BOLETÍN DE EJERCICIOS PARA LA CONVOCATORIA DE SEPTIEMBRE. MATEMÁTICAS 4º ESO. ENTREGAR ESTOS EJERCICIOS EL DÍA DEL EXAMEN.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "BOLETÍN DE EJERCICIOS PARA LA CONVOCATORIA DE SEPTIEMBRE. MATEMÁTICAS 4º ESO. ENTREGAR ESTOS EJERCICIOS EL DÍA DEL EXAMEN."

Transcripción

1 MATEMÁTICAS º ESO BOLETÍN DE EJERCICIOS PARA LA CONVOCATORIA DE SEPTIEMBRE. MATEMÁTICAS º ESO. ENTREGAR ESTOS EJERCICIOS EL DÍA DEL EXAMEN.. Clul simplifi: 0 0. Rionliz ls siguientes friones on riles:. Simplifi ls siguientes friones lgeris: e f 0 :. Resuelve los siguientes sistems e euiones e ineuiones: 0 < 0. Resuelve ls ineuiones represent gráfimente l soluión: 0 ( ( e ( ( ( ( f ( (. Resuelve ls siguientes euiones rítmis eponeniles: ( ( e f g 0 h ( i j (. Sieno que l tgα, α III urnte, lul el senα osα utilizno friones rionlizno el resulto.

2 . Un túnel AB tiene que trvesr un monte. Pr lulr l longitu el túnel se tomn ese un punto C ls siguientes meis: AC0 m, BC00 m. e ACBº. Clul l longitu el túnel.. Pr lulr l nhur e un río, se elige un punto C, en l mismo lo el río que A, se tomn ls siguientes meis: ACm, BACº ACB0º. Cuál es el nho el río? 0. Sieno que tn α, α III urnte, lul ls emás rzones trigonométris utilizno friones rionlizno el resulto.. Dese el lugr one me enuentro l visul e un torre form un ángulo e º on l horizontl. Si me ero m, el ángulo es e 0º. Cuál es l ltur e l torre?. Suponieno que el sen º 0,, lul: (reliz el iujo el ángulo relion on el e º sen º os 0º os º tn º.. Clul l ltur e un torre sieno que su somr mie m. uno los ros solres formn un ángulo e 0º on el suelo.. Un nten e rio está sujet l suelo on les e ero. Clul: L ltur e l nten. L longitu e los les. º 0º m. Un polión e hitntes eree un ritmo e un % nul. Cuántos ños tienen que psr pr que ih polión se reuz l mit?. Ds ls gráfis e ls funiones, lul: Intervlos e monotoní Máimos mínimos Intervlos e urvtur Puntos e orte e Dominio Reorrio. Represent ests funiones: si < 0 f ( si 0 si se < g ( se < se h ( 0 < <. D l funión linel lul: Clul l epresión ret prlel que ps por el punto (,-. Clul l epresión ret perpeniulr que ps por el punto (,.. Clul l epresión e l funión linel que ps por los puntos A(-, B(,-. Clul l epresión e l meitriz el segmento AB. 0. Clul el ominio e ls siguientes funiones: MATEMÁTICAS º ESO

3 f ( e f g ( g f ( h g(. D l práol f( -. Clul los puntos e orte on el eje OX, los puntos e orte on el eje OY represent ih práol.. Clul l epresión e l ret que ps por los puntos (,- e (0,. Después lul l epresión e l ret prlel l nterior que ps por el punto (,.. En un etermin polión, un urt prte e los homres el 0% e ls mujeres utilizn gfs. Tmién se se que e ino persons son mujeres. Reliz un igrm e árol lul: Proili e que se mujer utilie gfs. Proili e que no utilie gfs.. Clul el punto simétrio el punto A(-, on respeto l punto P(-,0. Clul l istni entre los puntos A P.. Utilizno el inomio e Newton lul simplifi: (. Sen A(,-, B(0, C(,- los vérties e un triángulo. Clul: L euión e l ret que ps por los vérties A B. Meitriz orresponiente l lo AC. Mein orresponiente l vértie C Ret prlel l lo AB que ps por C.. Un puelo A ist km el puelo B, el puelo C ist km el puelo B. Si el ángulo ABC es e 0º, uál es l istni que h ese el puelo A l C?. D l euión - orresponiente un ret, esrie tos ls euiones en sus istints forms.. Sen los puntos A(, B(-,. Clul: AB e /AB/ L epresión e l ret que ps por A e B L epresión e l ret meitriz o segmento AB L epresión e l ret prlel AB que ps por el punto (0,0. 0. En un grupo e persons tenemos que elegir pr formr un equipo iretivo. Cuántos equipos iretivos istintos se porín formr? Y si huier que elegir presiente, seretrio tesorero?. Cuántos números istintos e ifrs poemos formr on ls ifrs,,,, (sin repetir? Y si se puiern repetir ls ifrs?. Cierto equipo e lonesto uent on jugores, pero solo se neesitn pr jugr un prtio. Cuánts lineiones istints se porán formr? MATEMÁTICAS º ESO

4 . En un ols tenemos ols negrs, lns rojs. Se s un ol ontinuión otr (sin reemplzr Cuál es l proili e sr os ols el mismo olor?. Disponemos e olores pr pintr un murl iviio en olumns; un e ells se h e pintr e un olor istinto. Cuántos murles se pueen onfeionr inlueno el olor vere siempre? Y si quisiérmos que preier el zul pero no el negro?. Resuelve los siguientes sistems nlítimente gráfimente: 0 g e 0 h f. Resuelve ls siguientes euiones: e f g. D l siguiente tl estísti, lul l mei ritméti, mein, mo, vrinz, esviión típi oefiiente e vriión. Peso nº e lumnos. Los lumnos e último urso e º ESO quieren her un omisión on lumns lumnos pr orgnizr l eursión e fin e urso. El nº totl e lumns es e el e lumnos es e 0. De uánts forms istints se puee omponer es omisión?. Ls mtríuls e los ohes en Espñ están represents por números letrs, toms e entre 0 onsonntes. Cuántos utomóviles se porán mtriulr on este sistem? 0. Clul el ominio e ls siguientes funiones: h e f ( 0 h i ( f g(. Se el triángulo o por los puntos A(,, B(, C(-,. Clul: Euión e l ret en form ontinu que ps por A e B. Euión e l mein en form punto-penente orresponente l vértie A. Euión e l ltur en form generl orresponiente l lo AB. Distni el punto A l C. e Punto opuesto e A on respeto C. g (. Dese un lugr situo l pie e un montñ, se oserv el pio más lto o un ángulo e elevión e º. Si se retroee 0 metros, el ángulo esiene 0º. Clul l ltur e l montñ. MATEMÁTICAS º ESO

5 . Dese ierto punto el suelo, se ve el punto más lto e un torre formno un ángulo e 0º on l horizontl. Si nos ermos metros hi l torre, ese ángulo mie 0º. Clul l ltur e l torre.. Se orgniz un fiest soliri on el fin e reur fonos pr un ONG. En ih fiest h tipos e oillos, lses e refresos postres iferentes. Si person puee elegir oillos istintos, un refreso un postre, e uánts forms istints poemos elegir el menú?. Cino minutos ntes e finlizr un prtio nonn el estio l mit e los espetores, os minutos espués slen l terer prte el resto on lo que quen 00 persons entro. Cuántos espetores hí entro el estio?. El gimnsio que está ejo e mi s or 0 euros e mtríul euros mes. Otro gimnsio or euros por l mtríul euros l mes. Depenieno e los meses e uso, uál nos interes más?. En un empres trjn 0 persons. Usn gfs el % e los homres el 0% e ls mujeres. Si el número totl e persons que usn gfs es. Cuántos homres mujeres h en l empres?. Un grupo e migos ontrt un eursión por 0. Como lgunos no tienen inero, uno e los restntes pones más e lo que le orrespone. Cuántos migos son los que no tienen inero?. Clul ls imensiones e un mpo e fútol que tiene 0 m más e lrgo que e nho su superfiie es e, m. 0. Los lumnos lumns e un grupo eiieron reglr un liro un profesor. El preio iviio entre toos sle,0 por person pero si olorn tmién los otros siete profesores sle,0 person. Cuántos lumnos lumns h? Cuánto uest el liro? MATEMÁTICAS º ESO

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTCAS PRMER PARCAL PARTE A) LUGARES GEOMÉTRCOS ) Grfi ls siguientes funiones (tulr e - ): ) Enuentr tres prejs orens e funión (No grfir): B) DSTANCA ENTRE DOS PUNTOS

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013 MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operiones omins on números enteros. - Potenis ríes urs. - Operiones on friones. - Operiones on números eimles. - Euiones e primer seguno gro. - Usr e form eu

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos).

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos). TEMA: 1. TEOREMA DE LOS SENOS despejndo h de ms igulddes: En generl tendremos que resolver triángulos no retángulos, y, en ellos, no es posile plir ls definiiones de ls rzones trigonométris de sus ángulos.

Más detalles

Ejercicios de Probabilidad. Parte 3 (4º ESO)

Ejercicios de Probabilidad. Parte 3 (4º ESO) Ejeriios e Proili. Prte 3 (4º ESO) 1) En un grupo e migos el 80% está so. Entre los sos, el 75% tiene trjo. Finlmente, un 5% no están sos y tmpoo tiene trjo. ) Qué porentje no tienen trjo? ) Si uno tiene

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta. TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL. (,5 puntos) D l siguiente euión mtriil: 6 z otener e form rzon los vlores e,, z. 5. Se el siguiente sistem e ineuiones 6. 7 ) (,5 puntos) Represent

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

ÁNGULOS Nombre Grupo N.L. fecha Curso: Matemáticas 2 Apartado: 1.4, 1.5 y 1.6 Eje temático: FE y M

ÁNGULOS Nombre Grupo N.L. fecha Curso: Matemáticas 2 Apartado: 1.4, 1.5 y 1.6 Eje temático: FE y M urso: Mtemátis 2 prto: 1.4, 1.5 y 1.6 Eje temátio: FE y M onsign: resuelvn l siguiente situión: El í e yer, enrgué e tre trzr lgunos ángulos. Hoy por l mñn, Luis mneió on fiebre y envió el trbjo on su

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1 Mtemáti. Primri Nomre: P_10A_1 Seión: Nº e oren: 1 L iliote e un esuel tiene registros liros e iferentes áres. Oserv: Cnti e liros en l iliote Cieni y Amiente Mtemáti Comuniión C vle 5 liros Según el gráfio,

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemáti Trjo Prátio N 2: PROPORCIONALIDAD Y SEMEJANZA TEOREMA DE PITÁGORAS RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Segundo Año 1) Clulen x en los siguientes gráfios si te informn

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

4º E.S.O. Matemáticas Refuerzo estival

4º E.S.O. Matemáticas Refuerzo estival Simplifi ls siguientes epresiones: ( b 9 7 8 4 ) Simplifi l máimo l epresión: 8+ 4 b 8 + 8 d Rionliz: b b (b ) b d + + d 4 Clul el vlor de los siguientes logritmos sin utilizr l luldor: log b ln e 8 log

Más detalles

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden:

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden: Sli 1 Mtemáti Demostrno lo que prenimos 2. e seunri Nomre: Número e oren: Seión: Seguno gro e seunri 3 1 L erolíne INKA ontilizó l nti e vuelos nionles relizos ese Lim en el mes e iiemre. Oserv: Destino

Más detalles

7Soluciones a los ejercicios y problemas 27 Sabiendo que tg a = 2 y a < 180, halla sen a y cos a.

7Soluciones a los ejercicios y problemas 27 Sabiendo que tg a = 2 y a < 180, halla sen a y cos a. 7 Sbieno que tg = y < 180, ll sen y cos. sen s = c = cos 1 5 4c + c = 1 8 5c = 1 8 c = ± = ± (sen ) +(cos ) = 1 5 5 ág. 11 1 5 cos = = ; sen = = 5 5 5 5 5 IENS Y RESUELVE 8 os ntens e rio están sujets

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

Óvalo dados los dos ejes: óvalo óptimo

Óvalo dados los dos ejes: óvalo óptimo l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

( ) [ ( )( ) ] ( ) ( ( ) ) =

( ) [ ( )( ) ] ( ) ( ( ) ) = Ejeriios pr reuperr º ESO Nomre : Deprtmento de mtemátis Grupo: º Clulr el resultdo de ls siguientes epresiones: ; : ( [ ( ( ] ( ( ( º Clulr el resultdo de ls siguientes epresiones : ; 9 0 [( ( ( ] [ (

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III)

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III) PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Est or

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

Matemática Demostrando

Matemática Demostrando Mtemáti Demostrno lo que prenimos 2. seunri Nomre: Número e oren: Seión: 2 Kit e evluión 1. L erolíne INKA ontilizó l nti e vuelos nionles relizos ese Lim en el mes e iiemre. Oserv: Destino Vuelos Cuzo

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma: PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

ACTIVIDADES DE RECUPERACIÓN 3º ESO UNIDAD 1: FRACCIONES Y DECIMALES.

ACTIVIDADES DE RECUPERACIÓN 3º ESO UNIDAD 1: FRACCIONES Y DECIMALES. IES Pre Pove (Gui Ativies e reuperión º ESO Deprtmento e Mtemátis No olvies repsr ls tivies hehs en lse Curso 0/0 ACTIVIDADES DE RECUPERACIÓN º ESO UNIDAD FRACCIONES Y DECIMALES Represent estos números

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1)

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1) º BACHILLERATO. Resuelve los siguientes ites: Opión A ) L= os sen (Indeterminión) g Pr resolver est indeterminión se pli l órmul: Por tnto, L os sen os sen e e Se resuelve el siguiente ite: os sen (Indeterminión)

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES. PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b): TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

Ejemplo para transformar un DFA en una Expresión Regular

Ejemplo para transformar un DFA en una Expresión Regular Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

GUÍA NÚMERO 16 CUADRILATEROS:

GUÍA NÚMERO 16 CUADRILATEROS: Sint Gspr ollege MISIONEROS E L PREIOS SNGRE Formno Persons Íntegrs eprtmento e Mtemátic RESUMEN PSU MTEMTI GUÍ NÚMERO 16 URILTEROS: Los ángulos interiores sumn 360º Los ángulos exteriores sumn 360º lsificción

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad OLEGIO PEDGOGIO DE LOS NDES GUI DE TRIGONOMETRÍ REUPERION PERIODO UNO EIMO GRDO Los ángulos se pueden medir en grdos sexgesimles y rdines Un ángulo de 1 rdián es quel uyo ro tiene longitud igul l rdio

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

Dirección Regional de Educación Apurímac Dirección de Gestión Pedagógica. Evaluación Regional de Aprendizajes Educación Secundaria.

Dirección Regional de Educación Apurímac Dirección de Gestión Pedagógica. Evaluación Regional de Aprendizajes Educación Secundaria. GOBIERNO REGIONAL APURIMAC Direión Regionl e Euión Apurím Direión e Gestión Pegógi Evluión Regionl e Aprenizjes Euión Seunri Mtemáti 2 Gro Seunri DATOS DEL ESTUDIANTE Nomres: Apellios: Seión : Feh:.../.../...

Más detalles

a b c =(b a)(c a) (c b)

a b c =(b a)(c a) (c b) E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll

Más detalles

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden:

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden: Sli 2 Mtemáti Demostrno lo que prenimos 2. e seunri Nomre: Número e oren: Seión: 2 Kit e evluión 1 Un lñil está olono myólis en el ño e un s uiánols en el oren que se ini. Oserv: 1. 2. 3. 4. 5. 6.......

Más detalles

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE. .3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA)

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA) RAZONES TRIGONOMÉTRICAS Recordmos los siguientes conceptos: ABC es un triángulo rectángulo en A : BC : hipotenus AB : cteto dycente B ó cteto opuesto C AC : cteto opuesto B ó cteto dycente C Propiedd de

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

POLIEDROS REGULARES. Nº de caras por. Poliedros regulares Nº de caras. Suma de ángulos en cada vértice < 360º CARAS. Condiciones.

POLIEDROS REGULARES. Nº de caras por. Poliedros regulares Nº de caras. Suma de ángulos en cada vértice < 360º CARAS. Condiciones. POLIEROS REGULARES CARAS Nº e crs por vértice P Sum e ángulos en c vértice < 60º Polieros regulres Nº e crs Coniciones x 60 = 180º TETRAERO 1º Tos ls crs son igules. 5 5 x 60 = 00º x 60 = 0º OCTAERO 8

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen

Más detalles

PREGUNTAS. 1) Cuál es el valor de a b

PREGUNTAS. 1) Cuál es el valor de a b REGUNTAS ) Cuál es el vlor de c endo =, =, = ( ) - c? ) Si ls digonles de un romo miden cm dm, respectivmente, entonces el ldo los ángulos del romo miden: cm ; 0º ; 60º 0 cm ; 60º ; 0º cm ; 60º ; 0º 0

Más detalles

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función Unidd 3 Funciones Cudrátics EJERCICI0S PARA ENTRENARSE 4 Represent en los mismos ejes ls siguientes funciones: )) y y -. )) y 0,5 y - 0,5. c)) y 6 y - 6. Hcemos un tl de vlores y después representmos l

Más detalles

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a CNTRI / JUNIO. LOGSE / MTEMÁTICS PLICDS LS CIENCIS SOCILES / ÁLGER / LOQUE Un imporor e gloos los impor e os olores: e olor nrnj (N) e olor fres (F). Toos ellos se envsn en pquees e, unies, que vene los

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE Áre: MTEMÁTIS Dignostio Trigonometrí Feh: Enero de 07 onoimiento: Rzones Trigonométris y TP Doente: Sntigo Vásquez Grdo: UNDEIMO Estudinte: Ojetivo: Repsr los oneptos ásios sore rzones trigonométris, teorem

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

bandeja PVC Omega características técnicas

bandeja PVC Omega características técnicas nej PV Omeg rterístis ténis = Mrs e iltión por l vriión e l tempertur 20 40 Δ60 etenión e l tp Tempertur mínim/máxim e serviio Propiees elétris esisteni l impto esisteni l propgión e l llm Proteión ontr

Más detalles

Operaciones Combinadas

Operaciones Combinadas TTEMA... LOS NÚMEROS NA TTURALES Operiones ásis. Reliz ls siguientes operiones: 0 0. Efetú ls siguientes multipliiones: 0. Resuelve ls siguientes ivisiones: : : : :. Clul: 0 0 0 : :. Reliz ls siguientes

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique.

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

cos α sen α sen 0º 30º 45º 60º 90º cos 90º 60º 45º 30º 0º

cos α sen α sen 0º 30º 45º 60º 90º cos 90º 60º 45º 30º 0º Preuniversitrio Populr Vítor Jr 7.. TRIGONOMETRÍA L trigonoetrí (del griego, trigono = tres ldos o triángulo, y etrí = edid) es l r de ls teátis que estudi ls reliones entre los ldos y los ángulos de triángulos,

Más detalles