Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1"

Transcripción

1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole permite resolver el prolem nlítio el álulo e volúmenes en el espio. En el so e l integrl simple, l integrión se he en un intervlo. En el so e os vriles primero se efine l integrl sore retángulos espués sore onjuntos más generles.. efiniiones previs Un onjunto se llm retángulo si es e l form:,, x, x,. P es un prtiión e,, si P P P, one P x, x,, xn, P es un prtiión e,. prtiión e L prtiión P P P x, x, i,,, m ivie l retángulo,,,,,, n, j,,, m. ij i i j j es un en nm suretángulos. Sums e Riemnn Se f : un funión ot P un prtiión ulquier e : L sum superior e f respeto e P, es: one n m ij i i j j i j S( f, P) M ( x x )( ), M sup f( x, ) / x x, x,,. ij i i j j L sum inferior e f respeto e P, es: n m ij i i j j i j s( f, P) m ( x x )( ), Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO

2 one ntegrles oles mij inf f( x, ) / x xi, xi, j, j Not: Como mij Mij pr ulesquier i,,, n, j,,, m o un retángulo, os prtiiones P P ' e, se ie que P si suretángulo e P ' está ontenio en un suretángulo e P. Resultos, s( f, P) S( f, P ). P ' es más fin que Se un retángulo. Si l prtiión s( f, P) s( f, P ') S( f, P) S( f, P '). P ' es más fin que l prtiión P, entones Se un retángulo, sen P s( f, P) S( f, P '). P ' os prtiiones ulesquier e. Se verifi que Este último resulto ini, en prtiulr, que el extremo superior e ls sums inferiores e f, orresponientes tos ls posiles prtiiones e, es menor o igul que el extremo inferior e ls sums superiores e f. Es eir,. ntegrión sore retángulos Un funión P prtiión e f : sup s( f, P) inf S( f, P ). P prtiión e P prtiión e ot, es integrle Riemnn en si sup s( f, P) inf S( f, P ). A este número se le llm integrl ole e f en P prtiión e. se enot: f ( x, ) x Resulto: Se un retángulo. Un funión ot f : es integrle sore si sólo si pr too existe un prtiión P e tl que S( f, P) s( f, P). efiniión: Un onjunto A tiene ontenio nulo si existe un número finito e retángulos,,..., n tl que A n n i. i... Áre Not: Tienen ontenio nulo en los onjuntos finitos e puntos, l unión finit e onjuntos e ontenio nulo, los segmentos, ls gráfis e funiones ontinus en un Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO

3 ntegrles oles intervlo [,], ls urvs e que se puen poner omo unión e un número finito e gráfis e funiones ontinus en intervlos erros Resulto: To funión ot en un retángulo ontinu en slvo lo sumo en los puntos e un onjunto e ontenio nulo es integrle en. En prtiulr to funión ontinu en un retángulo es integrle en. 4. Teorem e Fuini (Cálulo e integrles oles sore retángulos) Se f un funión integrle en el retángulo [, ] [, ]. ) Si pr [, ] (slvo lo sumo un número finito e ellos) existe f ( xx, ) g( ) entones g es integrle en [, ] f ( x, ) x f ( x, ) x ) Si pr x [, ] (slvo lo sumo un número finito e ellos) existe f ( x, ) hx ( ) entones h es integrle en [, ] f ( x, ) x f ( x, ) x efiniión: Ls integrles f ( x, ) x, (, ) iters o suesivs e l funión f en. Nots. Se puee esriir tmién f ( x, ) x f ( x, ) x x f ( x, ) f x x se llmn integrles f ( x, ) x f ( x, ) x f ( x, ) x. Si l funión f es ontinu en, entones existen ls os integrles iters oinien on l integrl ole.. Si f ( x, ) g( x) h( ), on g h ontinus, entones f ( x, ) x g( x) x h( ). Ejemplos. L funión f ( x, ) x x es integrle en [, ] [, ] pues es ontinu en. Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO

4 ntegrles oles x x ( x x ) x ( x x ) x (Compror que mino el oren e integrión que lo mismo). Clulr ) os x sieno,, Sol: 8 ) x ( x ) sieno ( x, ) / x, Sol: ln 4 5. ntegrión sore onjuntos más generles Se un onjunto oto u fronter tiene ontenio nulo se un retángulo que ontiene. Un funión ot f : es integrle Riemnn en si solo si l funión f es integrle en el retángulo, sieno ˆ( f( x, ) si ( x, ) f x, ) si ( x, ) En este so se efine f ( x, ) x f ( x, ) x Nots. L efiniión es inepeniente el intervlo elegio, siempre que.. Si l funión f es ontinu en el onjunto slvo lo sumo en los puntos e un onjunto e ontenio nulo, entones f es integrle en. En prtiulr si f es ontinu en entones es integrle en. nterpretión geométri e l integrl ole Se f : un funión integrle tl que f ( x, ) ( x, ). Si es el onjunto situo jo l superfiie z f ( x, ), es eir: ( x, z, ) / ( x, ), z f( x, ), entones f ( x, ) x es el volumen el uerpo. Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO 4

5 ntegrles oles En prtiulr, si f ( x, ) ( x, ) se tiene que x Áre(), lo que permite lulr áres e figurs plns meinte un integrl ole. 6. Propiees e l integrl Si f g son funiones integrles en un onjunto, tmién son integrles en ls funiones f g, f g f ( ), se umple:. f ( x, ) g( x, ) x f ( x, ) x g( x, ) x.. f ( x, ) x f ( x, ) x.. Si, sieno un onjunto e ontenio nulo, entones: f ( x, ) x f ( x, ) x f ( x, ) x 7. Teorem el vlor meio integrl Se un onjunto ompto onexo u fronter tiene ontenio nulo. Si f : es ontinu en, entones existe l menos un punto x, tl que Al vlor, (, ) (, ) Áre( ) f x x f x f x se le llm promeio integrl. 8. Cálulo e integrles oles sore reintos estánr on, funiones ontinus en [, ] x) ( ) x [, ].. Se S ( x, ) / x, ( x) ( x) ( x Si l funión f es ontinu en S entones:. Se T ( x, ) / ( ) x ( ), [, ] ( ) ( ) [, ]. ( x) f ( x, ) x x f ( x, ) S ( x) on, funiones ontinus en Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO 5

6 ntegrles oles Si l funión f es ontinu en T entones: ( ) f ( x, ) x f ( x, ) x T ( ) Utilizno l propie e itivi on respeto l reinto e integrión (propie. el prto 6 e ls propiees e l integrl), se puee integrr sore onjuntos más generles, que se puen esomponer en unión e reintos e los tipos nteriores. Ejemplos. L funión f ( x, ) x es integrle en el onjunto (, ) /, sen x x x, pues es ontinu en. sen x ( x ) x x ( x ) sen x x x sen x x sen x x Clulr xx sieno el reinto el primer urnte limito por ls práols x, 6 x l ret x. Sol: 9. Hllr el áre el reinto limito por ls urvs x, x. Sol: 9 9. Cmio e vrile Sen S, el mio e vrile x x( u, v) ( u, v) tl que l pliión S ( uv, ) ( xuv (, ), uv (, )) es ietiv, ls funiones x, miten erivs priles ontinus respeto u v en S el joino (J) e l pliión es istinto e en S slvo lo sumo en los puntos e un onjunto e ontenio nulo. Entones, si f : es integrle, se verifi que f ( x, ) x f ( x( u, v), ( u, v)) J uv S Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO 6

7 ntegrles oles Not: J x u et u x v v Cmio oorens polres Coorens rtesins P x, P x, Coorens polres P,, [, ) x x os sen, J os sen sen os x Ejemplos. Si l pliión S es ietiv, hllr el onjunto S en los (, ) ( os, sen ) siguientes sos: ) ( x, ) / x r, ( r ) ) ( x, ) / x r, x, ( r ) ) ( x, ) /4 x 9, x Sol: ) S (, ) / r,, ) ) S (, ) /, S (, ) / r,,. Hieno el mio polres en l integrl x x sieno ( x, ) /4 x 9 que: x x = 8. Clulr x x sieno ( x, ) / x, x. Sol: Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO 7

8 EJERCCOS PROPUESTOS ntegrles oles x.- Clulr ) e x sieno ( x, ) / x ) x sieno ( x, ) / x, x ( x ).- Si l integrl ole e l funión ontinu f sore un reinto el plno se puee expresr meinte ls integrles iters s ontinuión, representr el reinto mir el oren e integrión: ) ) xx x f ( x, ) ) x x x x x x f ( x, ) x f ( x, ) x f ( x, ).- Psr oorens polres en l integrl f ( x, ) x, sieno l región limit por ls irunferenis x + = 4x, x + = 8x ls rets = x, = x. 4.- Hllr x x, sieno,, x emostrr que x ln. ln x 5.- L tempertur e un pl es proporionl su istni l origen. ih pl se enuentr situ en l región ( x, ) / x 5 (,) su tempertur es ºC, hllr l tempertur mei e ih pl.. Sieno que en el punto 6.- Hllr el áre enerr por l lemnist, u euión en oorens polres es: os ( ). 7.- Se ( x, ) / x,, x, x x x.. Clulr l integrl ole 8.- Clulr x x, sieno {( x, ) / x,, x }. 9.- Clulr f, f x, x x, sieno f l funión efini en,, e si x si ( x, ) se enuentr en el resto e omo Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO 8

9 ntegrles oles SOLUCONES E LOS EJERCCOS PROPUESTOS.- ) e e ).- ) f ( x, ) x ) f ( x, ) x f ( x, ) x ) f ( x, ) x rtg 8os.-,,, 4 f x 4os 4.- x x ln 5.-. gros e Uni oente e Mtemátis e l ETSTGC Asigntur: CÁLCULO 9

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b): TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un

Más detalles

TEMA 4: Integración múltiple

TEMA 4: Integración múltiple TEMA 4: ntegrión múltiple Cálulo ngeniero de Teleomuniión Cálulo () TEMA 4 ngeniero de Teleomuniión 1 / 32 1 L integrl de Riemnn en R n 2 ntegrl doble ntegrl doble sobre un retángulo ntegrl doble sobre

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

Integrales múltiples.

Integrales múltiples. Pro. Enrique Mteus Nieves otoro en Euión Mtemáti Integrles múltiples. Introuión. En el primer urso e Funmentos se plnteó el prolem e hllr el áre ompreni entre l grái e un unión positiv y x, el eje OX y

Más detalles

5 Integral doble de Riemann

5 Integral doble de Riemann Miguel eyes, Dpto. de Mtemáti Aplid, FI-UPM 1 5 Integrl doble de iemnn 5.1 Definiión Llmremos retángulo errdo de 2 l produto de dos intervlos errdos y otdos de, es deir = [, b] [, d] = { (x, y) 2 : x b,

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

Clase 12: Integración de funciones de varias variables con valores reales

Clase 12: Integración de funciones de varias variables con valores reales Clse : Integrión de funiones de vris vribles on vlores reles C.J. Vnegs de junio de 8 eordemos.. L integrl f. fx)dx, pr f represent el áre bjo l gráfi de Similrmente si tenemos un funión de dos vribles:

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

Integrales múltiples. Capítulo Integrales dobles. a) Definición: Integral doble sobre un rectángulo. La aproximación: Sumas de Riemann

Integrales múltiples. Capítulo Integrales dobles. a) Definición: Integral doble sobre un rectángulo. La aproximación: Sumas de Riemann Cpítulo Integrles múltiples Se estlee en este pítulo un teorí e integrión pr funiones eslres e vris vriles. L efiniión que proponemos es un generlizión iret e l Integrl e iemnn pr funiones. Peimos, emás,

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTGALS MÚLTIPLS 1.1. INTGAL OBL SOB UN CTÁNGULO Se f : 2 un funión otd de dos vribles, denid sobre el retángulo = [, b] [, d] = {(x, y) 2 : x b, y d} A ontinuión se onsider un prtiión de en subretángulos.

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral.

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral. TEMA Ojetivos. álulo de rimitivs. L integrl deinid. Funiones integrles. Integrles imrois. Aliiones geométris de l integrl. Plnter y lulr integrles de uniones de un vrile y lirls l resoluión de rolems reltivos

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

Si este proceso de subdivisión se repitiese muchas veces, se obtendrían dos sucesiones, s i y S

Si este proceso de subdivisión se repitiese muchas veces, se obtendrían dos sucesiones, s i y S Integrles LA INTEGRAL DEFINIDA Integrl definid: áre jo un urv L integrl definid permite lulr el áre del reinto limitdo, en su prte superior por l gráfi de un funión f (, ontinu y no negtiv, en su prte

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTCAS PRMER PARCAL PARTE A) LUGARES GEOMÉTRCOS ) Grfi ls siguientes funiones (tulr e - ): ) Enuentr tres prejs orens e funión (No grfir): B) DSTANCA ENTRE DOS PUNTOS

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

Óvalo dados los dos ejes: óvalo óptimo

Óvalo dados los dos ejes: óvalo óptimo l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO.

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. TEMA 9 Integrl Definid. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. y = f() Un trpeio urvilíneo (o mitilíneo) T es un figur pln omo l que pree en l figur: T O Está limitd por:

Más detalles

ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE

ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE Mrí Susn Montelr Fultd de Cienis Exts, Ingenierí y Agrimensur - UNR EXTENSIÓN DEL SÍMBOLO INTEGRAL < b f(x) dx = g(x) dx b = b f(x) dx = 0 PROPIEDADES

Más detalles

1.1 Integral doble de una función acotada en un rectángulo.

1.1 Integral doble de una función acotada en un rectángulo. Tem Integrl doble Tods ls definiiones y resultdos que preen en este Tem son un so prtiulr de ls definiiones y resultdos más generles del Tem siguiente. in embrgo, el so de l integrl doble permite un mejor

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma: PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

6 INTEGRAL DEFINIDA - ÁREAS

6 INTEGRAL DEFINIDA - ÁREAS 6 INTEGRL DEFINID - ÁRES INTRODUCCIÓN Histórimente, el álulo integrl surgió de l neesidd de resolver el prolem de l otenión de áres de igurs plns. Los griegos lo ordron, llegndo órmuls pr el áre de polígonos,

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL. (,5 puntos) D l siguiente euión mtriil: 6 z otener e form rzon los vlores e,, z. 5. Se el siguiente sistem e ineuiones 6. 7 ) (,5 puntos) Represent

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

De igual modo, a como hemos procedido en otros temas, recordemos cómo definimos en

De igual modo, a como hemos procedido en otros temas, recordemos cómo definimos en TEMA VI: INTEGALE MÚLTIPLE VI. INTEGALE DOBLE. De igul modo, omo hemos proedido en otros tems, reordemos ómo deinimos en álulo de un vrile l integrl deinid ( )d ; se deine omo el límite de sums de iemnn,

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES

BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES : OBJETIVO Los ejeriios e este oletín tienen omo ojetivo onsolir los onoimientos reltivos los siguientes oneptos: - L implementión e ls uniones lógis meinte puerts lógis interonets. - Los istintos tipos

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

1. Integral sobre regiones elementales.

1. Integral sobre regiones elementales. NTEGRAL MÚLTPLE Así omo l integrl simple resuelve el problem del álulo de áres de regiones plns, l integrl doble es l herrmient nturl pr el álulo de volúmenes en el espio tridimensionl. En ests nots se

Más detalles

Integración compleja

Integración compleja ntegrión omplej Aunque l interpretión ms omún de l integrl (definid) de un funión rel f es omo el áre bjo l urv y f(x) l definiión de l integrl es independiente de est interpretión, y l integrl puede usrse

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

2. Integrales iteradas dobles.

2. Integrales iteradas dobles. 2 Integrles prmétris e integrles dobles y triples. Eleonor Ctsigers. 9 Julio 26. 2. Integrles iterds dobles. 2.. Integrles iterds en dominios simples respeto de x. Se omo en l subseión.2, el retángulo

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

GUÍA DE EJERCICIOS. Área Matemáticas INTEGRALES IMPROPIAS

GUÍA DE EJERCICIOS. Área Matemáticas INTEGRALES IMPROPIAS GUÍA DE EJERCICIOS Áre Mtemátis INTEGRALES IMPROPIAS Resultdos de prendizje. Reonoer integrles de primer segund espeie. Aplir proedimientos, que onduzn l soluión de un integrl impropi de primer o segund

Más detalles

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES. PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A Memáis II Deerminnes PVJ7 Se l mriz 9 8 7 Se l mriz que resul l relizr en ls siguienes rnsformiones: primero se mulipli por sí mism, espués se min e lugr l fil segun l erer finlmene se muliplin oos los

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que:

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que: Prof nre Cmpllo nálss Mtemáto II Integrles oles Consermos un funón f : R R, efn ot en el rento retngulr [, ] [, ] enomnmos [, ] [, ] Gráfmente poemos onserr l sguente stuón: uo z Gráf e f Reoremos qué

Más detalles

Tema 6. La ntegral Definida. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 6

Tema 6. La ntegral Definida. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 6 Tem 6 L ntegrl Defini.- Introucción.- Integrl Defini..- Significo Geométrico..- Propiees.- Regl e Brrow.- Áre entre os gráfics 4.- Volumen e un sólio e Revolución 5.- Teorem Funmentl e Cálculo (TFC) 6.-

Más detalles

El teorema de Fubini. f(x, y)dy es integrable en [a, b], y. o, con una notación más práctica, f = f(x, y)dx ) dy. Análogamente, si se supone que b

El teorema de Fubini. f(x, y)dy es integrable en [a, b], y. o, con una notación más práctica, f = f(x, y)dx ) dy. Análogamente, si se supone que b Cpítulo 5 El teorem de Fubini Hst hor hemos rterizdo ls funiones que son integrbles y hemos estudido ls propieddes básis de l integrl, pero en relidd no sbemos ómo lulr ls integrles inluso de ls funiones

Más detalles

2. Cálculo integral en R n

2. Cálculo integral en R n Cálulo integrl en R n Integrles múltiples Cmios de vrile Integrles doles u definiión generli l de l integrl en R e f (, ) otd en un retángulo R =,, d R ividimos R en n n retángulos R ij = i, i k, k, de

Más detalles

La integral. 1.7 Teorema Fundamental del Cálculo I

La integral. 1.7 Teorema Fundamental del Cálculo I CAPÍTULO L integrl.7 Teorem Funmentl el Cálculo I Presentmos l primer prte el teorem Funmentl el Cálculo (TFC I), teorem importnte que permite clculr integrles efinis e mner irect. Aemás, este teorem revel

Más detalles

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013 MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operiones omins on números enteros. - Potenis ríes urs. - Operiones on friones. - Operiones on números eimles. - Euiones e primer seguno gro. - Usr e form eu

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

CÁLCULO II CIVIL - MINAS - METALÚRGICA EXTRACTIVA ANÁLISIS MATEMÁTICO II AGRIMENSURA

CÁLCULO II CIVIL - MINAS - METALÚRGICA EXTRACTIVA ANÁLISIS MATEMÁTICO II AGRIMENSURA Integrles Múltiples UNIVESIDAD NACIONAL DE SAN JUAN Flt e Ingenierí Deprtmento e Mtemáti CÁLCULO II CIVIL - MINAS - METALÚGICA EXTACTIVA ANÁLISIS MATEMÁTICO II AGIMENSUA NOTAS DE CLASE INTEGALES Integrles

Más detalles

El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior

El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior Construcción Funciones integrbles TFCI Construcción Funciones integrbles TFCI Prticiones de un intervlo El problem del áre Tem 5: Integrción. Integrl de Riemnn El objetivo finl del tem es hllr el áre de

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

Lección 5. INTEGRALES MÚLTIPLES

Lección 5. INTEGRALES MÚLTIPLES Mtemátis III (GITI, 2016 2017) Leión 5. INTEGRALES MÚLTIPLES 1. INTEGRALES OBLES Ls integrles dobles y triples integrles de funiones de dos o tres vribles son un generlizión nturl de ls integrles de funiones

Más detalles

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c}

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c} Funiones El onepto de Funión es un de ls ides undmentles en l Mtemáti. Csi ulquier estudio que se reier l pliión de l Mtemáti prolems prátios o que requier el nálisis de dtos, emple este onepto mtemátio.

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{}

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{} Vmos lulr ls siguientes integrles de tryetori ) Se α(t) = (os(t), sin(t)) on t [, π ] y f(x, y) = x + y Sol. Tenemos que f(α(t)) = os(t) + sin(t) por otro ldo α (t) = ( sin(t), os(t) α (t) = ( os(t)) +

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07 MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

LAS MATRICES COMO TRANSFORMACIONES LINEALES DEL PLANO

LAS MATRICES COMO TRANSFORMACIONES LINEALES DEL PLANO IES Rel Instituto e Jovellnos LAS MATRICES COMO TRANSFORMACIONES LINEALES DEL LANO. Ls mtries omo trnsformiones lineles el plno A lo lrgo e este tem estuiremos un serie e moifiiones el plno que llmremos

Más detalles

Integrales Dobles e Integrales Triples

Integrales Dobles e Integrales Triples Tem 6 Integrles Dobles e Integrles Triples 6.1 Introduión Comenzremos este tem on un repso de l Integrión de funiones de un vrible rel, pr introduir posteriormente ls integrles dobles y triples. 6.2 epso

Más detalles

Integración de funciones reales continuas de una variable

Integración de funciones reales continuas de una variable Integrión de funiones reles ontinus de un vrile Áre del onjunto limitdo por un gráfi Se f W Œ;! R notremos por G.f; ; / el onjunto limitdo por l gráfi de f, el eje OX y ls rets x D, x D. y D f.x/ Figur

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO Aliiones. Longitud de urvs Entre los roblems que dieron origen l integrl, menionmos en el ítulo el de lulr l longitud de un urv, dd omo l gráfi de un funión f./ ontinu en un intervlo Œ; b. f./

Más detalles

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes.

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes. Tem 6. Itegró 6. Cálulo e prmtvs. 6. Áre e tegrl ef. 6.3 El Teorem fumetl el álulo 6.4 Áre e u regó etre os urvs. 6.5 Cálulo e volúmees. 6.6 Logtu e ro superfe e revoluó. E.U.Polté e Sevll. Fumetos Mtemátos

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

INTEGRALES IMPROPIAS INTEGRALES EN INTERVALOS NO ACOTADOS. (Integral impropia de 1ª especie).

INTEGRALES IMPROPIAS INTEGRALES EN INTERVALOS NO ACOTADOS. (Integral impropia de 1ª especie). Integrles Impropis INTEGRALES IMPROPIAS L integrl f ()d se die impropi si ourre l menos un de ls hipótesis siguientes: º, o mos son infinitos. 2º L funión f() no está otd en el intervlo [,]. Ejemplos:

Más detalles

Ejemplo para transformar un DFA en una Expresión Regular

Ejemplo para transformar un DFA en una Expresión Regular Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno

Más detalles

TRIANGULOS. Sus tres ángulos internos son iguales y miden 60 cada uno

TRIANGULOS. Sus tres ángulos internos son iguales y miden 60 cada uno LSIFIION LOS TRINGULOS. TRINGULOS Los triángulos se lsifin según sus ldos y sus ángulos.. lsifiión de los triángulos según sus ldos.. Triángulo equilátero. s el que tiene sus tres ldos igules Sus tres

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

Tema 4.1: Integral curvilínea. Caracterización de la existencia de primitiva

Tema 4.1: Integral curvilínea. Caracterización de la existencia de primitiva Tem 4.1: Integrl urvilíne. Crterizión de l existeni de primitiv Fultd de Cienis Experimentles, Curso 2008-09 E. de Amo En este tem se front el problem que en Vrible Rel se onoe omo Teorem Fundmentl del

Más detalles

4. Integrales múltiples

4. Integrales múltiples 4 Integrles múltiples 4 Integrles doles Ls demostriones son similres ls de R hemos pos] Generlimos l definiión de l integrl en un vrile Se f (,) otd en un retángulo R =,],d] R ividimos R en n n suretángulos

Más detalles