la poblacó, y para ello haremos uso de la formacó que obtegamos de ua parte de esa poblacó llamada muestra.

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

TEMA 6 MUESTREO POR CONGLOMERADOS MONOETÁPICO

TEMA 6 MUESTREO POR CONGLOMERADOS MONOETÁPICO TEA 6 UESTREO POR COGLOERADOS OOETÁPICO Cotedo 1- Defcó. Aplcacó. Seleccó de ua muestra por Coglomerados. Etapas. otacó. - uestreo mooetápco co coglomerados de gual tamaño. Estmacó de la meda, el total

Más detalles

FUNCIONES ALEATORIAS

FUNCIONES ALEATORIAS Uversdad de Medoza Ig. Jesús Rubé Azor Motoya FUNCIONES ALEATORIAS Ua varable aleatora se defe como ua fucó que represeta gráfcamete el resultado de u expermeto a los úmeros reales, esto es, X(), dode

Más detalles

Regla de Bayes. Pedro J. Rodríguez Esquerdo

Regla de Bayes. Pedro J. Rodríguez Esquerdo Regla de Bayes Pedro J. Rodríguez Esquerdo Isttuto de Estadístca y Sstemas Computadorzados de Iformacó Facultad de Admstracó de Empresas y Departameto de Matemátcas Facultad de Cecas Naturales Recto de

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Regresión y correlación lineal.

Regresión y correlación lineal. Regresó y correlacó leal. Este procedmeto proporcoa medos legítmos, modelos matemátcos a trabes de los cuales, se puede establecer asocacoes etre varables de terés e las cuales la relacó usual o es casual.

Más detalles

RAMO: ESTADÍSTICA II UNIDAD I MUESTREO Y DISTRIBUCIONES MUESTRALES

RAMO: ESTADÍSTICA II UNIDAD I MUESTREO Y DISTRIBUCIONES MUESTRALES RAMO: ESTADÍSTICA II UNIDAD I MUESTREO Y DISTRIBUCIONES MUESTRALES CLASE. MUESTRA ALEATORIA E estadístca, el cocepto de muestra aleatora, debe quedar claro desde el comezo del estudo, pues es la base del

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS INGENIERÍA INDUTRIAL A meudo, e la práctca, se requere resolver prolemas que clue cojutos de varales, cuado se sae que este algua relacó herete etre ellas, esa relacó se puede ecotrar a partr de la formacó

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles