Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA"

Transcripción

1 Capítulo 3. Prncpos Generales e la Mecánca CPÍTULO 3 PRINCIPIOS GENERLES DE L MECÁNIC Introuccón La mecánca e los meos contnuos tene como base una sere e prncpos o postulaos e carácter general que se suponen válos para cualquer tpo e materal, nepenentemente el rango e esplazamentos o eformacones que éste expermente cuano se somete a certas solctacones. Estos prncpos consttuyen las leyes funamentales que rgen el comportamento mecánco e los meos contnuos, y muchas e las veces son expresaos como leyes e conservacón e certas cantaes físcas. Tal es el caso e los prncpos e la conservacón e la masa o ecuacón e contnua, el e la conservacón e la canta e movmento, el e la conservacón e la energía (prmera ley e la termonámca) y el e aumento e entropía (seguna ley e la termonámca). En certos fenómenos mecáncos es frecuente gnorar algunos e estos prncpos por conserar que sus efectos son esprecables, lo que permte una formulacón matemátca el fenómeno más smple. En este capítulo se enuncan los prncpos menconaos y se establecen las ecuacones matemátcas corresponentes. 3.1 Teorema e Green Las leyes e conservacón, nombraas anterormente, pueen ser aplcaas a un certo volumen e matera, que tenga como frontera una superfce cerraa e forma cualquera. En el esarrollo el moelo e comportamento es usual encontrar que certas cantaes físcas aparecen como ntegrales e superfce y otras como ntegrales e volumen. La transformacón e una ntegral e volumen a una e superfce y vceversa es una operacón matemátca requera en esta formulacón. Esta transformacón matemátca es conoca como el teorema 1

2 e Green o e la vergenca, el cual establece que para una funcón espacal f (x, y, z), contnua y ervable, con prmeras ervaas parcales tambén contnuas, se cumple que f f n v f (3.1) seno n los cosenos rectores e la normal a una superfce cerraa, frontera e un volumen, en el entorno a un punto efno por. 3.2 Prncpo e la conservacón e la masa o ecuacón e contnua Este prncpo establece que en el nteror e un "volumen e control", enteno éste como un elemento ferencal asocao a un sstema e referenca fo en el espaco, la masa no se crea n se estruye. De esta manera, la exstenca e cambos e masa en tal volumen e control tenrán que estar asocaos a un fluo e masa a través e la superfce e control. Con referenca a la fgura 3.1, y suponeno que la ensa el meo llena too el volumen, la masa total M, ocupaa por cho volumen en un tempo t, resulta: M (3.2) n _ v n _ v FIGUR 3.1 olumen e referenca 2

3 Dao que la ensa el meo es una funcón e poscón y el tempo, ésta se puee expresar como (x, y, z, t) (3.3) Por lo tanto, la rapez e varacón e la masa total respecto al tempo, en el volumen, está aa por M (3.4) Conserano que entro el volumen, la masa no se crea n se estruye, entonces la ecuacón 3.4 es equvalente a la rapez e varacón el fluo e masa haca el nteror el área. Por otra parte, el fluo e masa haca el exteror el área en el entorno el punto P, es n, seno n la componente normal el vector veloca. sí, la rapez e varacón el fluo e masa total es: ()() n n (3.5) En esta ecuacón, el sgno menos obeece a que al entrar fluo el vector veloca va en sento contraro e la reccón e la normal n a la superfce, y puee ser expresaa, e acuero con el teorema e Green, como ()() n v (3.6) Dao que las ecuacones 3.4 y 3.6 representan el msmo fenómeno, se tene: M v() Reorenano esta últma ecuacón, se tene: (3.7) + v() 0 (3.8) La ecuacón 3.8 se ebe satsfacer para cualquer volumen, por lo que el ntegrano necesaramente tenrá que ser nulo, esto es: + v() 0 (3.9) 3

4 La ecuacón 3.9 se puee representar en notacón ncal como () + 0 (3.10) Desarrollano caa uno e los térmnos e la ecuacón 3.10, se tene: Por otra parte, () + + (3.11) (3.12) Susttuyeno las ecuacones 3.11 y 3.12 en la ecuacón 3.10, se obtene: + 0 (3.13) La ecuacón 3.13 se puee escrbr en un sstema e referenca cartesano como x y z y z Despeano la v e esta últma ecuacón, se tene: + v 0 (3.14) 1 v (3.15) De la ecuacón 3.15 se puee observar que s el meo es ncompresble, la v 0. sí, en un sstema e referenca cartesano se tene que x y z y z (3.16) Esta ecuacón ferencal representa el prncpo e conservacón e la masa y se conoce tambén como ecuacón e contnua. 3.3 Prncpo e conservacón e la canta e movmento 4

5 La rapez e varacón con respecto al tempo e la canta e movmento e un sstema e partículas es gual al vector fuerza resultante e toas las fuerzas externas, que actúan sobre el conunto e partículas, sempre y cuano sea la tercera ley e Newton (accón y reaccón) la que goberne las fuerzas nternas en el sstema. En relacón con la fgura 3.2, cho prncpo quea expresao como n t + f La ecuacón 3.17 se puee expresar en notacón ncal como (3.17) t + f (3.18) t n _ ρ f FIGUR 3.2 Conservacón e la canta e movmento Obsérvese que el térmno el lao erecho e la ecuacón 3.18 se puee expresar como Por otra parte, en el estuo el estao e esfuerzo se establecó que t (3.19) T n (3.20) Susttuyeno la ecuacón 3.20 en la 3.18 y aplcano el teorema e Green, se obtene: Reorenano térmnos, se llega a T + f 5

6 T + f (3.21) Fnalmente, el prncpo e conservacón e la canta e movmento conuce a T + f 0 (3.22) Dao que la ecuacón 3.22 se ebe cumplr para too volumen, entonces el ntegrano ebe ser gual a cero, esto es: T + f 0 (3.23) Esta ecuacón se conoce como la ecuacón el balance e la canta e movmento o ecuacón e Cauchy. En el caso e equlbro estátco la aceleracón 0, por lo que la ecuacón 3.23 se reuce a T + f 0 (3.24) La ecuacón 3.24 representa un sstema e tres ecuacones ferencales parcales one las ncógntas son los nueve elementos el tensor esfuerzo, que por smetría el msmo, bastará con conocer ses elementos e cho tensor. Es obvo que el problema es estátcamente netermnao, por lo que será necesaro nclur ecuacones aconales, por eemplo, aquellas que relaconen los esfuerzos con las eformacones e un materal en partcular. Dchas relacones recben el nombre e ecuacones consttutvas, las cuales se estuarán en el capítulo 4 para el caso e los materales elástcos lneales, homogéneos e sótropos. 3.4 Prmera ley e la termonámca: prncpo e conservacón e energía El prncpo e conservacón e energía es una consecuenca e la prmera ley e la termonámca, el cual establece que la energía no se crea n se estruye sólo se transforma. Esta ecuacón e energía nvolucra una ncógnta aconal, la energía nterna, por lo que su utla raca en poer relaconar cha energía nterna con alguna varable e estao. En la mecánca e los meos contnuos un sstema termonámco se efne como una porcón e matera contnua, one no exste ntercambo e matera con cuerpos vecnos, lo 6

7 que se ha ao en llamar un sstema cerrao. Las superfces frontera el sstema se mueven, en general, con el fluo e matera. La rapez e varacón el trabao realzao por las fuerzas e superfce y e cuerpo sobre un sstema termonámco, se puee expresar como W tn + f t + f (3.25) Susttuyeno en la ntegral e superfce el valor e t T n, y aplcano el teorema e Green, se tene: T T n Susttuyeno la ecuacón 3.26 en la 3.25, se llega a T + f (3.26) T (3.27) W f T + + Obsérvese que el térmno entre paréntess, por la ecuacón e movmento, resulta gual a T + f (3.28) De esta manera, la rapez e varacón el trabao W es gual a Por otra parte, W (3.29) T,, D + W (3.30) seno D el tensor rapez e eformacón y W el tensor vortca. Este últmo es un tensor antsmétrco, esto es, W W. El proucto tensoral que aparece en la seguna ntegral e la ecuacón 3.29 es: T (D + W ) T D + T W (3.31) 7

8 En la ecuacón 3.31 el térmno T W es gual a cero, por lo que De esta manera, la ecuacón 3.29 quea como W T, T D (3.32) T D (3.33) La prmera ntegral e esta últma ecuacón representa la energía cnétca el sstema, en tanto que la seguna representa la rapez e varacón e la energía nterna total, por lo tanto: W K + U (3.34) El prncpo e la conservacón e la energía establece que la varacón e la energía cnétca más la energía nterna por una e tempo es gual a la suma e la varacón el trabao más cualquer otra energía sumnstraa o extraía por una e tempo en el sstema termomecánco. Defneno al vector q como fluo e calor por una e área y tempo en el fenómeno e conuccón calorífca y a r como la constante e raacón e calor por una e masa y tempo, entonces la rapez e aumento e la canta e calor en el meo se puee expresar como Q q n + r (3.35) Para un meo contnuo termomecánco es costumbre expresar la varacón e la energía nterna total por una e tempo como una funcón e la energía específca nterna u por una e tempo, por lo que U quea como U u u (3.36) plcano el prncpo e la conservacón e la energía, se tene: Susttuyeno las ecuacones 3.33, 3.35 y 3.36 en 3.37, se obtene: K + U W + Q (3.37) 1 + u T D (3.38) q n + r Tomano en cuenta el teorema e Green, el ntegrano q n se puee expresar como 8

9 q n q (3.39) De esta manera, la ecuacón 3.38 quea como q u T D r 0 + (3.40) Para un volumen arbtraro entro el meo contnuo, el ntegrano e la ecuacón 3.40 ebe ser nulo, por lo que u q T D + r (3.41) x Esta últma ecuacón se conoce como la ecuacón e la conservacón e la energía o prmera ley e la termonámca. 3.5 Seguna ley e la termonámca: esguala e Clausus-Duhem Esta ley establece que la varacón con respecto al tempo e la entropía total s, en un meo contnuo e volumen, sempre es mayor que la suma el fluo e entropía que entra a través e la superfce el meo, más la entropía creaa nterormente a causa el propo cuerpo. Esta ley se puee expresar ese un punto e vsta matemátco en forma ntegral como s r q (3.42) seno θ una funcón e estao enomnaa temperatura absoluta. En la ecuacón 3.42 el sgno " " correspone a procesos reversbles; rreversbles, y el sgno " < " nca que el proceso es no factble. " > ", a procesos 9

Transformación de Park o D-Q

Transformación de Park o D-Q Apénce B ransformacón e Park o D-Q B.. Expresón e la matrz e transformacón La transformacón e Park o D-Q conerte las componentes 'abc' el sstema trfásco a otro sstema e referenca 'q'. El objeto e la transformacón

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

ANALISIS MATRICIAL DE ESTRUCTURAS MODELO MATEMATICO ANALISIS ESTRUCTURAL FUERZAS (ESFUERZOS)

ANALISIS MATRICIAL DE ESTRUCTURAS MODELO MATEMATICO ANALISIS ESTRUCTURAL FUERZAS (ESFUERZOS) . GENERIDDES NISIS MTRICI DE ESTRCTRS Representar medante un modelo matemátco un sstema físco real. El propósto del análss es determnar la respuesta del modelo matemátco que está sometdo a un conunto de

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER 17 MOMENOS DE INERCIA Y EOREMA DE SEINER OBJEIVOS Determnacón e la constante recuperaora e un muelle espral. Comprobacón el teorema e Stener. Determnacón expermental el momento e nerca e ferentes cuerpos

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

MÉTODO DEL CENTRO DE GRAVEDAD

MÉTODO DEL CENTRO DE GRAVEDAD DEFINICIÓN MÉTODO DEL CENTRO DE GRVEDD Es un moelo matemátco que se utlza para la localzacón e plantas e fabrcacón o almacenes e strbucón respecto a unos puntos ya establecos e la empresa, ese one se proucen

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Tipología de nudos y extremos de barra

Tipología de nudos y extremos de barra Tpología de nudos y extremos de barra Apelldos, nombre Basset Salom, Lusa (lbasset@mes.upv.es) Departamento Centro ecánca de edos Contnuos y Teoría de Estructuras Escuela Técnca Superor de Arqutectura

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

o ur (,) t ( r ( xyz).,, ) El campo de velocidad es un campo vectorial, así como ρ( xi, t)

o ur (,) t ( r ( xyz).,, ) El campo de velocidad es un campo vectorial, así como ρ( xi, t) 3. Cnemátca 3 CINEMÁTICA Campo e veloca En el nstante t, la veloca u e caa elemento fluo centrao en (x, y, z) es una funcón vectoral u( xyzt,,,, ) que tambén ncaremos en forma compacta con u( x, t) o ur

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

2.1. Sustancias puras. Medida de los cambios de entalpía.

2.1. Sustancias puras. Medida de los cambios de entalpía. 2 Metalurga y termoquímca. 7 2. Metalurga y termoquímca. 2.1. Sustancas puras. Medda de los cambos de entalpía. De acuerdo a las ecuacones (5 y (9, para un proceso reversble que ocurra a presón constante

Más detalles

Cantidad de movimiento

Cantidad de movimiento Cnétca 37 / 63 Cnétca Cantdad de momento Momento cnétco: Teorema de Koeng Energía cnétca: Teorema de Koeng Sóldo con punto fjo: Momento cnétco Sóldo con punto fjo: Energía cnétca Sóldo: Momento relato

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del Apuntes de Mecánca Newtonana: Sstemas de Partículas, Cnemátca y Dnámca del Rígdo. Arel Fernández Danel Marta Insttuto de Físca - Facultad de Ingenería - Unversdad de la Repúblca Índce general Contendos

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Enfoques empleados en el análss de la nteraccón repetda entre empresas: Juegos repetdos.

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Sistemas de Varias Partículas.

Sistemas de Varias Partículas. Capítulo 6 Sstemas de Varas Partículas. Al estudar los sstemas con varas partículas surgen varos elementos adconales, como son los enlaces o lgaduras entre puntos, tanto nternos al sstema como externos,

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Segundo Principio de la Termodinámica 16 de noviembre de 2010

Segundo Principio de la Termodinámica 16 de noviembre de 2010 Índce 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIEO Segundo Prncpo de la ermodnámca 16 de novembre de 2010 Cuestones y problemas: C 3.2, 3, 13, 16, 20, 26, 32, 39 P 1.4, 5, 16, 26, 31 subrayados

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica TERMODINÁMIA FUNDAMENTAL TEMA 3. Prmer prncpo de la termodnámca 1. alor 1.1. oncepto de calor alor: orma de transerenca de energía entre dos sstemas termodnámcos, o entre un sstema y su entorno, como consecuenca

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo Rígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, Rotacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

Ecuaciones y Teoremas de la Elasticidad.

Ecuaciones y Teoremas de la Elasticidad. Capítulo 5 Ecuacones y Teoremas de la Elastcdad. partr de las ecuacones báscas de la Teoría de la Elastcdad, presentadas en los tres capítulos anterores, se dervan un conjunto de ecuacones y teoremas de

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Guía. www.xforex.com. Guide

Guía. www.xforex.com. Guide a í u e G u G Guía g n a r t e s a s v e g n e tra www.xforex.com Mn electrónco para en Forex Mnlbro E-book Gue forprncpantes Forex Begnners El mn lbro electrónco e XForex para prncpantes en Forex Guía

Más detalles

1. Modelos Expresados en Variables de Estado 1

1. Modelos Expresados en Variables de Estado 1 2 3 Modelo en Varables de Estado.doc 1 1. Modelos Exresados en Varables de Estado 1. Modelos Exresados en Varables de Estado 1 1.1. Introduccón 2 1.2. Defncón 2 1.3. Forma General 9 1.4. Solucón 1 1.5.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

UNIDAD DE TRABAJO Nº 4 MEDIDA DE MASAS, VOLÚMENES Y DENSIDADES

UNIDAD DE TRABAJO Nº 4 MEDIDA DE MASAS, VOLÚMENES Y DENSIDADES Operacones Báscas e Laboratoro 1. Masa y Peso. Unaes UNIDAD DE TRABAJO Nº 4 MEDIDA DE MASAS, VOLÚMENES Y DENSIDADES La masa e un cuerpo es una mea e la canta e matera que contene. Tene os propeaes: Inerca,

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

Potenciales y campos eléctricos

Potenciales y campos eléctricos Potencales y campos eléctrcos Obetvo El obetvo de este expermento es determnar las líneas (o superfces) equpotencales es decr el lugar geométrco donde el potencal eléctrco es constante. Estos potencales

Más detalles

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia Etát Estátca.Equlbro 2.Centros de gravedad y 3.Momentos de nerca Parte de la físca que estuda el equlbro de los cuerpos Partedelafíscaqueestudalasrelaconesexstentes entre las fuerzas que actúan en un cuerpo

Más detalles

3. ANALISIS DE UNIDADES SIMPLES

3. ANALISIS DE UNIDADES SIMPLES 28 3. ANALISIS DE UNIDADES SIMPLES Por undades smples se entenden aquellas que desarrollan operacones de transformacón físca o químca de la matera y que se analzan a partr de los prncpos de conservacón

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

CAPITULO II MULTIMETRO PASIVO EN CORRIENTE CONTINUA AMPLIACION DEL ALCANCE DE MEDIDA PARA MEDIR INTENSIDAD DE CORRIENTE Y TENSION

CAPITULO II MULTIMETRO PASIVO EN CORRIENTE CONTINUA AMPLIACION DEL ALCANCE DE MEDIDA PARA MEDIR INTENSIDAD DE CORRIENTE Y TENSION Meas Electróncas oltíetros, Aperíetros y Multíetros pasvos CAPTULO MULTMETO PASO EN COENTE CONTNUA AMPLACON DEL ALCANCE DE MEDDA PAA MED NTENSDAD DE COENTE Y TENSON. Aperíetro: cuano se esea er una ntensa

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Modelización del generador auto-shrinking mediante autómatas celulares

Modelización del generador auto-shrinking mediante autómatas celulares ACTAS DE A X RECSI, SAAMANCA, 008 FÚSTER-SABATER et al.: MODEIZACIÓN DE GENERADOR 87 Moelzacón el generaor auto-shrnkng meante autómatas celulares A. Fúster-Sabater, M.E. Pazo-Robles y P. Caballero-Gl

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Requerimientos para la unificación de los sistemas de alturas existentes en la Región SIRGAS

Requerimientos para la unificación de los sistemas de alturas existentes en la Región SIRGAS Requermentos para la unfcacón de los sstemas de alturas exstentes en la Regón SIRGAS Laura Sánchez Deutsches Geodätsches Forschungsnsttut (DGFI), Alemana Roberto Luz Insttuto Braslero de Geografa e Estatístca

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

Equilibrio y elasticidad

Equilibrio y elasticidad Equlbro y elastcdad Condcones de equlbro Una partícula esta en equlbro s la resultante de todas las fuerzas (externas) que actúan sobre ella es cero Para cuerpos con extensón fnta: el centro de masa del

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Ecuacones derencales ordnaras Motvacón Las ecuacones que se componen de una uncón desconocda de sus dervadas son llamadas ECUACIONES DIFERENCIALES ales ecuacones desempeñan un papel mportante en ngenería

Más detalles

1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS

1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS 1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS 1.1 INTRODUCCION Un sstema representa una undad donde se hacen tratamentos físcos o químcos de materales que puede ser contrastada con un modelo que representa

Más detalles

Rentas o Anualidades

Rentas o Anualidades Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

El circuito eléctrico de la figura está formado por un conjunto de Resistencias, condensadores, bobinas y una fuente de tensión.

El circuito eléctrico de la figura está formado por un conjunto de Resistencias, condensadores, bobinas y una fuente de tensión. El crcuto eléctrco de la fgura está formado por un conjunto de esstencas, condensadores, bobnas y una fuente de tensón. L L Para el sstema de la fgura, se pde: Modelo de bond graph del sstema, ncluyendo

Más detalles

PROPAGACIÓN DE PULSOS ÓPTICOS A TRAVÉS DE AMPLIFICADORES DE FIBRA DOPADA CON ERBIO (EDFA)

PROPAGACIÓN DE PULSOS ÓPTICOS A TRAVÉS DE AMPLIFICADORES DE FIBRA DOPADA CON ERBIO (EDFA) Rev. Fac. Ing. - Unv. Tarapacá, vol. 3 Nº 3, 005, pp. 8-88 PROPAGACIÓN DE PUSOS ÓPTICOS A TRAVÉS DE AMPIFICADORES DE FIBRA DOPADA CON ERBIO (EDFA) Feromo Saavera G. Dante eonell Z. Álvaro amas N. Recbo

Más detalles

Primer Parcial 2000: ( n ) 2. Introducción a la Optica (Agrimensura)

Primer Parcial 2000: ( n ) 2. Introducción a la Optica (Agrimensura) Introduccón a la Optca (Agrmensura) Prmer Parcal 2000: Ejercco 1 (5 puntos): Se consdera la lámna transparente de la fgura, de índce de refraxón n'. El efecto de colocar la msma en la trayectora del rayo,

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

CAPITULO 2 VELOCIDAD DE REACCIÓN, ESTEQUIOMETRÍA Y EQUILIBRIO

CAPITULO 2 VELOCIDAD DE REACCIÓN, ESTEQUIOMETRÍA Y EQUILIBRIO PIULO VELOI E REIÓ, ESEQUIOMERÍ Y EQUILIRIO. IROUIÓ omo hemos vsto en el apítulo, la velocdad de reaccón es fundamental para poder dseñar reactores químcos. La velocdad de reaccón depende báscamente de

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DOCTORADO EN CIENCIAS APLICADAS

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DOCTORADO EN CIENCIAS APLICADAS UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DOCTORADO EN CIENCIAS APLICADAS Modelo smplfcado para el comportamento dnámco de pórtcos con vgas plana-columna de concreto armado consderando el deslzamento

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

B3 A2 B3 B2 C1 A2 B3 B2 C1 C2 B1 A2 B1 B2 A2 A2 B3 A2 B3 B2 A2 B3 B2 A2 B1 B2 B3 B4 C1 C2 B3 B2 C3

B3 A2 B3 B2 C1 A2 B3 B2 C1 C2 B1 A2 B1 B2 A2 A2 B3 A2 B3 B2 A2 B3 B2 A2 B1 B2 B3 B4 C1 C2 B3 B2 C3 Ejercco ) Un sstema realza una gestón de memora rtual medante pagnacón por demanda, con la memora ddda en cnco marcos de poscones cada uno. En un momento determnado, se encuentran en el sstema tres procesos,

Más detalles

A1.1 Definiciones básicas

A1.1 Definiciones básicas A Conceptos báscos de Mecánca de Medos Contnuos A. Defncones báscas e entende por medo contnuo a un conunto nfnto de partículas cuyo estudo supone la ausenca de espacos vacíos y se suponen contnuas y de

Más detalles