Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo"

Transcripción

1 Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó

2 Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la vestgacó de la relacó etre dos mas varables. Por ejemplo, e u proceso químco, supógase que el redmeto del producto está relacoado co la temperatura de operacó del proceso. El aálss de regresó puede emplearse para costrur u modelo que permta predecr el redmeto para ua temperatura dada. Este modelo també puede utlzarse para la optmzacó del proceso, tal como hallar la temperatura que mamza el redmeto, o para fes de cotrol. E este curso vamos a estudar el llamado aálss de regresó leal smple, e el cual se cosdera ua varable depedete de ua varable depedete que este ua relacó proporcoal drecta o versa (e líea recta) etre dchas varables estudadas.. Estadístca. UNITEC Tema 6: Aálss de Regresó

3 Estudo cojuto de dos varables A la derecha teemos ua posble maera de recoger los datos obtedo observado dos varables e varos dvduos de ua muestra. E cada fla teemos los datos de u dvduo Cada columa represeta los valores que toma ua varable sobre los msmos. Las dvduos o se muestra e gú orde partcular. Dchas observacoes puede ser represetadas e u dagrama de dspersó. E ellos, cada dvduo es u puto cuas coordeadas so los valores de las varables. Nuestro objetvo será tetar recoocer a partr del msmo s ha relacó etre las varables, de qué tpo, s es posble predecr el valor de ua de ellas e fucó de la otra. Altura e cm Peso e Kg Estadístca. UNITEC Tema 6: Aálss de Regresó 3

4 00 Dagramas de dspersó o ube de putos Teemos las alturas los pesos de 30 dvduos represetados e u dagrama de dspersó Pesa 76 kg Pesa 50 kg Mde 6 cm Mde 87 cm.. Estadístca. UNITEC Tema 6: Aálss de Regresó 4

5 Relacó etre varables. Teemos las alturas los pesos de 30 dvduos represetados e u dagrama de dspersó. Parece que el peso aumeta co la altura Estadístca. UNITEC Tema 6: Aálss de Regresó 5

6 Predccó de ua varable e fucó de la otra. Aparetemete el peso aumeta 0Kg por cada 0 cm de altura... o sea, el peso aumeta e ua udad por cada udad de altura kg cm Estadístca. UNITEC Tema 6: Aálss de Regresó 6

7 Aálss de Regresó El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y Varable depedete predcha eplcada X Varable depedete predctora eplcatva Es posble descubrr ua relacó? Y f(x) + error f es ua fucó de u tpo determado el error es aleatoro, pequeño, o depede de X. Estadístca. UNITEC Tema 6: Aálss de Regresó 7

8 Modelo de Regresó Leal Smple E el modelo de regresó leal smple, dado dos varables Y (depedete) X (depedete, eplcatva) buscamos ecotrar ua fucó de X mu smple (leal) la mejor que os permta apromar Y medate Ŷ b 0 + b X b 0 (ordeada e el orge, costate) b (pedete de la recta) Y e Ŷ rara vez cocdrá por mu bueo que sea el modelo de regresó. A la catdad ey-ŷ se le deoma resduo o error resdual.. Estadístca. UNITEC Tema 6: Aálss de Regresó 8

9 Modelo de Regresó Leal Smple Faldad Estmar los valores de (varable depedete) a partr de los valores de (varable depedete) Ordeada e el orge (tercepto) a θ ε ŷ ŷ Modelo a + b b tg θ coefcete de regresó (pedete) + ε. Estadístca. UNITEC Tema 6: Aálss de Regresó 9

10 Método de Mímos Cuadrados El prcpo e el que se basa el ajuste de la mejor líea es el de mímos cuadrdos, establece que s es ua fucó leal de ua varable depedete, la poscó mas probable de ua recta a + b es tal que la suma de los cuadrados de las desvacoes de todos los putos (, ) respecto de la líea es u mímo. Cabe destacar que el suspuesto cosderado cosste e que está lbre de errores (es la asgada), o be, está sujeta a errores que debe ser elmados por el método de mímos cuadrados. La observada es pues u valor aleatoro a partr de la poblacó de valores de que correspode a ua dada. Supoga que uestras observacoes costa de pares de valores:,,,...,,..., Supoga además que, debdo a la aturaleza físca de la relacó etre, se sabe que la relacó es leal, o be, se espera o sospecha que lo es.. Estadístca. UNITEC Tema 6: Aálss de Regresó 0

11 Método de Mímos Cuadrados Por cosguete, se epresa la relacó como: (, ) ŷ a + b ε ε Nuestro problema cosste e ecotrar los valores de a b para el caso de la líea de mejor ajuste. E lo referete a u puto e esta líea: ε ŷ a + b (, ) ( a + b ) 0 (, ) Pero s se preseta u error e la medcó, habrá u resduo tal que: ( a + ) ε b. Estadístca. UNITEC Tema 6: Aálss de Regresó

12 Método de Mímos Cuadrados Co observacoes, se tee ecuacoes: M ( a + b) ( a + b ) M ( a + b ) Medate el uso de la otacó sumatora, es posble epresar la suma de los cuadrados de los resduos como sgue: P ε o be, P ( a + ) ε ε M ε [ ] b. Estadístca. UNITEC Tema 6: Aálss de Regresó

13 3 Tema 6: Aálss de Regresó. Estadístca. UNITEC Método de Mímos Cuadrados ( ) [ ] ( ) [ ] b a 0 b a 0 b P 0 a P Como se mecoó ates, se tee que satsfacer la codcó de que la suma de los cuadrados de los resduos es míma; es decr, P es u mímo. Co la auda del cálculo básco, esto ocurre cuado: Smplfcado se obtee las llamadas ecuacoes ormales de mímos cuadrados: ( ) + + a b b a

14 4 Tema 6: Aálss de Regresó. Estadístca. UNITEC Método de Mímos Cuadrados ( ) b Pedete Al resolver las ecuacoes ormales de mímos cuadrados, se obtee los llamados estmadores de mímos cuadrados (coefcetes de regresó) para la ordeada al orge la pedete del modelo de regresó leal smple: b b a Ordeada alorge

15 Error Estádar de Estmacó El error estádar de estmacó es la desvacó estádar de los errores de predccó, proporcoa ua dcacó de su varabldad respecto a la recta de regresó e la poblacó e la que se hace las predccoes. S ε a b ( ) Bajo los supuestos de ormaldad, e ua poblacó umerosa se ecuetra que: Apromadamete el 68 % está e los límtes de ua desvacó estádar. Apromadamete el 95 % está e los límtes de dos desvacoes estádar. Apromadamete el 99,7 % está e los límtes de tres desvacoes estádar.. Estadístca. UNITEC Tema 6: Aálss de Regresó 5

16 Error Estádar de Estmacó 95% 68% 99,7% Recta de Regresó ( est S, est + S ) ( est S, est + S ) ( 3S, + 3S ) est est. Estadístca. UNITEC Tema 6: Aálss de Regresó 6

17 Cómo medr la bodad de ua regresó? Imagemos u dagrama de dspersó, vamos a tratar de compreder e prmer lugar qué es el error resdual, su relacó co la varaza de Y, de ahí, cómo medr la bodad de u ajuste.. Estadístca. UNITEC Tema 6: Aálss de Regresó 7

18 Iterpretacó de la varabldad e Y E prmer lugar olvdemos que este la varable X. Veamos cuál es la varabldad e el eje Y. Y La fraja sombreada dca la zoa dode varía los valores de Y. Proeccó sobre el eje Y olvdar X. Estadístca. UNITEC Tema 6: Aálss de Regresó 8

19 Iterpretacó del resduo Fjémoos ahora e los errores de predccó (líeas vertcales). Los proectamos sobre el eje Y. Y Se observa que los errores de predccó, resduos, está meos dspersos que la varable Y orgal. Cuato meos dspersos sea los resduos, mejor será la bodad del ajuste.. Estadístca. UNITEC Tema 6: Aálss de Regresó 9

20 Bodad de u ajuste Resumedo: Y La dspersó del error resdual será ua fraccó de la dspersó orgal de Y Cuato meor sea la dspersó del error resdual mejor será el ajuste de regresó. Eso hace que defamos como medda de bodad de u ajuste de regresó, o coefcete de determacó a: R S S e Y. Estadístca. UNITEC Tema 6: Aálss de Regresó S < e S Y 0

21 El Coefcete de Determacó R Y Y Resduo Recta de Regresó Yˆ _ Y Total Eplcada var total var eplcada + resduos X ( Y ) ( ˆ ) ( ˆ Y Y Y + Y Y) X. Estadístca. UNITEC Tema 6: Aálss de Regresó

22 Tema 6: Aálss de Regresó. Estadístca. UNITEC Volvedo a la fórmula de cálculo, realzado operacoes, se obtee que el coefcete de regresó es gual al cuadrado del coefcete de correlacó leal de Pearso. Por supuesto esto solo aplca e el caso de regresó leal smple. Dos propedades de R :. Es ua catdad o egatva. Toma valores etre 0. Etre más cercao a maor ajuste El Coefcete de Determacó R ( )( ) [ ] ( ) ( ) Y e r S S R

23 Resume sobre bodad de u ajuste La bodad de u ajuste de u modelo de regresó se mde usado el coefcete de determacó R R es ua catdad admesoal que sólo puede tomar valores e [0, ] Cuado u ajuste es bueo, R será cercao a uo. Cuado u ajuste es malo R será cercao a cero. A R també se le deoma porcetaje de varabldad eplcado por el modelo de regresó. R puede ser dfcl de calcular e modelos de regresó geeral, pero e el modelo leal smple, la epresó es de lo más seclla: R r. Estadístca. UNITEC Tema 6: Aálss de Regresó 3

24 Otros modelos de regresó Se puede cosderar otros tpos de modelos, e fucó del aspecto que presete el dagrama de dspersó (regresó o leal) recta o parábola? a + b + c Se puede cosderar modelos e los cuales se usa trasformacoes, por ejemplo logartmos, co la faldad de mostrar de forma mas ajustada ua relacó etre varables que o es mu clara e su forma orgal recta o cúbca? a + b + c + d 3 També es comú que el modelo este epresado e fucó de mas de ua varable. (regresó múltple) Estadístca. UNITEC Tema 6: Aálss de Regresó 4

25 Otros Modelos Comúmete Usados Líea Re cta : a + b Curva Cuadrátca : a + b + c 3 Curva Cúbca : a + b + c + d Curva degrado : a + b + c Curva Epoecal : a b b Curva Gompertz : pq Curva Logístca : a b + g Curva Hperbólca : a + b cm. Estadístca. UNITEC Tema 6: Aálss de Regresó 5

26 Idvduo Peso (Kg) Altura (cm) Rest..(m) Ejemplo E el ejemplo de la clase pasada se determó que las habldades físcas de los estudates de certa uversdad o está relacoadas co sus habldades académcas; s embargo quedó la duda acerca de las relacoes etre peso altura. Por esto se tomó ua ueva muestra de 5 estudates del seo masculo de 0 años de edad, se tomaro medcoes de peso corporal, ressteca e carrera (tempo) altura. Vamos a estudar la correlacó etre las varables dadas vamos a costrur modelos de regresó leal co fes de predccó.. Estadístca. UNITEC Tema 6: Aálss de Regresó 6

27 Cálculos Numércos Vamos a llamar: Varable X: Peso (Kg) Varable Y: Altura (cm) Varable Z: Ressteca (m) 5 X X X Y Y Y X Z Z Z Z Y Estadístca. UNITEC Tema 6: Aálss de Regresó 7

28 Dagramas de Dspersó 00 altura (cm) Peso (Kg) Resst. (m) Peso (Kg) Segú el dagrama de dspersó de la relacó peso vs altura, parecera estr ua fuerte relacó postva etre ellas. Segú el dagrama de dspersó de la relacó peso vs ressteca, parecera estr ua buea relacó versa etre ellas.. Estadístca. UNITEC Tema 6: Aálss de Regresó 8

29 Dagramas de Dspersó Segú el dagrama de dspersó de la relacó altura vs ressteca, parecera estr ua buea relacó versa etre ellas. Bastate parecda a la gráfca de peso vs ressteca. Resst. (m) Altura (cm). Estadístca. UNITEC Tema 6: Aálss de Regresó 9

30 Coefcetes de Correlacó Leal de Pearso r S S S Relacó Peso vs Altura Peso vs Ressteca Altura vs Ressteca r 0,96-0,86-0,85 Iterpretacó Alta correlacó postva etre peso altura (cas perfecta) Alta correlacó egatva etre peso ressteca (buea) Alta correlacó egatva etre altura ressteca (buea). Estadístca. UNITEC Tema 6: Aálss de Regresó 30

31 3 Tema 6: Aálss de Regresó. Estadístca. UNITEC Modelo de Regresó Leal ( ) b Pedete Las evdecas de correlacoes fuertes, tato drectas como versas, etre las varables estudadas, os hace pesar que podemos establecer modelos de regresó leal co u grado de ajuste bastate bueo. Veamos s eso es certo, usado el modelo líea recta: dode: b b a Ordeada al orge b a ŷ Recta : Líea +

32 Modelo de Regresó Leal Peso vs Altura Vamos a establecer u modelo leal e el cual el peso () es la varable depedete la altura () es la varable depedete. ( 5)( 356) ( 040)( 4346) ( 5)( 676) ( 040) b, a 5 5 (,99), 46 Modelo de Re gresó Leal: ŷ,46 +,99. Estadístca. UNITEC Tema 6: Aálss de Regresó 3

33 Modelo de Regresó Leal Peso vs Altura ŷ,46 +,99 00 altura (cm) 00 Altura (cm) Peso (Kg) Peso (Kg) Estadístca. UNITEC Tema 6: Aálss de Regresó 33

34 Modelo de Regresó Leal Peso vs Ressteca Vamos a establecer u modelo leal e el cual el peso () es la varable depedete la ressteca (z) es la varable depedete. ( 5)( 446) ( 040)( 758) ( 5)( 676) ( 040) b, a 5 5 (,5) 93, 54 Modelode Regresó Leal: ẑ 93,54,5. Estadístca. UNITEC Tema 6: Aálss de Regresó 34

35 Modelo de Regresó Leal Peso vs Ressteca ẑ 93,54, Resst. (m) Peso (Kg) Resst. (m) Peso (Kg). Estadístca. UNITEC Tema 6: Aálss de Regresó 35

36 Modelo de Regresó Leal Altura vs Ressteca Vamos a establecer u modelo leal e el cual la altura () es la varable depedete la ressteca (z) es la varable depedete. ( 5)( 30344) ( 758)( 4346) ( 5)( 75890) ( 4346) b 0, a 5 5 (,99) 95, 48 Modelode Regresó Leal: ẑ 95,48 0,7. Estadístca. UNITEC Tema 6: Aálss de Regresó 36

37 Modelo de Regresó Leal Altura vs Ressteca ẑ 95,48 0,7 Resst. (m) Altura (cm) Resst. (m) Altura (cm). Estadístca. UNITEC Tema 6: Aálss de Regresó 37

38 Desvacó Estádar de los Modelos Calculemos la Desvacó Estádar de los modelos de regresó leal obtedos, por medo de la fórmula: S S 3,3 a S b 5,34 ( ) z z S 5,5 Los errores estádar de estmacó de los tres modelos so bajos, e relacó a sus medas. La altura (73,84) tee u error bastate bajo; metras que la ressteca (70,3) tee errores mu parecdos e sus dos modelos de estmacó, lo cual hace pesar que se puede estmar co gual precsó co respecto al peso que co respecto a la altura.. Estadístca. UNITEC Tema 6: Aálss de Regresó 38

39 Coefcetes de Determacó de los Modelos Calculemos los Coefcetes de Determacó de los Modelos, recordado que estos so guales a los coefcetes de correlacó leal de Pearso elevados al cuadrado Relacó r R Iterpretacó Peso vs Altura 0,96 0,9 Ajuste mu bueo del modelo Peso vs Ressteca - 0,86 0,74 Bue ajuste del modelo Altura vs Ressteca - 0,85 0,7 Bue ajuste del modelo E el caso del modelo peso vs altura, el ajuste del modelo es cas perfecto (mu cercao a uo). S recordamos que el coefcete de determacó represeta el porcetaje de la varabldad eplcada por el modelo; es decr, e este caso se eplca el 9% de la varabldad. Los modelos de estmacó de la ressteca tee u bue ajuste; pero meor que el ateror. Ellos eplca etre 7 74 % de la varabldad; lo cual, auque o es malo, o es lo mas deseable. (lo deseable es por ecma de 0,80). Estadístca. UNITEC Tema 6: Aálss de Regresó 39

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA H. Helam Estadístca -/5 ITRODUCCIÓ. COCEPTO DE ETADÍTICA ETADÍTICA DECRIPTIVA La estadístca es la rama de las matemátcas que estuda los eómeos colectvos recogedo, ordeado y clascado y smplcado los datos

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión REGREIÓN NO LINEAL Ídce. CUÁNDO EXITE REGREIÓN?.... TIPO DE REGREIÓN... 3. REPREENTATIVIDAD DE LA CURVA DE REGREIÓN... 3 3.. Poder explcatvo del modelo... 3 3.. Poder explcatvo frete a poder predctvo...

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DETERMINACIÓN MEDIANTE EL ANÁLISIS REGRESIONAL DE LOS MODELOS MATEMATICOS POLINÓMICOS

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

MS Word Editor de Ecuaciones

MS Word Editor de Ecuaciones MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1 63 ITRODUCCIÓ AL AÁLISIS DE ECUESTAS COMPLEJAS MARCELA PIZARRO BRIOES ISTITUTO ACIOAL DE ESTADÍSTICA (IE CHILE Para presetarse e el Taller Regoal del MECOVI: La Práctca del Muestreo para el Dseño de las

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos Feómeos determístcos TEMA I. ESTADÍSTICA DESCRIPTIVA Llamados també causales,

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! Isttuto Tecológco de Apzaco Departameto de Cecas Báscas INSTITUTO

Más detalles

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS Beatrz Marró Uversdad Nacoal del Sur, beatrz.marro@us.edu.ar Resume: El objetvo de este trabajo es geeralzar

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles

q q q q q q n r r r qq k r q q q q

q q q q q q n r r r qq k r q q q q urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO jsalcedo@u.edu.pe Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego

Más detalles

GENERACION DE NUMEROS ALEATORIOS

GENERACION DE NUMEROS ALEATORIOS GENERACION DE NUMEROS ALEATORIOS U paso clave e smulacó es teer rutas que geere varables aleatoras co dstrbucoes especfcas: epoecal, ormal, etc. Esto es hecho e dos fases. La prmera cosste e geerar ua

Más detalles

Análisis de correlación y regresión

Análisis de correlación y regresión Capítulo Aálss de correlacó regresó 3 Seccoes Itroduccó 3. Correlacó leal. 3. Regresó leal. 3.3 Regresó o leal fucoes trísecamete leales. 3.4 Regresó multleal. Atecedetes Itervalos de cofaza Prueas de

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz Edtado por eumed et 004 ISBN: 84-688-653-7 Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo

Más detalles

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos Udad ddáctca ESTADÍSTICA. ESTADÍSTICA: COCEPTOS BÁSICOS La Estadístca surge ate la ecesdad de poder tratar y compreder cojutos umerosos de datos. E sus orígees hstórcos, estuvo lgada a cuestoes de Estado

Más detalles

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización.

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización. Optmzacó de ua cartera de versoes utlzado algortmos geétcos María Graca Leó, Nelso Ruz, Ig. Fabrco Echeverría Isttuto de Cecas Matemátcas ICM Escuela Superor Poltécca del Ltoral Vía Permetral Km 30.5,

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES.

VARIABLES ESTADÍSTICAS BIDIMENSIONALES. CONTENIDOS: VARIABLES ESTADÍSTICAS BIDIMENSIONALES. Orgazacó de dato: tabla de frecueca de doble etrada. Frecueca margale. Dagrama de dperó. Regreó leal: recta de regreó. Coefcete de correlacó leal. Iterpretacó.

Más detalles

3 Regresión lineal múltiple: estimación y propiedades

3 Regresión lineal múltiple: estimación y propiedades 3 Regresó leal múltple: estmacó y propedades Ezequel Urel Uversdad de Valeca Versó 09-013 3.1 El modelo de regresó leal múltple 1 3.1.1 Modelo de regresó poblacoal y fucó de regresó poblacoal 3.1. Fucó

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Itroduccó a la Programacó Leal Clauda Llaa Daza Garzó cldaza@uversa.et.co Trabajo de Grado para Optar por el Título de Matemátco Drector: Pervys Rego Rego Igeero Uversdad Nacoal de Colomba Fudacó Uverstara

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3 Dseños muestrales e Ivetaros Forestales Itroduccó... Dstrbucó de las udades muestrales.... 3 Dstrbucó Aleatora... 3 Dstrbucó stemátca... 4 Dstrbucó de las UM e trasectos... 5 Estmadores para udades muestrales

Más detalles

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS 5 ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS María C. Paz Sabogal Profesor Auxlar. Uversdad del Valle, Escuela de Igeería Idustral Estadístca, Cal. karo.paz@gmal.com

Más detalles

INTRODUCCION A LA GEOESTADISTICA

INTRODUCCION A LA GEOESTADISTICA INTRODUION A LA GEOESTADISTIA 7 3' W MAR ARIBE Boca de la Barra 3 larí 8 6 4 Grade R Sevlla 8 6 R Aracataca 45' N 4 R Fudaco Teoría y Aplcacó UNIVERSIDAD NAIONAL DE OLOMBIA Sede Bogotá Facultad de ecas

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33 SIMULACION TECNICA PARA IMITAR EN UN COMPUTADOR LAS OPERACIONES DE LOS SISTEMAS DEL MUNDO REAL A MEDIDA QUE EVOLUCIONAN EN EL TIEMPO, MEDIANTE MODELOS QUE LOS REPRESENTAN DE FORMA REALISTA Deartamet d'eio

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA FACULTAD DE INGENIERIA REFRACTÓMETRO ESPECTROSCÓPICO POR REFLEXIÓN INTERNA T E S I S QUE PARA OPTAR POR EL GRADO DE

Más detalles

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano Valoracó de opcoes de compra y veta del qutal de café e el mercado ecuatorao Adrá Morocho Pérez, Ferado Sadoya Sachez Igeero e Estadístca Iformátca 003 Drector de Tess, Matemátco, Escuela Poltécca Nacoal,

Más detalles

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal Programacó Matemátca y Software (2009) Vol.. No. ISSN: 2007-3283 Recbdo: 0 de Juo de 2008/Aceptado: 3 de Septembre de 2008 Publcado e líea: 26 de juo de 2009 Seleccó de ua Cartera de Iversó e la Bolsa

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*)

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) UNIVERSIDAD NACIONAL DE SALTA Facultad de Cecas Ecoómcas, Jurídcas y Socales Isttuto de Ivestgacoes Ecoómcas Reuó de Dscusó Nº 7 Fecha: /06/003 Hs.: 6 UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) Eusebo Cleto

Más detalles

CIRO MARTINEZ BENCARDINO

CIRO MARTINEZ BENCARDINO CIRO MARTINEZ BENCARDINO Nacdo e Covecó (Norte de Satader - Colomba). Ecoomsta de la Uversdad Jorge Tadeo Lozao de Bogotá, D.C. Bo-estadístca (Uversdad de los Ades, Bogotá, D.C.). Téccas Estadístcas (CIENES-Satago

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles