sistemas de conductores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "sistemas de conductores"

Transcripción

1 Energía y presón electrostátca en sstemas e conuctores Antono González Fernánez Dpto. e Físca Aplcaa III Unversa e evlla nopss e la presentacón Las fórmulas para la energía electrostátca pueen aplcarse a un sstema e conuctores La energía puee expresarse en funcón e los coefcentes e capaca 8, An ntono Gonzá ález Fernáne ez El resultao puee nterpretarse en térmnos el crcuto equvalente La repulsón entre las cargas e un conuctor prouce una presón haca el exteror La presón permte calcular la fuerza neta sobre un conuctor

2 Energía electrostátca en un sstema e cargas Una strbucón e cargas almacena una energía, gual al trabajo necesaro para proucrla = q φ ' ( r ) + s σ φ + ρφ τ V 8, An ntono Gonzá ález Fernáne ez La energía electrostátca es una funcón e estao: sólo epene e la confguracón, no el proceso La energía no verfca el prncpo e superposcón, ó ya que ( r) ( r) ( r) ( r) φ =φ +φ +φ q σ ρ Puee calcularse a partr e la ensa e energía = ε E τ= ue τ ue = ε E 3 Equlbro electrostátco en un sstema e conuctores 8, An ntono Gonzá ález Fernáne ez Q V ρ V 3 Q 4 Cuano ρ = too el campo se ebe a los conuctores Un conjunto e conuctores cargaos prouce un campo eléctrco entre ellos Toa la carga e los conuctores está en sus superfces La superfce e caa conuctor es equpotencal Los conuctores puee estar aslaos (Q cte.) o conectaos a un generaor (V cte.) pero no ambas cosas a la vez. 4

3 Energía e un sstema e conuctores cargaos (en ausenca e otras cargas) La energía almacenaa en un sstema e conuctores es la e una ensa σ s U e = σ φ = σ φ = s s = V s σ = QV 8, An ntono Gonzá ález Fernáne ez Es smlar a la energía e un conjunto e cargas puntuales, pero para los conuctores sí ncluye la contrbucón el propo conuctor U = q φ' ( r ) e Para cargas puntuales Requere conocer a la vez la carga y el potencal e caa conuctor, lo que oblga a resolver el problema el potencal 5 Los coefcentes e capaca relaconan las cargas y los potencales La carga e los conuctores se relacona lnealmente con los potencales (suponemos ρ = ) Q = CkVk En forma matrcal 8, An ntono Gonzá ález Fernáne ez Vector que contene las cargas Q = C V Vector que contene las tensones k Q C C CN V Q C C CN V = QN CN CN CNN VN La matrz e coefcentes e capaca Depene sólo e la geometría el sstema Es smétrca Cumple que C > y C k ( k) 6

4 Energía en funcón e los coefcentes e capaca usttuyeno en la expresón e la energía U e = QV = V Qk k CV = CVV k, k e k k k k Los os sumatoros van e a N. Incluyen los casos = k. En forma matrcal C C C N V C C CN V ( V V VN) = QV= VC V= CN CN CNN VN Es una funcón cuarátca e los potencales: a oble carga, cuáruple energía 8, An ntono Gonzá ález Fernáne ez La concón e que U e >mpone lmtacones aconales a los valores e los C k (p.ej C C C ) 7 Ejemplos: Una esfera; os esferas concéntrcas En el caso e un solo conuctor esférco = QV = CV = πεrv En el caso e os esferas concéntrcas 4 πε a a b C = b a a b 8, An ntono Gonzá ález Fernáne ez Es sempre postva πε b a a V = ( V V) = b a a b V πε b = ( av avv + bv ) b a ( ) πε b ( ) = a V V + ( b a) V > b a 8

5 Qué ocurre s lo que se conoce es la carga e los conuctores? el ato es la carga, se usa la matrz nversa Q= C V V = C Q U e = QV = Q C Q Para una sola esfera V = cte, U e U e Q Q = QV = = C 8 πε R, e aumenta con R Q = cte, U e smnuye con R 8, An ntono Gonzá ález Fernáne ez Para os esferas concéntrcas / a / b C = 4 πε / b / b / a / b Q Q QQ Q U = e ( Q Q ) 8 / b / b Q = 8 a + b + πε πε b 9 Un ejemplo más complcao: problema 3.6 Tenemos una esfera con os cavaes, en la cuales hay senas esferas. Datos: V = V, Q =, V 3 = El sstema es ( ) ( ) ( ) Q = πε R V V = 4πε R 4V V Q = πε R V 3 8, An ntono Gonzá ález Fernáne ez Y su solucón 3πε V V πε RV Q = V = Q = 4 La energía almacenaa en el sstema 3 = QV + QV Q3V3 3 πε V + = 4

6 aemás e conuctores hay strbucones e carga se suman tenemos conuctores en presenca e strbucones e carga, la energía total es = qφ '( r) + QV + + s σ φ + ρφ τ V Q V ρ V 3 8, An ntono Gonzá ález Fernáne ez uperfces no conuctoras Q Q C V = + k k k Las cargas e los conuctores ncluye las contrbucones e las cargas externas Q 4 El potencal φ ncluye las contrbucones e los conuctores Energía almacenaa en un conensaor Un conensaor lo forman os superfces en nfluenca total, e moo que Q = Q La energía corresponente al conensaor es U ec = QV + QV = QV ( V + V ( ) Q= ) V C V V 8, An ntono Gonzá ález Fernáne ez ( ) ( ) Puee emostrarse que ( ) c = C V V = E ε τ τc En el volumen el conensaor Un conensaor es un spostvo que almacena energía eléctrca en el campo que contene en su nteror Esta fórmula permte calcular C

7 Energía en el crcuto equvalente: suma e las energías e los conensaores Un sstema e conuctores se puee moelar por un crcuto equvalente C C k = Ck = C k k 8, An ntono Gonzá ález Fernáne ez Operano en la expresón e la energía U = C VV = C V + C V V resulta ( ) e k k k k k, k, < k La energía total es la suma e las energías almacenaas en caa uno e los conensaor el crcuto equvalente ( ) = Cn Δ Vn = εe τ C n n n 3 Ejemplo: un bloque cargao entre las placas e un conensaor (3.8) Tenemos tres conuctores: V = V, Q = Q, V 3 = El crcuto equvalente está formao por os conensaores, εl C = C 3 = C = b a una fuente e tensón V y una e carga Q Q = C V V Q = C V V + CV Q = CV 8, An ntono Gonzá ález Fernáne ez ( ) ( ) 3 Q CV V Q Q CV Q = + V = + Q = C 3 La energía Q CV V Q CV Q = V Q = + C almacenaa 4 4C 4

8 Las os placas y el bloque: forma alternatva usano el campo eléctrco Entre caa os superfces planas hay un campo unforme E = E u E = E u z 3 3 La..p. entre y 3 es V ( ) ( ) B A 3 V = E r = E b a + E b a z La carga en el bloque es Q Q = = E L + E 3 L ε E Resultan los campos Q V E = + z εl ( b a) u 8, An ntono Gonzá ález Fernáne ez E Q V = + L b a 3 ε ( ) u z La energía almacenaa U e = 3 ε E τ+ C ε E τ = C3 Q ( b a ) ε LV = + 4L ε 4 b a ( ) 5 Fuerza sobre las cargas e un conuctor: sempre haca afuera 8, An ntono Gonzá ález Fernáne ez obre las cargas e la superfce e un conuctor se ejerce una fuerza ebo al resto e cargas el unverso F= q E' empre apunta haca el exteror el conuctor Las cargas tenen a salr el materal pero se lo mpe la resstenca e éste (eben saltar una barrera e potencal para escapar) El resultao es que el materal se ve someto a una tensón mecánca (presón) la ensa e carga es muy grane, pueen consegur escapar e ncluso romper el materal 6

9 Relacón entre la fuerza sobre q y el campo en el conuctor La fuerza sobre el elemento e carga es ( q ) F= qe' =σ E E Para hallar E hay que escontar el campo e la propa carga, E q El campo total es nulo en el conuctor s El campo E es contnuo 8, An ntono Gonzá ález Fernáne ez El campo E q es smétrco σ ε s n = E = E' + E q = E = E' E qq La fuerza sobre el σ σ elemento e carga es F s s = = ε n ε σ E' = s n ε σ s prouce la mta el campo; el unverso la otra mta 7 Presón electrostátca: a la proporconala entre fuerza y superfce La fuerza sobre un elemento e superfce puee escrbrse F= p La canta p e es la presón electrostátca σs ε pe = = E ε Establece que la fuerza 8, An ntono Gonzá ález Fernáne ez Va en la reccón y sento e Normal Haca fuera el conuctor Es más ntensa one el campo en la superfce, o σ s, es mayor La fuerza total sobre el conuctor es p e F = pe = εe Depene cuarátcamente el campo o e la ensa e carga Equvale a la ensa e energía eléctrca justo en la superfce el conuctor 8

10 Ejemplo e presón electrostátca: una esfera cargaa Para una esfera que almacena una carga Q Q σ Q σ s = p e = 4 π R ε 3 s = 4 π εr 8, An ntono Gonzá ález Fernáne ez Va como R -4. se reuce el rao a la mta, la presón se multplca l por ecsés Para μc en una esfera e cm, p e ~ 36Pa ~.35 atm Para un núcleo e Helo (Q = e,r ~ -4 m), p e ~ 37 7 Pa La fuerza sobre la esfera es nula, F =, ya que F tra por gual en toas reccones lo que se conoce es VR V ε E= u r = u E εv r p la tensón V e = = r R R r= R 9 Ejemplo: el bloque entre las capas el conensaor La presón a ambos laos el bloque central es p p ε ε Q V = E = + L b a ε 3 3 ε ( ) = ε ε Q V E = L + b a ( ) 8, An ntono Gonzá ález Fernáne ez F = p + p = 3 Las presones son ferentes, por lo que se prouce una fuerza neta sobre el bloque: 3 3 L Q V εl Q V z εl ( b a) u εl ( b a) ε = uz = QV = u no hay carga en el bloque o no z b a hay..p., la fuerza se anula ( )

11 Ejemplo: eformacón e una gota e agua en un campo externo Una partícula esférca escargaa nmersa en un campo unforme aquere una ensa e carga Postva haca aone apunta el campo Negatva en el hemsfero opuesto Nula en el ecuaor 8, An ntono Gonzá ález Fernáne ez La presón electrostátca será máxma en los polos y nula en el ecuaor La fuerza neta es nula, pero la esfera tene a alargarse en la reccón el campo Un campo muy ntenso puee romper la gota (pulverzacón electrostátca) Ejemplo: levtacón eléctrca e una pequeña partícula conuctora Una partícula hemsférca e rao a reposa sobre un plano a terra se aplca un campo unforme haca arrba, la partícula se carga postvamente La fuerza eléctrca sobre la partícula puee hacerla levtar 8, An ntono Gonzá ález Fernáne ez 3 a φ= E r cosθ r E= φ = Ε θ r= a 3 cos ur p ε E 9ε E F 9 ε E 9πε E a = p = θ θ θ ϕ= u 4 u e = = cos θ Integrano sobre la semesfera ( < φ <π, < θ < π/) ( ) π π / e cos sen ra z Igualano al peso se halla el campo necesaro 9πεEa π = a ρmg E = 8aρmg 7ε MV.7 m Para una partícula e alumno e Ø=mm

12 Resumen e la presentacón Las fórmulas para la energía electrostátca pueen aplcarse a un sstema e conuctores La energía puee expresarse en funcón e los coefcentes e capaca 8, An ntono Gonzá ález Fernáne ez El resultao puee nterpretarse en térmnos el crcuto equvalente La repulsón entre las cargas e un conuctor prouce una presón haca el exteror La presón permte calcular la fuerza neta sobre un conuctor 3 evlla, Dcembre e 8

Q V Q V Q V. 3.7 Capacidad. Condensadores. ( depende sólo de la geometría!!

Q V Q V Q V. 3.7 Capacidad. Condensadores. ( depende sólo de la geometría!! 3.7 apaca. onensaores Se efne la capaca e un conuctor en equlbro como el cocente entre la carga neta que tene (hemos vsto que en equlbro sólo puee tenerla en la superfce) y el potencal que aquere (hemos

Más detalles

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico Electromagnetsmo El campo de las cargas en reposo: el campo electrostátco Andrés Cantarero. Curso 2005-2006. ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electrostátco.

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

CAPÍTULO I ESTÁTICA DE PARTÍCULAS

CAPÍTULO I ESTÁTICA DE PARTÍCULAS Resstenca e Materales. Capítulo I. Estátca e partículas. CAPÍTULO I ESTÁTICA DE PARTÍCULAS. Prncpos funamentales Los prncpos funamentales e la estátca e partículas se basan en los tres prncpos e Newton.

Más detalles

Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA

Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA Capítulo 3. Prncpos Generales e la Mecánca CPÍTULO 3 PRINCIPIOS GENERLES DE L MECÁNIC Introuccón La mecánca e los meos contnuos tene como base una sere e prncpos o postulaos e carácter general que se suponen

Más detalles

TEMA 9 Electrostática

TEMA 9 Electrostática Bases Físicas y Químicas el Meio Ambiente TMA 9 lectrostática Cargas eléctricas ntre os cuerpos hay siempre fuerzas atractivas ebio a sus respectivas masas y pueen existir otras fuerzas entre ellos si

Más detalles

Soluciones 1er parcial de Fisica II Comisión B2 - Jueves - Tema 2

Soluciones 1er parcial de Fisica II Comisión B2 - Jueves - Tema 2 Soluciones er parcial e Fisica II Comisión B2 - Jueves - Tema 2 e septiembre e 205. Ley e Coulomb.. Enunciao Dos placas paralelas conuctoras, separaas por una istancia = cm, se conectan a una fuente e

Más detalles

Problemas de Campo Eléctrico. Boletín 1 Tema 1

Problemas de Campo Eléctrico. Boletín 1 Tema 1 1/17 Problemas e Campo Eléctrico Boletín 1 Tema 1 Fátima Masot Cone Ing. Inustrial 1/11 Problema 1 Dos partículas cargaas con cargas iguales y opuestas están separaas por una istancia. Sobre la recta que

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Solucionario 8 Electrostática EJERCICIOS PROPUESTOS 8. Calcula la carga eléctrica e los iones Ca, F y Al 3. Es posible comunicar a un cuerpo una carga eléctrica igual a un número fraccionario e electrones?

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green Propedades efectvas de medos peródcos magneto-electroelástcos a través de funcones de Green utores: Lázaro Makel Sto Camacho Julán Bravo Castllero LOGO Renaldo Rodríguez Ramos Raúl Gunovart Díaz Introduccón

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

PROBLEMA RESUELTO No 1

PROBLEMA RESUELTO No 1 PROBLM RSULTO No onsiere un conensaor e placas paralelas, caa una con un área e.m y separaas una istancia cm. este conensaor se le aplica una iferencia e potencial voltios hasta ue el conensaor se carga,

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER 17 MOMENOS DE INERCIA Y EOREMA DE SEINER OBJEIVOS Determnacón e la constante recuperaora e un muelle espral. Comprobacón el teorema e Stener. Determnacón expermental el momento e nerca e ferentes cuerpos

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

DEPARTAMENTO DE FISICA (4ºBTO)

DEPARTAMENTO DE FISICA (4ºBTO) DEPARTAMENTO DE ISICA (4ºBTO) Electrostática y Campo Eléctrico Electrostática Introucción Cuano se frota un tejio e lana con algo e plástico, este puee levantar peazos e papel, cabellos, etc. Los griegos

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

Transformación de Park o D-Q

Transformación de Park o D-Q Apénce B ransformacón e Park o D-Q B.. Expresón e la matrz e transformacón La transformacón e Park o D-Q conerte las componentes 'abc' el sstema trfásco a otro sstema e referenca 'q'. El objeto e la transformacón

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE UNIVRSIDAD NACIONAL D INGNIRIA Curso: FISICA II CB 3U 1I Imagna. stas sentado cerca de Ruperta, una joven muy lnda que usa un perfume muy agradable. Pero Ruperta tene su amorcto, él llega y tenes que rte.

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSIA GENERAL II GUÍA 4 onensaores y Dieléctricos. Ojetivos e aprenizaje Esta guía es una herramienta ue uste ee usar para lograr los siguientes ojetivos: omprener el funcionamiento e un conensaor eléctrico.

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

CAMPOS DE VELOCIDADES DE LOS DISCOS

CAMPOS DE VELOCIDADES DE LOS DISCOS CAMPOS DE VELOCIDADES DE LOS DISCOS Los dscos galáctcos se modelan como anllos crculares concéntrcos. S Ω es la velocdad angular del anllo y r el vector que va hasta el centro, sendo n el vector untaro

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE CCESO L UNVERSDD L.O.G.S.E CURSO 004-005 CONVOCTOR SEPTEMRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón.- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

Introducción a la Química Computacional. Reservados todos los derechos de reproducción. Luis A. Montero Cabrera, Universidad de La Habana, Cuba, 2006.

Introducción a la Química Computacional. Reservados todos los derechos de reproducción. Luis A. Montero Cabrera, Universidad de La Habana, Cuba, 2006. TEORÍA SIMPLE DE ORBITALES MOLECULARES DE ÜCKEL (MO) En 93 Erck ückel planteó que la combnacón lneal de orbtales atómcos (LCAO) tomados como funcones hdrogenodes del tpo p z permte calcular los estados

Más detalles

DETECTORES Y RECEPTORES

DETECTORES Y RECEPTORES COPT 05JMO eceptores 1 DETECTOES Y ECEPTOES El etector es probablemente el elemento más crítco e un sstema e Comuncacones Óptcas por Fbra. Suele aemás emplearse como referenca para el seño el sstema completo.

Más detalles

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO 1 4.04 01 a) El campo eléctrico asociao a la función potencial V = xy+3x 3 z+2x 2, en elpunto (1,1,2). b) El trabajo realizao para llevar una unia e carga positiva, a velocia cosntante, ese el punto (1,2,0)

Más detalles

Máquinas eléctricas de corriente continua

Máquinas eléctricas de corriente continua UNIDAD Máqunas eléctrcas e corrente contnua 6as L máqunas eléctrcas son las que transforman energía eléctrca en mecánca o vceversa, ncluyeno tambén las que transforman las característcas e la corrente

Más detalles

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 5ª RELACIÓN DE PROBLEMAS.

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 5ª RELACIÓN DE PROBLEMAS. EPARTAMENTO E QUÍMCA ANALÍTCA Y TECNOLOGÍA E ALMENTOS FUNAMENTOS E ANÁLSS NSTRUMENTAL. 5ª RELACÓN E PROBLEMAS..- Calcular los números de transporte correspondentes a los ones Cl - y H : a) En una dsolucón

Más detalles

Física Curso: Física General

Física Curso: Física General UTP IMAAS ísca Curso: ísca General Sesón Nº 14 : Trabajo y Energa Proesor: Carlos Alvarado de la Portlla Contendo Dencón de trabajo. Trabajo eectuado por una uerza constante. Potenca. Trabajo eectuado

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo Campo Eléctrico U 01. Dos partículas e masa 10 g se encuentran suspenias ese un mismo punto por os hilos e 30 cm e longitu. Se suministra a ambas partículas la misma carga, separánose e moo ue los hilos

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger Ecuación e Schröinger En cuanto a onas electromagnéticas, ya vimos que su comportamiento está regio por las ecuaciones e Maxwell. También hemos visto que a una partícula con masa se le puee asignar una

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Apuntes de Química Cuántica I: Operadores

Apuntes de Química Cuántica I: Operadores Apuntes e Químca Cuántca I: Operaores Álgebra e Operaores Un operaor es una regla e transormacón que se aplca sobre una uncón; es ecr, es una nstruccón para eectuar una operacón matemátca sobre una uncón

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. TEORIA DE LOS DOS EJES

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. TEORIA DE LOS DOS EJES Departamento e Conversón y Transporte e Energía Seccón e Mánas Eléctrcas Pro. E. Daron B. TEORIA DE LOS DOS EJES Hoja Nº III-5 DESARROLLO HISTORICO La teoría e transormacón e los os ejes, e esarrollaa

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Energía potencial y conservación de la energía

Energía potencial y conservación de la energía Energía potencal y conservacón de la energía Mecánca y Fludos Proa. Franco Ortz 1 Contendo Energía potencal Fuerzas conservatvas y no conservatvas Fuerzas conservatvas y energía potencal Conservacón de

Más detalles

= 3, electrones F = K

= 3, electrones F = K 6 Campo eléctrico Activiaes el interior e la unia. Con frecuencia, cuano os cuerpos se frotan, auieren cargas iguales e signo opuesto. Explica ué sucee en el proceso. La fricción hace ue pasen electrones

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

ELECTRÓNICA Y AUTOMATISMOS

ELECTRÓNICA Y AUTOMATISMOS ELECTRÓNICA Y AUTOMATISMOS 2º Curso de Instalacones Electromecáncas Mneras Tema 2: Electrónca Analógca Amplfcadores operaconales Profesor: Javer Rbas Bueno Electrónca analógca: Conceptos generales de amplfcacón

Más detalles

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal Dsolucones TEM. Dsolucones reales. otencal químco en dsolucones reales. Concepto de actvdad. Una dsolucón es una mezcla homogénea de un componente llamado dsolvente () que se encuentra en mayor proporcón

Más detalles

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas.

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas. Tema 9 Campo eléctrico 1. Fuerza eléctrica Ley de Coulomb La fuerza con la que se atraen o repelen dos cargas es directamente proporcional al producto de la de ambas cargas e inversamente proporcional

Más detalles

CAPITULO II MULTIMETRO PASIVO EN CORRIENTE CONTINUA AMPLIACION DEL ALCANCE DE MEDIDA PARA MEDIR INTENSIDAD DE CORRIENTE Y TENSION

CAPITULO II MULTIMETRO PASIVO EN CORRIENTE CONTINUA AMPLIACION DEL ALCANCE DE MEDIDA PARA MEDIR INTENSIDAD DE CORRIENTE Y TENSION Meas Electróncas oltíetros, Aperíetros y Multíetros pasvos CAPTULO MULTMETO PASO EN COENTE CONTNUA AMPLACON DEL ALCANCE DE MEDDA PAA MED NTENSDAD DE COENTE Y TENSON. Aperíetro: cuano se esea er una ntensa

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

8. EL CAMPO GRAVITATORIO.

8. EL CAMPO GRAVITATORIO. ísca. 8. El campo avtatoo. 1 Ley e la avtacón unvesal. 8. EL CMPO GVIOIO. Ley e la avtacón unvesal e Newton. Daas os patículas e masas m y m, sepaaas una stanca, la e masa m atae a la e masa m con una

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

9 Naturaleza y propagación de la luz

9 Naturaleza y propagación de la luz 9 aturaleza y propagacón e la luz Actvaes el nteror e la una 1. Explca brevemente qué entenes por síntess electromagnétca. La síntess electromagnétca recoge una e las eas centrales e la teoría e Maxwell,

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Potenciales y campos eléctricos

Potenciales y campos eléctricos Potencales y campos eléctrcos Obetvo El obetvo de este expermento es determnar las líneas (o superfces) equpotencales es decr el lugar geométrco donde el potencal eléctrco es constante. Estos potencales

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Método De Lazos (contenido) Ecuaciones de Lazo. Variables y ecuaciones. Fundamentos Teóricos. Teoría y Principios Establecimiento general.

Método De Lazos (contenido) Ecuaciones de Lazo. Variables y ecuaciones. Fundamentos Teóricos. Teoría y Principios Establecimiento general. Método De Lazos (contendo) Ecuacones de Lazo Teoría y Prncpos Establecmento general Fuentes de voltajee y resstencas solamente Con fuentes de voltaje dependentes Con fuentes de corrente Reduccón Fundamentos

Más detalles

Diodos Semiconductores. ITESM Campus Monterrey, Departamento de Ing. Eléctrica. Diodo Ideal + - V AK

Diodos Semiconductores. ITESM Campus Monterrey, Departamento de Ing. Eléctrica. Diodo Ideal + - V AK odos Semconductores A odo Ideal + - K Id V AK p n 1 Introducng. p n odo Ideal Cuando se combnan materales tpo n y tpo p, exste una dstrbucón de carga, algunos de los electrones lbres en la estructura brncan

Más detalles

principios de la dinámica

principios de la dinámica 4 Los prncpos e la námca Actvaes 1 Una fuerza tene e móulo 5 N forma un ángulo con el eje postvo e las e 30. Calcula las componentes cartesanas e cha fuerza. Las componentes se hallan trazano las proeccones

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday.

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday. 1. Qué es capacitancia? Se efine como la razón entre la magnitu e la carga e cualquiera e los conuctores y la magnitu e la iferencia e potencial entre ellos. La capacitancia siempre es una cantia positiva

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

CORRIENTE CONTINUA Y ALTERNA: TEOREMAS FUNDAMENTALES Y METODOS GENERALES DE ANÁLISIS Y CÁLCULO DE CIRCUITOS.

CORRIENTE CONTINUA Y ALTERNA: TEOREMAS FUNDAMENTALES Y METODOS GENERALES DE ANÁLISIS Y CÁLCULO DE CIRCUITOS. E L E T D D OENTE ONTN Y LTEN: TEOEMS FNDMENTLES Y METODOS GENELES DE NÁLSS Y ÁLLO DE TOS. Ω Ω Ω V V VV Ω Ω VV Ω V s u(t) Ω L mh u Z - jω u(t) u. E. S. N D É S D E V N D E L V J. Garrgós ul TENOLOGÍ NDSTL

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 2 - TRABAJO, CALOR Y PRIMER PRINCIPIO DE LA TERMO- DINÁMICA Trabajo. Procesos cuas-estátcos. Dagramas PV. Cálculo del trabajo realzado en derentes sstemas termodnámcos.

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

Tema 2: Resolución de los ejercicios 6, 7, 8, 10 y 14 del tema 2 del libro Fonaments físics de la Informàtica

Tema 2: Resolución de los ejercicios 6, 7, 8, 10 y 14 del tema 2 del libro Fonaments físics de la Informàtica Tema : Resolución e los ejercicios 6, 7, 8, y 4 el tema el libro Fonaments físics e la Informàtica 6. Un conensaor e capacia, cargao con carga, se conecta con otro e capacia, inicialmente escargao, tal

Más detalles

El diodo Semiconductor

El diodo Semiconductor El dodo Semconductor J.I. Hurcán Unversdad de La Frontera Aprl 9, 2012 Abstract Se plantean procedmentos para analzar crcutos con dodos. Para smpl car el trabajo, el dodo semconductor es reemplazado por

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: epartamento de Físca, UTFSM Físca General II / Prof: A. Brunel. FIS120: FÍSICA GENERAL II GUÍA#6: Campo magnétco, efectos. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr

Más detalles

El campo de las cargas en reposo. El campo electrostático.

El campo de las cargas en reposo. El campo electrostático. El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial

Más detalles

, de lo que d, como se expone en d. 62. De las gráficas dadas la que mejor corresponde con la interpretación de la ley de Coulomb:

, de lo que d, como se expone en d. 62. De las gráficas dadas la que mejor corresponde con la interpretación de la ley de Coulomb: ELECTRICIDAD 4. Ley e Coulomb 6. Aunque la balanza e torsión fue creaa por el geólogo inglés Michell, para conocer la intensia sísmica, fue mejoraa por su paisano Cavenish, para comprobar y completar la

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

F 2 F cos ,0773N F 2 F cos 2 F cos 45. F 2 F cos ,249N. 2 k 2 k ; ; q 7,22 C ,6 10 3,2 10 k m v 9,77 10 ms

F 2 F cos ,0773N F 2 F cos 2 F cos 45. F 2 F cos ,249N. 2 k 2 k ; ; q 7,22 C ,6 10 3,2 10 k m v 9,77 10 ms 01. Cuatro cargas e 3C están colocaas en los értices e un cuarao e 1 m e lao. Calcular la fuerza ue ejercen sobre una carga e C colocaa: a) en el centro el cuarao. a fuerza total es cero por simetría;

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes.

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes. 192 5.3. Problemas 5-1. Demuestre: a) Que si la carga total Q de una distribución es nula, el momento dipolar no depende del origen. b) Que si Q = 0 y p = 0, el momento cuadripolar tampoco depende del

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

Ejercicios ejemplo clases 2.1 a 2.2 Pág 1 de 6

Ejercicios ejemplo clases 2.1 a 2.2 Pág 1 de 6 Ejercicios ejemplo clases 2.1 a 2.2 Pág 1 e 6 Tema 2 HIDRÁULICA DE ACUÍFEROS 1- En una sección e un acuífero aluvial, formao por gravas y arenas limpias, se sabe que su anchura es e unos 2000 m, su espesor

Más detalles

Taller III: Álgebra Matricial

Taller III: Álgebra Matricial Fundacón Msón Sucre Colego Unverstaro de Caracas Taller III: Álgebra Matrcal MATRICES Defncón: Conunto de números o símbolos algebracos colocados en líneas horzontales y vertcales dspuestos en forma de

Más detalles

Ecuación de Lagrange

Ecuación de Lagrange Capítulo 6 Ecuacón de Lagrange 6. Introduccón a las ecuacones de Lagrange La mecánca que nos presenta Lagrange en su Mécanque Analytque sgnfca un salto conceptual muy grande respecto de la formulacón Newtonana.

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

CAPÍTULO 3 - POTENCIA ALTERNA

CAPÍTULO 3 - POTENCIA ALTERNA CAPÍTULO 3 - POTENCA ALTERNA 3-- POTENCA ACTVA (t) Dadas v(t) e (t) la potenca nstantánea en un crcuto genérco es: p(t) = v(t). (t) v(t) Crcuto La potenca p puede ser postva o negatva según el nstante

Más detalles