Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia"

Transcripción

1 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes, y cada observacó afecta la meda. Auque la meda es sesble a los valores extremos; es decr, los datos extremadamete grades o pequeños puede causar que la meda se ubque más cerca de uo de los datos extremos; A pesar de esto, la meda sgue sedo la medda lo más usada para medr la localzacó. Esto se debe a que la meda posee valosas propedades matemátcas que la hace coveete para el uso e el aálss estadístco de fereca o deductvo. S los datos se ecuetra agrupados e clases, etoces la meda es: dode es la frecueca absoluta m es la marca de clases. m 1 S los datos so dscretos y se ecuetra agrupados e clases, etoces x 1 Nota: Cualquera de estas tres expresoes, puede ser calculada drectamete por ua calculadora cetífca que tega modo estadístco (mode SD). La medaa: Sea x (1), x (),...,x (), u cojuto de observacoes ordeados e orde crecete, la medaa, Me, se defe como aquel valor que dvde al cojuto de datos ordeados e dos partes guales. Así, s es mpar, la medaa correspode a la observacó ubcada e la poscó j, sedo j + 1. S es par, la medaa correspode al promedo de las observacoes ubcadas e la poscó j y j+1, sedo j. Por esto: co j (j) Me + ( j) ( j + 1) + 1 co j s es mpar s es par 13

2 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca Cuado los datos se ecuetra agrupados e clases ua tabla de dstrbucó de frecuecas, la medaa es calculada medate la expresó: N j 1 Me lm. f j + A j dode: j, es la clase de la medaa y se obtee observado desde la prmera clase haca delate, e que clase la frecueca absoluta acumulada alcaza o supera el valor, es decr, N j.ç lm.f j, es el lmte feror de la clase de la medaa. j, es la frecueca absoluta de la clase de la medaa. N j-1, es la frecueca absoluta acumulada de la clase ateror. A es la ampltud. La moda: Sea u cojuto de datos de observacoes x 1,..., x, o agrupados. Se defe la moda, Mo como aquel valor que más se repte. Observacó, cuado os reframos a la moda, lo haremos e ese cotexto, e caso cotraro dremos que o exste moda. S los datos se ecuetra agrupados e clases, la moda correspode a la marca de clases del tervalo que más se repte. S u cojuto de datos tee ua moda, dremos que su dstrbucó es umodal, dos modas, bmodal y más de dos modas, multmodal. frecueca relatva frecueca relatva 50% del área 50% del área frecueca relatva Meda (puto de equlbro) Medaa Moda (puto máxmo) Cuado la meda y la medaa so coocdas, es posble estmar la moda para la dstrbucó umodal usado los otros dos promedos como se muestra a cotuacó: Moda 3(medaas) - (medas) Esta estmacó es aplcable a ambos, cojutos agrupado y o agrupado de datos. 14

3 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca Sempre que exsta más de ua moda, la poblacó de la cual la muestra es obteda es ua mezcla de más de ua poblacó. S embargo, ote que ua dstrbucó Uforme tee u cotable úmero de modas que tee gual valor de desdad; por lo tato se cosdera como poblacó homogéea. Ua preguta frecuete es qué medda usar como dcador del cetro de los datos?. La respuesta esta preguta podemos verla e el sguete dagrama de flujo: So datos categórcos? s Use la Moda o El total de las observacoes tee algú terés? s Use la Meda o Es la dstrbucó smétrca? s Use la Meda o Use la Medaa Prcpales característcas etre los tres estadístcos: Moda Medaa Meda Es el valor del puto medo de la seleccó (o del rago), tal que la mtad de los datos está por arrba y por debajo de ella. Es el valor mas frecuete e la dstrbucó. Es el puto de mas alto desdad. Su valor es establecdo por la frecueca predomate, o por los valores e la dstrbucó. Ua dstrbucó puede teer mas de modas, pero o exste moda e ua dstrbucó rectagular. No puede ser mapulada algebracamete. Modas de subgrupos o puede ser poderadas o combadas. El valor de la medaa es fjado por su poscó e la seleccó, y o refleja valores dvduales. Cada seleccó tee solo ua medaa. No puede ser mapulada algebracamete. Medaas de subgrupos o puede ser poderadas o combadas. Es el valor e algú agregado, el cual se obtedría s todos los valores fuera guales. La suma de las desvacoes e cualquer lado de la meda so guales; por lo tato la suma algebraca de sus desvacoes es cero. Ua muestra tee solo ua meda. Puede ser mapuladas algebracamete. Medas de subgrupos puede ser combadas cuado so poderadas apropadamete. 15

4 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca Las meddas de tedeca cetral també os proporcoa ua dea de la forma de la dstrbucó: Mo Me Me Mo Me Mo Promedos Especalzados: La meda poderada, La meda geométrca y la meda armóca. La meda poderada: E el cálculo de la meda ateror se supoe que cada observacó tee gual peso detro del cojuto total, s embargo e alguos casos se requere dar dstta poderacó a las observacoes. E este caso la meda poderada es calculada medate al expresó: c 1 c 1 x Ejemplo: U vededor tee la represetacó de 5 artículos. E el últmo mes sus vetas regstra lo sguete: Artículo Utldad por artículo (US$) A B C D E Volume vetas artículos de e Determe la utldad promedo. Solucó: 4 Como prmera solucó tedríamos: 4.8, es decr, s tomar e cueta el 5 volume veddo ecotramos que la utldad promedo es de 4.8 dólares. 16

5 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca Como seguda solucó teemos: dólares, es decr, tomado e cueta el volume veddo ecotramos ua utldad promedo de 5.49 dólares. Cuál de los dos promedos refleja mejor la utldad promedo? La Meda Geométrca: La meda geométrca (G) puede utlzarse para mostrar los cambos porcetuales de valores o egatvos. G x1x... x S alguos valores so muy grades e magtud y otros muy pequeños, la meda geométrca proporcoa ua mejor represetacó de los datos que u smple promedo. E ua sere geométrca, el promedo mas sgfcatvo es la meda geométrca (G). La meda artmétca es muy favorecda por valores grades de la sere. Ejemplo: Supoga que las vetas de u determado producto cremeta e 110% e el prmer año y e 150% e el segudo. Por smplcdad, supogamos que calmete se vedó 100 udades. Etoces el úmero de udades veddas e el prmer año fuero 110 y e el segudo fuero 150% x Usado la meda artmétca de 110% y 150% que es 130%, estmaríamos correctamete las udades veddas e el prmer año de 130 y las del segudo año de 169. Medate la meda geométrca de 110% y 150% obtedríamos G (1,65) 1/ la cual es la estmacó correcta, por lo cual el prmer año vederíamos 100 G 18 udades y e el segudo año vederíamos (100G)G100G 165 udades. La Meda Armóca: La meda armóca es otro promedo especalzado, el cual es útl para calcular promedos de varables expresadas e proporcoes de udades por tempo, tales como lómetros por hora, úmero de udades de produccó por día. La meda armóca (H) de valores o ulos x es: 1 H 1 1 x Ejemplo: Supoga que cuatro máquas e u taller so usadas para producr la msma peza, cada ua de las máquas demora.5,.0, 1.5 y 6.0 mutos para realzar dcha peza. Cuál es la velocdad promedo de produccó? 4 La meda armóca es H.31 mutos S todas las maquas trabajara ua hora, cuátas udades será producdas? Ua hora de trabajo de las cuatro maquas, represeta 4*6040 mutos de 40 operacó, luego se obtee que: 104 pezas será producdas

6 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca El Orde etre las Medas: S la meda, la meda geométrca y la meda armóca exste, la meda uca es meor que las otras dos, además, la meda armóca uca es mayor que las otras. Meddas de varacó o de dspersó. Las meddas de tedeca cetral por s sola o da ua buea dea acerca del comportameto de los datos, por ejemplo, supoga que teemos dos grupos de tres alumos cada uo y que e u certame dado obtuvero las otas sguetes: Grupo 1: 5,0 4,0 y 6,0 Grupo : 7,0 3,0 y 5,0 Observe que e ambos grupos la meda y la medaa so guales e gual a 5,0 luego a partr de estas meddas podemos decr que ambos grupos so guales? Es obvo que o puesto que las desvacoes de sus otas respecto del promedo so: Grupo 1: 0-1 y 1 Grupo : - y 0 Es decr los alumos del grupo 1 so más parecdo etre s comparatvamete co el grupo dos que tee ua mayor dspersó respecto del promedo, luego ecestamos ua medda que permta cuatfcar dcha desvacó. Las medcoes estadístcas de varacó so valores umércos que dca la varabldad herete e u grupo de medcoes de datos. Observe que u valor pequeño para la medda de dspersó dca que los datos está cocetrados alrededor de la meda; por lo tato, la meda es ua buea represetacó de los datos. Por otra parte, ua medda grade de dspersó dca que la meda o es ua buea represetacó de los datos. Adcoalmete, las meddas de dspersó puede ser utlzadas cuado deseamos comparar las dstrbucoes de dos o más cojutos de datos. La caldad de u cojuto de datos es medda por su varabldad: varabldad grade dca baja caldad. Esta es la razó del porque geretes se preocupa cuado ecuetra grades varacoes. El trabajo de u estadístco, es medr la varacó, y s es demasado alto e aceptable, etoces es trabajo del persoal técco, tal como geeros, e ajustar el proceso. Las meddas de mayor uso para medr la varacó so el rago y la desvacó estádar. El rago: Como vmos aterormete el rago es la dfereca etre el valor máxmo y el valor mímo. Auque es u cálculo muy smple de realzar, el gra problema del rago es que basa su formacó e sólo dos valores. 18

7 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La varaza: Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la varaza, S, medate la expresó: S 1 ( x ) 1 Observe que la varaza es calculada como ua suma de las desvacoes al cuadrado de cada observacó respecto de la meda, luego, la varaza queda expresada e udades al cuadrado lo que dfculta su terpretacó. Ua medda de la varabldad del cojuto de datos es la desvacó estádar o desvacó típca, S, dode S+ S. S el cojuto de datos se ecuetra agrupado e clases etoces la varaza es calculada medate: S 1 m ( ) 1 Nota: Muchas calculadoras cetífcas calcula drectamete la desvacó estádar tato para datos agrupados como s agrupar, geeralmete bajo el símbolo σ 1 o xσ 1 o smplemete como S. La desvacó estádar o tee ua terpretacó úca como otras meddas so que se terpreta e combacó co la meda. Ua regla practca se cooce como Regla empírca y dce lo sguete: S u cojuto de datos tee ua dstrbucó aproxmadamete smétrca etoces: 1.- Aproxmadamete el 68% de las observacoes queda detro del tervalo ( x S; x + S)..- Aproxmadamete el 95% de las observacoes queda detro del tervalo ( x S; x + S). 3.- Aproxmadamete el 99,7% de las observacoes queda detro del tervalo x 3 S; x + 3S. ( ) -3S -S -S +S 68% 95% 99,7% +S +3S 19

8 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca Cuado el cojuto de datos o preseta ua dstrbucó smétrca, la relacó etre la meda y la desvacó estádar puede expresarse e térmos de la desgualdad de Chebyshev que establece que detro del tervalo 1 ( x S ; x + S), se ecuetra al meos el 100( 1 )% de las observacoes, co >1. Observe que la desgualdad de Chebyshev proporcoa ua cota feror para la x S ; x + S. proporcó de observacoes que cae detro del tervalo ( ) Otra medda de varabldad usada juto a los estadístcos tradcoales es la MEDA, que es utlzada prcpalmete cuado hay preseca de valores atípcos. La MEDA correspode a la medaa de las desvacoes absolutas respecto a la medaa. E alguas ocasoes se ecesta la comparacó de dsttos cojutos de datos e térmos de su varabldad, lo cual geeralmete o es posble porque puede teer dsttos tamaños, dsttos promedos o porque tee dsttas udades, luego para su comparacó ecestamos de ua medda de varabldad relatva admesoal. El coefcete de varacó e este setdo es ua medda adecuada. Coefcete de varacó, CV, expresado porcetualmete es calculado como: S CV x100 El coefcete de varacó es usado etre otros como ua medda de la represetatvdad de la meda. S CV< 50% se dce que la meda es represetatva como medda de tedeca cetral para ese cojuto de datos, e cambo s CV>100% etoces decmos que la meda o represeta para ada al cojuto de datos. Meddas de poscó relatva. E el cálculo de la medaa dvdmos u cojuto de datos ordeados e orde crecete e dos partes guales, cada ua represetado el 50% de las observacoes. Hay ocasoes que ecestamos meddas que subdvda al cojuto de datos ordeados e más partes. Por ejemplo, s subdvdmos al cojuto e cuatro partes guales, cada dvsó cotee el 5% de las observacoes y las tres meddas que se geera de esta partcó se llama cuartles y se deota por Q 1, Q y Q 3. 5% Q 3 Q Q 3 50% 75% 0

9 Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca Q 1 :es llamado prmer cuartl o cuartl feror. Q : segudo cuartl o medaa. Q 3 : tercer cuartl o cuartl superor. S dvdmos uestro cojuto de datos ordeados e dez partes guales obteemos los decles, deotados por D 1, D,..., D 9. D 1 D D 9 10% 0% 90% E geeral, cuado dvdmos u cojuto de datos e 100 partes guales cada medda se llama percetl y se deota por p. Defcó: El -ésmo percetl de u cojuto de datos ordeados, es u valor stuado de modo que el % de las observacoes so ferores o guales a p y el (100-)% so mayores o guales a p. Observe que tato los cuartles como los decles u otras meddas obteda por subdvsó es equvalete a u percetl, as, Q 1 p 5, D 7 p 70, etc. Para calcular el -ésmo percetl p se sgue los sguetes pasos: Sea x (1), x (),...,x (), u cojuto de observacoes ordeados e orde crecete. ) Calcule el úmero, 100 ) Pregute s es o o etero S es etero etoces obtega la poscó j del percetl dode j y 100 p x + x ( j ) ( j + 1) - S 100 o es etero obtega la poscó j del percetl como el etero sguete a y 100 p x ( j ) 1

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA TRATA DE DESCRIBIR CONJUNTOS DE DATOS RESUMIENDO LA INFORMACIÓN QUE ESTOS PROPORCIONAN, UTILIZANDO: TABLAS DE FRECUENCIAS GRÁFICAS MEDIDAS NUMÉRICAS REPRESENTATIVAS (POSICIÓN, DISPERSIÓN

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA 1 ESTADÍSTICA DESCRIPTIVA 1.1 OBJETO DE ESTUDIO Y TIPOS DE DATOS La estadístca descrptva es u cojuto de téccas que tee por objeto orgazar y presetar de maera coveete para su aálss, la formacó coteda e

Más detalles

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá:

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá: 3 MEDIDAS RESUMEN OBJETIVOS Al térmo de la udad el alumo podrá: 3. Compreder las meddas como ua herrameta más que descrbe los datos obtedos e ua vestgacó socal o de la vda dara. 3. Compreder los sgfcados

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

Estadistica Descriptiva

Estadistica Descriptiva Estadstca Descrptva Marques de Catú, María José (990). Probabldad y Estdístca para Cecas Químco-Bológcas, Méxco, D. F.: Mc. Graw Hll. pp. 74-7. ORGANIZACIÓN Y REPORTE DE DATOS: TABLAS Y GRÁFICAS Los datos

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

FACTOR DE COBERTURA EN MEDIDA DE RADIOACTIVIDAD

FACTOR DE COBERTURA EN MEDIDA DE RADIOACTIVIDAD FACTOR DE COBERTURA EN MEDIDA DE RADIOACTIVIDAD Blázquez J. Dvsó de Fsó Nuclear CIEMAT, Madrd INTRODUCCIÓN Co frecueca, las meddas de recueto radoactvo está sujetas a Garatía de Caldad (). Etre otras cosas,

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA La ceca descrbe, explca y predce. Stephe Hawg, e Hstora del tempo. Objetvo de la udad: E el desarrollo de la presete Udad de Apredzaje (UA), el estudate stetzará u cojutos de datos,

Más detalles

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico. Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

TEMA UNIDAD I: ESTADÍSTICA DESCRIPTIVA

TEMA UNIDAD I: ESTADÍSTICA DESCRIPTIVA ANÁLISIS DESCRIPTIVO TEMA DE VARIABLES CUANTITATIVAS 4..Itroduccó 4..Propedades estadístcas de las varables cuattatvas 4.3. Descrpcó de muestras pequeñas 4.3.. Herrametas para el aálss gráfco 4.3.. Herrametas

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos Udad ddáctca ESTADÍSTICA. ESTADÍSTICA: COCEPTOS BÁSICOS La Estadístca surge ate la ecesdad de poder tratar y compreder cojutos umerosos de datos. E sus orígees hstórcos, estuvo lgada a cuestoes de Estado

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

PROBABILIDAD Y ESTADÍSTICA APLICADA

PROBABILIDAD Y ESTADÍSTICA APLICADA UNIVERSIDAD ORT Uruguay Facultad de Igeería Berard Wad - Polak PROBABILIDAD Y ESTADÍSTICA APLICADA NOTAS DE CLASE DEL CURSO DE LA Lcecatura e Sstemas FASCÍCULO Prof. Orual Ada Cátedra de Matemátcas Año

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA VARIABLE ALEATORIA Se llama varable aleatora a toda fucó defda e el espaco muestral de u epermeto aleatoro que asoca a cada elemeto del espaco u úmero real X : E R El cocepto de varable aleatora surge

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

2 - TEORIA DE ERRORES : Calibraciones

2 - TEORIA DE ERRORES : Calibraciones - TEORIA DE ERRORES : Calbracoes CONTENIDOS Errores sstemátcos.. Modelo de Studet. Curvas de Calbracó. Métodos de los Mímos Cuadrados. Recta de Regresó. Calbracó de Istrumetos OBJETIVOS Explcar el cocepto

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

I n t r o d u c i ó n A l a E s t a d í s t i c a 1

I n t r o d u c i ó n A l a E s t a d í s t i c a 1 Estadístca I t r o d u c ó A l a E s t a d í s t c a INTRODUCCIÓN: La Estadístca descrptva es ua parte de la Estadístca cuyo objetvo es examar a todos los dvduos de u cojuto para luego descrbr e terpretar

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística.

Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística. Pága del Colego de Matemátcas de la ENP-UNAM Estadístca descrptva Autor: Dr. José Mauel Becerra Esposa ESTADÍSTICA DESCRIPTIVA UNIDAD I I. DEFINICIÓN Y CLASIFICACIÓN DE VARIABLES La estadístca descrptva

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES. TEMA : PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.. INTRODUCCIÓN Hasta ahora hemos vsto cómo se puede resumr los datos obtedos del estudo de ua muestra (o ua poblacó) e ua tabla estadístca

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población

Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población ESTADÍSTICA U poco de hstora El orge de la estadístca se ecuetra e el térmo Estado, pues uero los goberates los que prmero se preocuparo de elaborar y clascar las termables lstas de los recursos humaos

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Tecnológico de Estudios Superiores de Cuautitlán Izcalli DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Tecnológico de Estudios Superiores de Cuautitlán Izcalli DIVISIÓN DE INGENIERÍA ELECTRÓNICA Tecológco de Estudos Superores de Cuauttlá Izcall DIVISIÓN DE INGENIERÍA ELECTRÓNICA CUADERNILLO DE PROBABILIDAD Y ESTADÍSTICA ELABORO REVISO M. e C. FELIX ANTONIO SAUCEDO ESQUIVEL Vo. Bo. ING. MARIA DEL

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 47 Meddas Descrptvas Numércas Frecuetemete ua coleccó de datos se puede reducr a ua o uas cuatas meddas umércas secllas que resume al cojuto

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

5 Distribuciones Muestrales

5 Distribuciones Muestrales 5 Dstrbucoes Muestrales. Itroduccó Al defr la estadístca se explcó que la probabldad se trabaja desde la poblacó haca la muestra, metras que la fereca estadístca se trabaja e setdo cotraro, es decr, de

Más detalles

1.- DISTRIBUCIÓN BIDIMENSIONAL

1.- DISTRIBUCIÓN BIDIMENSIONAL º Bachllerato Matemátcas I Dpto de Matemátcas- I.E.S. Motes Oretales (Izalloz)-Curso 0/0 TEMAS 3, 4 y 5.- DISTRIBUCIONES BIDIMENSIONALES. CÁLCULO DE PROBABILIDADES. DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información MATEMÁTICA Udad 4 Resolvamos desgualdades Iterpretemos la varabldad de la formacó Objetvos de la Udad: Propodrás solucoes a problemas relacoados co desgualdades leales y cuadrátcas; y represetarás los

Más detalles

Contraste de Hipótesis

Contraste de Hipótesis Cotraste de Hpótess 1. Se quere comprobar s ua muestra de tamaño 0 co meda 10 procede de ua poblacó N(14,3) co el vel de sgfcacó 0,05..- E ua propagada se auca que uas determadas plas proporcoa más horas

Más detalles

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS INGENIERÍA INDUTRIAL A meudo, e la práctca, se requere resolver prolemas que clue cojutos de varales, cuado se sae que este algua relacó herete etre ellas, esa relacó se puede ecotrar a partr de la formacó

Más detalles