Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple"

Transcripción

1 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor

2 2 Objetvos 1. Calcular Meda, Moda y Medaa para datos agrupados por valor smple. 2. Iterpretar los resultados obtedos e las meddas de tedeca cetral a la luz del cojuto de datos agrupados por valor smple. 3. Realzar aálss estadístcos de tedeca cetral e u cojuto de datos agrupados por valor smple.

3 3 Itroduccó E la leccó ateror se dscutó lo que represeta cada ua de las meddas de tedeca cetral y cómo se computa para datos crudos. E esta leccó se estudará cómo calcular estas meddas para datos agrupados por valor smple. E la próma leccó se estudará cómo calcular la tedeca cetral para datos agrupados e clases. A cotuacó se lustra el proceso para calcular las meddas de tedeca cetral cuado los datos está agrupados por frecuecas de valor smple. Se lustra estos procesos usado dferetes ejemplos. Para lustrar la meda artmétca se utlzará el sguete ejemplo: Ejemplo-1 A cotuacó se preseta las putuacoes de u grupo de 25 estudates e ua prueba corta de estadístca (quzz) cuyo valor era de 5 putos Halla la meda artmétca de las putuacoes que obtuvero estos estudates usado la estratega de agrupacó por valor smple. A. MEDIA O PROMEDIO ARITMÉTICO 1. Para hallar la meda artmétca cuado hay datos crudos que se repte, se puede agrupar los datos por valor smple. La Tabla 1 a cotuacó, lustra las putuacoes obtedas por los estudates del Ejemplo 1 agrupadas por frecuecas. Tabla 1: Putuacoes de Estudates e Prueba Corta de Estadístca Putuacó Frecueca TOTAL 25

4 4 2. Cuado los datos está agrupados por frecuecas de valor smple, para hallar la meda artmétca se aplca la sguete fórmula: 1 - Es el símbolo que se utlza para represetar la meda artmétca - Es la catdad total de datos que hay e el cojuto. f -Represeta cada dato ( 1 es el dato 1, 2 es el dato 2, hasta últmo dato). que es el f -Es la frecueca co que se repte el dato. f -Sgfca la multplcacó del valor represetado por el dato por su correspodete frecueca f. -Este es el símbolo de sumatora y sgfca que se suma la sere de valores que está defdos por el símbolo. E este caso, como comeza e 1 ( 1) y terma e, se suma los productos correspodetes, desde el valor 1 f1 hasta el valor f. Para poder aplcar la fórmula ateror, se ecesta añadr ua tercera columa a la Tabla 1, la columa que correspode al cómputo de los productos de cada valor (columa 1) por la frecueca correspodete (columa 2), o sea: f La Tabla 2 a cotuacó muestra estos resultados:

5 5 Tabla 2: Putuacoes de Estudates e Quzz de Estadístca Putuacó Frecueca f = = = = = = 5 TOTAL Este total represeta. Este total represeta la sumatora de: f 1 Ahora se puede aplcar la fórmula ateror: 1 f La meda de las putuacoes de los estudates e esta prueba corta es 2.7. Se puede coclur que la putuacó típca de este grupo e la prueba corta fue de 2.7. Ejemplo-2 Utlza los datos de la Tabla 3 a cotuacó para hallar la meda artmétca: Tabla 3: Edades de Estudates e u Curso de Álgebra Itermeda EDADES FRECUENCIA TOTAL 15

6 6 E el Ejemplo 2 los datos está agrupados por valor smple. Para calcular la meda artmétca resolvemos la fórmula: 1 f Para resolver la fórmula añadmos a la tabla ateror la columa de: f Tabla 4: Edades de Estudates e u Curso de Álgebra Itermeda EDADES FRECUENCIA f (2) = (3) = (5) = (4) = (1) = 22 TOTAL f La meda o ecesaramete tee que ser uo de los datos e la muestra. La meda de esta muestra os dca que el estudate típco e el curso de Álgebra Itermeda posee años, esto es, apromadamete 20 años.

7 7 B. MODA Ejemplo-3 Cosdere los msmos datos del ejemplo ateror para hallar la moda de este grupo. Tabla 3: Edades de Estudates e u Curso de Álgebra Itermeda EDADES FRECUENCIA TOTAL 15 La moda es el valor que más se repte, o sea, que ocurre co mayor frecueca. Cuado los datos está agrupados por frecuecas de valor smple se puede ver fáclmete cuál es la moda. La moda será el dato que tega la frecueca mayor. E este ejemplo se observa que la frecueca más alta es 5 y que esta frecueca correspode al dato 20. Por lo tato, la moda de este grupo es 20 años. Esta muestra es umodal (posee solo ua moda). Se puede coclur que la edad de los estudates e el curso de Álgebra Itermeda que más ocurró fue 20 años. Ejemplo 4 Determe la moda de la muestra que se lustra a cotuacó: Tabla 5: Catdad de Refrescos que gere u grupo de persoas al día Catdad Frecueca de Refrescos Más de 4 5 TOTAL 25

8 8 Este grupo refleja que la frecueca mayor es 7 y esta frecueca correspode al dato de 0 refrescos al día. Por tato, la moda de este grupo es 0. E esta muestra se puede coclur, que de las persoas ecuestadas, la frecueca que más ocurró o gere refrescos durate el día. Observe que auque la frecueca 2 aparece e dos ocasoes, ésta o represeta la moda ya que o es la frecueca más alta. Ejemplo 5 U baco desea coocer el tempo que le toma a u clete realzar su gestó bacara e la hora pco del almuerzo (de 12:00 a 1:00 PM). Para esto, destacó u persoal a la etrada del baco que regstraba la hora de etrada y salda de cada clete e la hora de almuerzo durate tres días. La Tabla 6 muestra estos resultados. Determe la moda de esta muestra. Tabla 6: Total de mutos que le toma a u clete del baco realzar su gestó bacara e la hora de almuerzo Total de Frecueca Mutos TOTAL 87 La frecueca más alta de esta muestra es 22. Esta frecueca correspode a dos datos dferetes, por tato esta muestra es bmodal (posee dos modas). La moda es 48 y 60 mutos. Se puede coclur co esta muestra que a la mayoría de los cletes que vsta este baco a la hora de almuerzo, le toma 48 ó 60 mutos realzar su gestó bacara.

9 9 Ejemplo 6 La Tabla 7 lustra la catdad de gramos que pesa ua muestra de vasos de crstal defectuosos. Determe la moda de esta muestra. Tabla 7: Catdad de gramos que pesa los vasos de crstal defectuosos Total de Frecueca Gramos TOTAL 12 Este grupo o tee moda ya que gú dato se repte más que los demás. Todos tee gual frecueca de ocurreca. C. MEDIANA E la leccó ateror se estudó el cocepto medaa y cómo se calcula cuado se tee los datos crudos. La medaa es el valor que dvde u grupo e dos partes guales. Por eso, es el valor que está localzado justo e el cetro de ua dstrbucó de datos. Para determar la medaa se ordea los datos e forma ascedete, o sea, de meor a mayor. Por tato, bajo la medaa se localza el 50% de los datos y sobre la medaa se localza el 50% restate. 50% de los datos 50% de los datos Valor Meor Medaa Valor Mayor Para calcular la medaa cuado los datos está agrupados por valor smple, se aplca el msmo proceso de los datos crudos estudado e la leccó ateror, ecepto que como los datos está agrupados por frecuecas, hay que cosderar el cocepto de frecueca acumulada.

10 10 E la leccó sobre dstrbucoes de frecuecas se estudó el cocepto de frecueca acumulada. La frecueca acumulada es el total de frecuecas que se va acumulado a través de las clases e ua dstrbucó de frecuecas. Para lustrar cómo se calcula la medaa cuado los datos está agrupados por valor smple se usará el ejemplo a cotuacó. Ejemplo-7 Ua teda de eseres electrócos realzó u estudo para coocer la catdad de máquas de DVD que se vedero mesualmete e u período de dos años (24 meses). Los resultados del estudo se lustra e la tabla a cotuacó. Halle la catdad medaa de máquas de DVD que se vedero e la teda. Tabla 8: Número de máquas de DVD veddas e 24 meses Número de DVD veddos FRECUENCIA (meses) TOTAL 24 Para hallar la medaa se ecesta añadr a la tabla ateror la columa de frecueca acumulada. Recuerde que para obteer la frecueca acumulada e cada ua de las clasfcacoes de los valores, se suma la frecueca de la clasfcacó correspodete a la frecueca acumulada obteda e la clasfcacó ateror: Núm DVD Veddos FRECUENCIA (meses) FRECUENCIA ACUMULADA = = = = = = 24 TOTAL 24 Observe que la últma frecueca acumulada debe ser gual al total de datos.

11 11 Después de coocer las frecuecas acumuladas, para hallar la medaa hay que determar dóde se acumula la mtad de los datos, o sea, e qué clasfcacó de los valores está localzada la medaa. Para poder determar esto, hay que dvdr el total de datos () por 2. E este ejemplo, como = 24, al dvdr por 2 se obtee: Esto sgfca que la medaa está localzada e la tercera clasfcacó que es dode se acumula los prmeros12 datos. Observe que hasta la seguda clasfcacó se había acumulado solo 11 de estos equpos. E la tercera clasfcacó se acumularo 16 equpos, por tato el equpo 12 se ecuetra e esta clasfcacó. 12 Núm DVD Veddos FRECUENCIA (meses) FRECUENCIA ACUMULADA TOTAL 24 Localzacó de la medaa La medaa de este grupo correspode al valor que represeta esa clasfcacó, o sea, 3. Esto sgfca que la catdad medaa de máquas de DVD veddas e este estudo fue de 3 equpos. Ejemplo-8 Cosdere los datos del Ejemplo-2 (Tabla 3) para hallar la medaa. Los datos so: Tabla 3: Edades de Estudates e u Curso de Álgebra Itermeda EDADES FRECUENCIA TOTAL 15

12 12 Para hallar la medaa se añade la columa de frecuecas acumuladas: Tabla 3: Edades de Estudates e u Curso de Álgebra Itermeda EDADES FRECUENCIA FRECUENCIA ACUMULADA TOTAL 15 Ahora se determa cuál es la mtad de los datos. Como es 15, al susttur e la fórmula se obtee: Luego, se procede a determar dóde se acumula los prmeros 7.5 datos mrado e la tabla la columa de frecueca acumulada. Esta será la localzacó de la medaa. EDADES FRECUENCIA FRECUENCIA ACUMULADA TOTAL 15 Localzacó de la medaa E este ejemplo, 7.5 de los datos se acumula e la tercera clasfcacó. Por tato, la medaa de este grupo correspode a 20. Esto sgfca que la edad medaa de este grupo es 20 años.

13 13 EJERCICIOS EJERCICIO 1 Cosdere los sguetes datos agrupados por valor smple y calcule meda, moda y medaa. Cuál es el valor más típco de este grupo? Tabla 9: Calfcacoes fales e u curso de Estadístcas NOTA FRECUENCIA TOTAL 20 EJERCICIO 2 Cosdere los sguetes datos agrupados por valor smple y calcule la meda, moda y medaa. Iterprete sus resultados. Tabla 10: Número de Automóvles por famla NÚMERO DE FRECUENCIA AUTOMOVILES TOTAL 110

14 14 RESPUESTAS A EJERCICIOS EJERCICIO 1 Meda = 74.9 Medaa = 72 Moda = 72 E este grupo las tres meddas de tedeca cetral podría ser el valor más típco. S cosderamos que la moda y la medaa cocde, podría seleccoarse el 72 como el valor más típco. Además, s se observa que el grupo tuvo sólo tres otas, 55, 72 y 93, podría cosderarse la más baja y más alta como valores etremos y e este caso se ecluría la meda como valor típco. EJERCICIO 2 Meda = 1.52 Medaa = 2 Moda = 2 La meda os dca que el promedo de automóvles e la muestra está etre 1 y 2 carros por famla. La moda os dca que de las famlas e el estudo aquellas que posee 2 automóvles resultó ser la de mayor frecueca. La medaa os dca que al meos el 50% de las famlas tee u mámo de 2 carros.

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple Curo de Etadítca Udad de Medda Decrptva Leccó 5: Medda de Dperó para Dato Agrupado por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 00 Derecho de Autor Objetvo. Calcular ampltud, varaza, devacó

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA 1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2). TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

Unidad 6. Anualidades anticipadas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 6. Anualidades anticipadas. Objetivos. Al finalizar la unidad, el alumno: Udad 6 Aualdades atcpadas Objetvos Al falzar la udad, el alumo: Calculará el moto producdo por ua aualdad atcpada. Calculará el valor presete de ua aualdad atcpada. Calculará el valor de la reta de ua

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

PARÁMETROS ESTADÍSTICOS

PARÁMETROS ESTADÍSTICOS www.matesroda.et José Atoo Jméez eto PARÁMETROS ESTADÍSTICOS. PARÁMETROS DE CETRALIZACIÓ La formacó recogda e ua tabla o gráfca estadístca suele resumrse e uos pocos valores que os forma del comportameto

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

Las anualidades anticipadas ocurren al inicio de cada periodo de tiempo, el diagrama de flujo de cada de estas anualidades es el siguiente:

Las anualidades anticipadas ocurren al inicio de cada periodo de tiempo, el diagrama de flujo de cada de estas anualidades es el siguiente: Matemátcas faceras 4.2. Aualdades atcpadas 4.2. Aualdades atcpadas UNIDAD IV. ANUALIDADES Las aualdades vecdas so aquellas que sus pagos guales ocurre al falzar cada perodo, u dagrama de flujo de cada

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias:

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias: PARÁMETROS ESTADÍSTICOS Puesto que las represetacoes grácas o sempre cosgue orecer ua ormacó completa de ua sere de datos, es ecesaro aalzar procedmetos umércos que permta resumr toda la ormacó del eómeo

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo.

Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo. ANUALIDADES SERIES UNIFORMES SERIE UNIFORME Se defe como u Cojuto de Pagos Iguales y Peródcos. El Térmo PAGO hace refereca tato a Igresos como a Egresos. També se deoma ANUALIDADES: Se defe como u Cojuto

Más detalles

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva. Estadístca Alguos Coceptos Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabldad y estadístca Grupo PM4 Trabajado gráfcas,meddas de tedeca cetral, meddas de dspersó e terpretado resultados Prof. Mguel Hesquo Garduño. Depto. De Igeería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.m

Más detalles

EJERCICIOS SISTEMA FINANCIERO COMPUESTO

EJERCICIOS SISTEMA FINANCIERO COMPUESTO UNIVERSIDAD DE LOS ANDES FAULTAD DE IENIAS EONÓMIAS Y SOIALES DEPARTAMENTO DE IENIAS ADMINISTRATIVAS ÁTEDRA: ANÁLISIS DE LA INVERSIÓN ASIGNATURA: MATEMÁTIA FINANIERA PROFESOR: MIGUEL A. OLIVEROS V. EJERIIOS

Más detalles

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL 3. CARACTERISTICAS NUMERICAS DE UNA VARIABLE S tratamos de represetar uestras edades medate u polígoo de frecuecas, y os ubcamos e el tempo: hace 0 años, hoy

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

G - Métodos de Interpolación

G - Métodos de Interpolación ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS G - Métodos de Iterpolacó Polomo de terpolacó de Lagrage. Polomo de terpolacó

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 40 años de expereca e las más recoocdas uversdades del área metropoltaa de Caracas. Uversdad

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

CAPITULO II. Medidas estadísticas. Objetivo. Contenido. Calcular las medidas posición, de tendencia central, de dispersión y de forma.

CAPITULO II. Medidas estadísticas. Objetivo. Contenido. Calcular las medidas posición, de tendencia central, de dispersión y de forma. CAPITULO II Meddas estadístcas Objetvo Calcular las meddas poscó, de tedeca cetral, de dspersó y de forma. Cotedo * * * * * * Itroduccó Meddas de poscó Meddas de tedeca cetral Meddas de dspersó Meddas

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008 Solucó del exame de Ivestgacó Operatva de Sstemas de septembre de 008 Problema : (3 putos) E Vllafresca uca hace sol dos días segudos. S u día hace sol, hay las msmas probabldades de que el día sguete

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Ensayos de control de calidad

Ensayos de control de calidad Esayos de cotrol de caldad Fecha: 0170619 1. lcace. Este procedmeto es aplcable e la evaluacó del desempeño del persoal que ejecuta pruebas e la Dvsó de Laboratoros de Ifraestructura de la Coordacó de

Más detalles

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II. Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones.

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones. Objetvos El alumo será capaz de programar algortmos que cluya el maejo de arreglos utlzado fucoes. Al fal de esta práctca el alumo podrá:. Realzar etosamete programas que haga uso de arreglos como parámetros

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Identificación del Objeto de aprendizaje. Fecha Julio 2013 Asignatura Estadística y Probabilidad 1 Unidad. Unidad I. Estadística Descriptiva Tiempo

Identificación del Objeto de aprendizaje. Fecha Julio 2013 Asignatura Estadística y Probabilidad 1 Unidad. Unidad I. Estadística Descriptiva Tiempo Idetfcacó del Objeto de apredzaje Fecha Julo 013 sgatura Estadístca y Probabldad 1 Udad Udad I. Estadístca Descrptva Tempo 4 horas dspoble predzajes Idetfca las varables como atrbutos de terés de ua poblacó

Más detalles

Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada:

Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada: :: OBJETIVOS [3.] o Apreder a presetar los datos epermetales como grafcas -. o Apreder a usar las hojas de papel logarítmco Semlogarítmco o Determar la relacó matemátca de ua grafca leal de datos epermetales

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA 1 ESTADÍSTICA DESCRIPTIVA 1.1 OBJETO DE ESTUDIO Y TIPOS DE DATOS La estadístca descrptva es u cojuto de téccas que tee por objeto orgazar y presetar de maera coveete para su aálss, la formacó coteda e

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

2. CARACTERES Y VARIABLES ESTADÍSTICAS. Carácter estadístico: Propiedad o característica de la población que se desea estudiar.

2. CARACTERES Y VARIABLES ESTADÍSTICAS. Carácter estadístico: Propiedad o característica de la población que se desea estudiar. IES adre oveda (Guad) Matemátcas Aplcadas a las CCSS I UIA VARIABLES ESTAÍSTICAS UIIMESIOALES. ITROUCCIÓ A LA ESTAÍSTICA ESCRITIVA. La estadístca es la parte de las matemátcas que se ocupa de recoger,

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá:

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá: 3 MEDIDAS RESUMEN OBJETIVOS Al térmo de la udad el alumo podrá: 3. Compreder las meddas como ua herrameta más que descrbe los datos obtedos e ua vestgacó socal o de la vda dara. 3. Compreder los sgfcados

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico. Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar

Más detalles

METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO)

METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO) METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO) I. Descrpcó del cálculo de los dcadores IFO CIFO La flota e operacó se medrá a través de los mecasmos IFO y CIFO, de acuerdo a lo establecdo

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles