VARIABLES ESTADÍSTICAS BIDIMENSIONALES.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VARIABLES ESTADÍSTICAS BIDIMENSIONALES."

Transcripción

1 CONTENIDOS: VARIABLES ESTADÍSTICAS BIDIMENSIONALES. Orgazacó de dato: tabla de frecueca de doble etrada. Frecueca margale. Dagrama de dperó. Regreó leal: recta de regreó. Coefcete de correlacó leal. Iterpretacó. Predccó leal. Orgazacó de dato. La varable etadítca bdmeoale la repreetaremo por el par (X,Y), dode X e ua varable udmeoal que toma lo valore 1,,... e Y e otra varable udmeoal que toma lo valore 1,,.... S repreetamo eto pare ( 1, 1 ), (, )...e u tema de eje carteao e obtee u cojuto de puto obre el plao que e deoma dagrama de dperó o ube de puto. Lo dato puede er preetado e do tpo de tabla: tabla mple tabla de doble etrada. Eta últma tabla e puede traformar e ua tabla mple. Cálculo de parámetro. Coderemo ua varable etadítca bdmeoal (X,Y) recordemo la defcoe de meda varaza para dtrbucoe de varable etadítca udmeoal: MEDIA Varable X Varable Y p 1 1 p VARIANZA 1 1 A la raíz cuadrada potva de la varaza e la llama devacó típca e repreeta por por. Se llama covaraza de ua varable bdmeoal (X,Y) a la meda artmétca de lo producto de la devacoe de cada varable repecto a u meda repectva. La covaraza e repreeta por p 1 Correlacó. Se llama correlacó a la teoría que trata de etudar la relacó o depedeca que ete etre la do varable que tervee e ua dtrbucó bdmeoal. La correlacó e leal o curvlíea egú que el dagrama de puto e codee e toro a ua líea recta o a ua curva. La correlacó e potva o drecta cuado a medda que crece ua varable la otra també crece. La correlacó e egatva o vera cuado a medda que crece ua varable la otra decrece. 1

2 La correlacó e ula cuado o ete gua relacó etre amba varable; e ete cao lo puto del dagrama etá eparcdo al azar, formar gua líea, e dce que la varable o etá correlacoada. La correlacó e de tpo fucoal ete ua fucó que atface todo lo valore de la dtrbucó. El procedmeto má frecuete utlzado para agar valore a la dtta correlacoe e a partr del coefcete de correlacó de Pearo. Dcho coefcete e defe medate la guete epreó: r El go del coefcete r vee dado por el go de la covaraza, a que la devacoe típca o empre potva. El go de la covaraza decde el comportameto de la correlacó: S la covaraza e potva, la correlacó e drecta. S la covaraza e egatva, la correlacó e vera. S la covaraza e ula, o ete correlacó. Veamo que tpo de depedeca ete etre la varable X e Y egú el valor de r 1. S r-1, todo lo valore de la varable (X,Y) e ecuetra tuado obre ua recta; e coecueca, atface la ecuacó de ua recta. Etoce e dce que etre la varable X e Y ete ua depedeca fucoal.. S 1<r<0, la correlacó e egatva erá tato má fuerte a medda que r e aprome a 1, tato má débl a medda que e aproma a 0. E ete cao e dce que la varable X e Y etá e depedeca aleatora. 3. S r0 o ete gú tpo de relacó etre la do varable. E ete cao e dce que la varable o aleatoramete depedete 4. S 0<r<1, la correlacó e potva erá tato má fuerte a medda que r e aprome a 1, tato má débl a medda que e aproma a 0. E ete cao e dce que la varable X e Y etá e depedeca aleatora 5. S r1, todo lo valore de la varable (X,Y) e ecuetra tuado obre ua recta; e coecueca, atface la ecuacó de ua recta. Etoce e dce que etre la varable X e Y ete ua depedeca fucoal Regreó leal. S etre do varable ete ua fuerte correlacó, el dagrama de puto e codea e toro a ua recta. Sea X la varable depedete e Y la varable depedete de X, etoce el problema cote e ecotrar la ecuacó de la recta que mejor e ajute a la ube de puto. La ecuacó bucada erá de la forma a( ) dode a e el coefcete de regreó e gual a: a Luego la ecuacó de la recta de regreó de obre e: ( ) Suttuedo e eta ecuacó lo valore de podemo obteer, co certa apromacó, lo valore eperado para la varable, que llamamo etmacoe o prevoe. La ecuacó de la recta de regreó de obre e: ( ) Qué fabldad podemo coceder a eto cálculo obtedo a travé de la recta de regreó? Será tato mejor cuato maor ea el coefcete de correlacó leal e valor aboluto.

3 Ejemplo Se ha realzado ua prueba de habldad (putúa de 0 a 5) e u grupo de alumo. La guete putuacoe correpode a la obteda por e alumo e do de ella: Calcula la covaraza el coefcete de correlacó. Cómo e la relacó etre la varable? Meda: 3 3,83 0 3,33 Devacoe típca: 95 σ 3,83 1,1 1,08 70 σ 3,33 0,58 0,7 Covaraza: 77 σ 3,83 3,33 0,079 σ 0,079 Coefcete de correlacó: 0,079 r 0,09 1,08 0,7 r 0,09 La relacó etre la varable e práctcamete ula. Ejemplo- E e ttuto de la mma zoa e ha etudado la ota meda de lo etudate de 1º de bachllerato e Matemátca e Iglé, obteédoe la formacó que e recoge e la guete tabla: a) Halla la recta de regreó de obre. b) Calcula ˆ 5,5. E fable eta etmacó? (Sabemo que r ( ) 0,87). 3

4 a) Meda: 37,, 35,5 5,9 Varaza de :+ 3,54 σ, 0,3 Covaraza: 3 σ, 5,9 0,4 Coefcete de regreó: σ 0,4 m 1,44 σ 0,3 Ecuacó de la recta de regreó de obre : 5,9 + 1,44, 1,44 ( ) 3 ( 5,5) 1,44 5,5 3 4, 9 b) ˆ Sí e fable la etmacó, pueto que la correlacó e fuerte, r 0,87, 5,5 etá detro del tervalo de valore que etamo coderado. Por tato, etmamo que la ota de Matemátca e 5,5, la de Iglé erá mu probablemete 4,9. Ejemplo- Se ha pregutado e e famla por el úmero de hjo el úmero medo de día que uele r al ce cada me. La repueta ha do la guete: a) Halla la do recta de regreó repreétala. b) Obervado el grado de promdad etre la do recta, cómo cree que erá la correlacó etre la do varable? 4

5 a) Meda: 15, Devacoe típca: σ 43,5 σ 3 Covaraza: 44 σ,5 0,9 0,9 1,33 1,15 3 0,17 Coefcete de regreó: 0,17 obre m 0,18 0,9 0,17 obre m 0,13 1,33 Recta de regreó: obre 3 0,18,5 0,18 + 3, obre,5 0,13 0,13 +,89 0,13, 89 ( ) 45 ( 3) +,89 0,13 7,9 +,3 Repreetacó: b) La correlacó e práctcamete ula; la recta o ca perpedculare. 5

6 EJERCICIOS. 1. La guete tabla ofrece lo reultado de pare de obervacoe, realzada para aalzar el grado de relacó etete etre do varable X e Y: X Y Obteer: a) Recta de regreó de Y obre X. b) Repreetacó gráfca de la mma, aí como de lo pare de obervacoe aterore. c) Qué grado de relacó leal ete etre amba varable?. Dada eta dtrbucó bdmeoal: X 5, Y 4,5 7 7,5 5 3,5 a) Calcular el coefcete de correlacó leal, terpretado el reultado. b) Determar la recta de regreó de Y obre X. c) Hallar el puto dode e corta la do recta. 3. Cco ña de,3,5,7 8 año de edad pea, repectvamete, 14,0,3,4 44 klo. a) Hallar la ecuacó de la recta de regreó de la edad obre el peo. b) Cuál ería el peo apromado de ua ña de año? 4. La ota obteda por cco alumo e Matemátca Múca o: Matemátca ,5 Múca,5 4, Determar la recta de regreó calcular la ota eperada e Múca para u alumo que tee 7,5 e Matemátca. 5. La meda de lo peo de ua poblacó e de 5 kg la de la etatura 170 cm, metra que la devacoe típca o de 5 kg 10 cm, repectvamete, la covaraza de amba varable e 40. Calcular la recta de regreó de lo peo repecto de la etatura Cuáto e etma que peará u dvduo de 180 cm de etatura?. La tabla guete o da la ota del tet de apttud (X) dada a depedete a prueba veta del prmer me de prueba (Y) e ceto de peeta: X Y a) Hallar el coefcete de correlacó e terpretar el reultado obtedo. b) Hallar la recta de regreó de Y obre X. Predecr la veta de u vededor que obtega 47 e el tet. 7. Se ha obervado ua varable etadítca bdmeoal e ha obtedo la guete tabla: X Y Se pde: a) Calcular la covaraza. b) Obteer e terpretar el coefcete de correlacó leal.

7 c) Ecuacó de la recta de regreó Y obre X. 8. Lo valore de do varable X e Y e dtrbue egú la tabla guete. Determar el coefcete de correlacó la recta de regreó Y obre X. Cometar lo fable que o la predccoe baada e ea recta. X 0 4 Y La putuacoe obteda por u grupo de alumo de COU e ua batería de tet que mde la habldad verbal X el razoameto abtracto Y o la guete: X (5,35) Y (35,45) (45,55) (55,5) Se pde: a) Ete correlacó etre amba varable? b) Segú lo dato de la tabla, uo de eto alumo obtee ua putuacó de 70 puto e razoameto abtracto, e cuáto e etmará u habldad verbal?. 10. Lo valore de do varable aleatora X e Y e dtrbue egú la tabla: X Y a) Determa el coefcete de correlacó la recta de regreó de Y obre X b) Cometa la fabldad de la predccoe baada e ea recta. 7

Curso de Estadística Unidad de Medidas Descriptivas. Lección 4: Medidas de Dispersión para Datos Crudos

Curso de Estadística Unidad de Medidas Descriptivas. Lección 4: Medidas de Dispersión para Datos Crudos Curo de Etadítca Udad de Medda Decrptva Leccó 4: Medda de Dperó para Dato Crudo Creado por: Dra. Noemí L. Ruz Lmardo, EdD 00 Derecho de Autor Objetvo. Recoocer el gfcado del cocepto de dperó aplcado a

Más detalles

PROBABILIDAD y ESTADÍSTICA II

PROBABILIDAD y ESTADÍSTICA II UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regoal Sa Ncolá PROBABILIDAD ESTADÍSTICA II UNIDAD Nº Lcecatura e Eeñaza de la Matemátca Año 011 Mg. Lucía C. Sacco Lcecatura e Eeñaza de la Matemátca FRSN - UTN

Más detalles

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears Aál etadítco báco (II) Magdalea Cladera Muar mcladera@ub.e Departamet d Ecooma Aplcada Uvertat de le Ille Balear CONTENIDOS Covaraza y correlacó. Regreó leal mple. REFERENCIAS Alegre, J. y Cladera, M.

Más detalles

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN CAPÍTULO 3. ANÁLISIS DE REGRESIÓN Leccó 0: Regreó leal Smple La palabra Regreó fue utlzada por prmera vez por Frac Galto, (.8.9) e u etudo de Bología obre la hereca, doe él oto que la caracterítca promedo

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

Análisis de Regresión Lineal Simple.

Análisis de Regresión Lineal Simple. Aál de Regreó Leal mple. Itroduccó Regreó mple Método de lo mímo cuadrado Propedade de lo etm. m. cuadrado Predccó Evaluacó de la tedad de la relacó leal Ejercco Itroduccó E mu frecuete ecotrar proceo

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

1. Análisis de la Varianza

1. Análisis de la Varianza . Aál de la Varaza Curo - Etadítca. Do tratameto Comparacó de do tratameto A B 5,3 9,6 39,4 47, 6,3 5,9 39, 3, 48, 33, 34,, 69,8 34, 3,3 9,5 45, 43,8 46,4 4,9 Sea deea comparar do tratameto para reducr

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

Aplicación de Microsoft Excel a la Química Analítica: validación de métodos analíticos

Aplicación de Microsoft Excel a la Química Analítica: validación de métodos analíticos Aplcacó de Mcrooft Ecel a la Químca Aalítca: valdacó de método aalítco Joé Marco Jurado Departameto de Químca Aalítca 1 de abrl de 008 1 Etadítca báca 11 Cocepto de poblacó y muetra E etadítca, e defe

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

UNIVERSITAT ROVIRA I VIRGILI

UNIVERSITAT ROVIRA I VIRGILI UNIVERSITAT ROVIRA I VIRGILI Departamet de Químca Aalítca Químca Orgàca PARÁMETROS CUALIMÉTRICOS DE MÉTODOS ANALÍTICOS QUE UTILIZAN REGRESIÓN LINEAL CON ERRORES EN LAS DOS VARIABLES Te Doctoral FRANCISCO

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES. TEMA : PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.. INTRODUCCIÓN Hasta ahora hemos vsto cómo se puede resumr los datos obtedos del estudo de ua muestra (o ua poblacó) e ua tabla estadístca

Más detalles

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO CURO PROBABILIDAD Y ETADITICA FM75 PROFEOR RODOLFO TORO DEPARTAMETO DE FIICA Y MATEMATICA UIVERIDAD ACIOAL ADRE BELLO EL MÉTODO CIETÍFICO La Estadístca, costtuye así, ua dscpla cetífca extremadamete ampla

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA Atoo Morllas A. Morllas: C. o paramétrcos (I 1 CONTRASTES NO PARAMÉTRICOS: BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA Ifereca realzada

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA H. Helam Estadístca -/5 ITRODUCCIÓ. COCEPTO DE ETADÍTICA ETADÍTICA DECRIPTIVA La estadístca es la rama de las matemátcas que estuda los eómeos colectvos recogedo, ordeado y clascado y smplcado los datos

Más detalles

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras.

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras. Capítulo : Comparacó de varo tratameto o grupo Mucha preguta de vetgacó e educacó, pcología, egoco, dutra ceca aturale tee que ver co la comparacó de varo grupo o tratameto. Ya etudamo como comparar dfereca

Más detalles

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE - INTRODUCCION Es tecó aalzar e este trabajo las coocdas relacoes costo-volume-utldad para el caso e que sus compoetes sea: w : costo varable utaro

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS Autores: Dr. Ig. Roberto Pzarro T. Ig. Jua Pablo Flores V. Ig. Clauda Sagüesa P. Ig. Ezo Martíez A. 1. INTRODUCCIÓN El presete documeto fue extraído

Más detalles

Tema 3: Valoración financiera de conjuntos de capitales 1

Tema 3: Valoración financiera de conjuntos de capitales 1 Tea 3: aloracó facera de cojuto de captale. alor facero de u cojuto de captale Se deoa valor facero de u cojuto de captale e u oeto t τ, a u ua facera e dcho puto. Aí, dado u cojuto de captale (, t,(,

Más detalles

TEMA 4: NÚMEROS COMPLEJOS

TEMA 4: NÚMEROS COMPLEJOS TEMA : COMPLEJOS 1 EN FOMA BINÓMICA 1.1 DEFINICIONES Sabemos que la resolucó de alguas ecuacoes de º grado coduce a ua raíz cuadrada de u º egatvo. Dcha raíz o tee setdo e el cojuto de los úmeros reales.

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

c) método propio Evaluar todos los parámetros posibles, dependiendo del método.

c) método propio Evaluar todos los parámetros posibles, dependiendo del método. VALIDACIÓN Y CONFIRMACIÓN DE MÉTODOS 0 Veró Itroduccó El objetvo fal de la valdacó de u método aalítco e aegurar que lo reultado de la medcoe e lo aál de ruta e ecuetra lo ufcetemete cerca del valor verdadero

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curo de Etadíta Aplada a la Cea Soale Tema 5. Derpó uméra Capítulo 4 del maual Tema 5 Derpó uméra Itroduó. La meda. La devaó típa. El oefete de varaó 4. El oefete de ametría 5. Derpó uméra para dtrbuoe

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran.

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran. Actvdad: Elabora u resume de la formacó que se muestra a cotuacó y aalza los procedmetos que se muestra. Fudametos matemátcos de la electróca dgtal Sstemas de umeracó poscoales E u sstema de esta clase,

Más detalles

0(=&/$6*$6(26$6. i = (3)

0(=&/$6*$6(26$6. i = (3) 0(&/$6$6(26$6,1752'8&&,21 E la erodáca, para poder realzar aál de prera eguda le, e ecearo coocer la propedade terodáca de la utaca de trabajo, coo o, por ejeplo, la eergía tera, la etalpía la etropía.

Más detalles

LECTURA 09 : MEDIDAS DE DISPERSIÓN Y DE FORMA (PARTE II) MEDIDAS DE FORMA TEMA 19: MEDIDAS DE FORMA

LECTURA 09 : MEDIDAS DE DISPERSIÓN Y DE FORMA (PARTE II) MEDIDAS DE FORMA TEMA 19: MEDIDAS DE FORMA Unverdad Católca Lo Ángele de Chmbote LECTURA 09 : EDIDAS DE DISPERSIÓN Y DE FORA (PARTE II) EDIDAS DE FORA TEA 9: EDIDAS DE FORA. EDIDAS DE ASIETRIA Son medda que mden el grado de deformacón horzontal

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 0 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Regla de Bayes. Pedro J. Rodríguez Esquerdo

Regla de Bayes. Pedro J. Rodríguez Esquerdo Regla de Bayes Pedro J. Rodríguez Esquerdo Isttuto de Estadístca y Sstemas Computadorzados de Iformacó Facultad de Admstracó de Empresas y Departameto de Matemátcas Facultad de Cecas Naturales Recto de

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve?

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve? 1.1. El cocepto de Estadístca. Qué es y para qué srve? La Estadístca se ocupa de la recoleccó, agrupacó, presetacó, aálss e terpretacó de datos. A meudo se llama estadístcas a las lstas de estos datos,

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 47 Meddas Descrptvas Numércas Frecuetemete ua coleccó de datos se puede reducr a ua o uas cuatas meddas umércas secllas que resume al cojuto

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

Capitalización, actualización y equivalencia financiera en capitalización compuesta

Capitalización, actualización y equivalencia financiera en capitalización compuesta Captalzacó, actualzacó y equvaleca facera e captalzacó compueta 5 E eta Udad aprederá a: 2 3 4 5 Decrbr lo efecto eecale de la captalzacó compueta. Reolver problema facero e captalzacó compueta. Dferecar

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

ESTADÍSTICA DESCRIPTIVA BIVARIADA

ESTADÍSTICA DESCRIPTIVA BIVARIADA ESTDÍSTIC DESCRIPTI IRID ESTDÍSTIC DESCRIPTI IRID No coepode tata ahoa el poblema de aalza multáeamete do vaable etadítca de ua poblacó paa lo cual la ceamo o tomamo ua mueta de ella etudado e bae a tal

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax + bx + c = 0 se aalzó el sgo

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES.

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES. Uiveridad Lo Ágele de Chimbote LECTURA 05: ITERVALOS DE COFIAZA PARA LA PROPORCIÓ POBLACIOAL. ITERVALOS DE COFIAZA PARA LA DIFERECIA ETRE DOS PROPORCIOES POBLACIOES. TEMA : ITERVALOS DE COFIAZA PARA LA

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión REGREIÓN NO LINEAL Ídce. CUÁNDO EXITE REGREIÓN?.... TIPO DE REGREIÓN... 3. REPREENTATIVIDAD DE LA CURVA DE REGREIÓN... 3 3.. Poder explcatvo del modelo... 3 3.. Poder explcatvo frete a poder predctvo...

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

Unidad I Estadística Descriptiva

Unidad I Estadística Descriptiva PRESENTACIÓN DEL CURSO Udad I Estadístca Descrptva La ESTADISTICA es la parte de las matemátcas ecargada de la presetacó y aálss de los datos de u expermeto. Normalmete la estadístca se dvde e: Estadístca

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

Estimación espacial del precio de la vivienda mediante métodos de Krigeado(*)

Estimación espacial del precio de la vivienda mediante métodos de Krigeado(*) ESTADÍSTICA ESPAÑOLA Vol. 48, Núm. 6, 6, pág. a 4 Etmacó epacal del preco de la vveda medate método de Krgeado* por JOSÉ ª ONTERO LORENZO y BEATRIZ LARRAZ IRIBAS Uverdad de Catlla-La acha RESUEN E dudable

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 40 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

2 El modelo de regresión simple: estimación y propiedades

2 El modelo de regresión simple: estimación y propiedades El modelo de regresó smple: estmacó y propedades Ezequel Urel Uversdad de Valeca 09-03. Alguas defcoes e el modelo de regresó smple.. El modelo de regresó poblacoal y la fucó de regresó poblacoal.. La

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

ANALISIS DE SISTEMAS LINEALES CONTINUOS EN EL ESPACIO DE ESTADO

ANALISIS DE SISTEMAS LINEALES CONTINUOS EN EL ESPACIO DE ESTADO U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSE DE SUCRE VICE RECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERIA ELECTRONICA ANALISIS DE SISTEMAS LINEALES CONTINUOS EN EL ESPACIO

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

2.2 Distribuciones de frecuencias unidimensionales.

2.2 Distribuciones de frecuencias unidimensionales. Itroduccó a la Estadístca Empresaral Capítulo - Aálss de ua varable CAPITULO - AALISIS DE UA VARIABLE Itroduccó E este capítulo se dará u cojuto de strumetos que permtrá el aálss descrptvo de ua varable

Más detalles