Cálculo y EstadísTICa. Primer Semestre.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo y EstadísTICa. Primer Semestre."

Transcripción

1 Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo I Ejerccos resueltos ESTADÍSTICA DESCRIPTIVA Mauel Barrero Rpoll. Mª Ágeles Castejó Solaas. Mª Lusa Casado Fuete. Lus Sebastá Lorete. Departameto de Igeería Topográfca y Cartografía Uversdad Poltécca de Madrd

2 Ejerccos resueltos

3 ESTADÍSTICA DESCRIPTIVA Ejercco. Se ha meddo decsés veces la logtud e metros que separa dos putos, Los resultados obtedos se muestra e la sguete tabla.: 3,0 3,3 3,5 3,7 3,9 3,50 3,53 3,55 3,57 3,60 3,60 3,65 3,55 3,53 3,5 3,55 Tabla. Calcular la moda, la medaa, los cuartles y el percetl 90. a) Para realzar este apartado, ordeamos los datos utlzado la tabla de dstrbucó de frecuecas absolutas acumuladas. (Tabla.). x N , Tabla. La moda es el valor de máxma frecueca. La dstaca 3.55 se repte tres veces y es la dstaca de mayor frecueca, por tato M 0 =3.55 metros s Por ser es u valor etero, la medaa (M) es el valor medo de las observacoes que ocupe los lugares 8 = y + = 9, de modo que - M = =3.53 metros s Ya que es u valor etero, el prmer cuartl Q es el valor medo de los valores stuados etre el cuarto y el quto dato, = y + = 5, así pues, - Q = P 5 = = 3.6 metros s El 75 % del total de las observacoes es, el tercer cuartl Q 3 estará etre los valores que ocupa los lugares 3 = y 3 + = 3, es decr, - Q 3 = P 75 = = 3.56 metros s Los ueve décmos de 6 es., por tato el percetl 90 ocupará el lugar 5, D 9 =P 90 = 3,60 metros s 3 - I

4 A cotuacó expoemos el procedmeto para calcular los parámetros aterores utlzado las fucoes específcas de las que EXCEL dspoe para ello. Para uestro ejemplo supodremos que los valores está stuados e el rago de datos A:A7 y escrbremos e la columa E las fucoes de Excel como se muestra e la columa G de la fgura.: Fgura. Ejerccos resueltos

5 ESTADÍSTICA DESCRIPTIVA Ejercco. De los datos del ejercco ateror, calcular: la meda, varaza, desvacó típca, cuasvaraza, desvacó típca de la muestra y los coefcetes de asmetría de Pearso, de Fsher y de aputameto. Para calcular los parámetros peddos ecestamos hallar los mometos o cetrales hasta el orde cuarto. Para ello utlzamos ua tabla como la que se muestra a cotuacó: x x x X ( x X) ( x X) 3 ( x X) Sumas Tabla. x Meda artmétca: X = = Meda = 3.98 metros s Varaza: ( ) x X σ = = 6 = Varaza = Desvacó típca: σ= Varaza = Desvacó típca = 0.03 Cuasvaraza o varaza muestral: ( ) x X S = σ = = = Cuasvaraza = I

6 Desvacó típca muestral: ( ) x X S = σ= = Desvacó típca muestral = Coefcete de asmetría de Pearso: X Mo As = = σ 0.03 Coefcete de asmetría de Pearso A s = Coefcete de asmetría de Fsher: g 3 ( ) 3 x X = = σ =.507 Coefcete de asmetría de Fsher g = Coefcete de aputameto: ( ) x X g = 3= σ = Coefcete de aputameto g = E la fgura. expoemos el procedmeto para calcular los parámetros aterores utlzado alguas de las fucoes específcas de las que EXCEL dspoe. Para termar este apartado, advertmos que alguas fórmulas empleadas por EXCEL puede producr resultados dsttos que co las utlzadas e clase. Por ejemplo los coefcetes de asmetría y aputameto de Fsher produce resultados dsttos, ello es debdo a que osotros calculamos los coefcetes de asmetría y curtoss de la poblacó o del cojuto de datos, metras que EXCEL calcula los estmadores o valores muestrales. 6 Ejerccos resueltos

7

8 Ejercco Dada la dstrbucó de frecuecas absolutas mostrada e la tabla.: Itervalos Tabla. Calcular la moda, medaa, cuartles y el percetl 0. E este caso los datos está agrupados e tervalos, así pues, para el cálculo de los parámetros peddos, formamos la tabla de dstrbucó de frecuecas y procedemos de la forma sguete: Itervalo Marca de Frecueca Frecueca clase x N Tabla. Moda: El tervalo modal es [0, 5) y tomamos como moda, M 0, el puto medo del tervalo. M 0 =.5 5 Medaa: El valor de / es 5, por tato, el tervalo medao es [0, 5) y el valor de la medaa ( ) M = 0 + = Prmer cuartl: El valor de es 6.5, por tato, el prmer cuartl estará e el tervalo [5, 0) y su valor es: ( ) Q = 5 + = es 87.5, así pues el tercer cuartl Q 3 está e el tervalo [0, 5) y su valor es: ( ) Q3 = 0 + = El percetl 0 estará e el tervalo [0, 5) y su valor es: ( ) P0 = 0+ = Ejerccos resueltos

9 ESTADÍSTICA DESCRIPTIVA Ejercco 5. Represetar el hstograma de frecuecas y los polígoos de frecuecas absolutas y absolutas acumuladas del ejercco. Para represetar el hstograma y el polígoo de frecuecas absolutas acumuladas, utlzamos la tabla 5. de dstrbucó de frecuecas absolutas. Hstograma de frecuecas absolutas 00 Itervalos Tabla Polgoo de frecuecas absolutas Fgura 5. Para represetar el polígoo de frecuecas absolutas acumuladas, utlzamos la dstrbucó de frecuecas absolutas acumuladas N. Itervalos N Tabla Polígoo de frecuecas absolutas acumuladas I

10 Ejercco 6. Del ejercco hallar la meda, varaza, desvacó típca, cuasvaraza, desvacó típca muestral y los coefcetes de asmetría y aputameto de Fsher. Para el cálculo de los parámetros estadístcos peddos, utlzamos la tabla 6. y las fórmulas de la tabla 6.. Marca de Frecueca Itervalos x X clase x absoluta ( ) x X ( ) 3 x X ( ) x X x ( ) Tabla 6. Parámetro estadístco. Fórmula. Valor. Meda x 570 X = = 50 =.88 Varaza ( ) x X σ = = = Desvacó típca σ = σ = 7.69 Cuasvaraza ( ) x X Desvacó típca muestral S Coef. de asmetría de Fsher ( ) 3 x X Coefcete de aputameto ( ) = = σ =59.3 S= S = σ = g = = 50 3 σ 5.55 = x X g = 3= 50 3 =.06 σ 59. Tabla 6. 0 Ejerccos resueltos

11 ESTADÍSTICA DESCRIPTIVA Ejercco 7. Los sguetes valores correspode a la temperatura máxma dara (ºF) de 36 días, obtedos a las horas e ua certa estacó meteorológca. 8, 9, 6, 0, 83, 67, 5, 66, 70, 69, 80, 58, 68, 60, 67, 7, 75, 76, 73, 70, 63, 70, 78, 5, 67, 53, 67, 75, 6, 70, 8, 76, 79, 58, 57,. a) Calcular: meda, desvacó típca muestral, cuartles superor e feror y la medaa. b) Estudar la exsteca de datos atípcos. S exste algú valor atípco omtr, dcho valor y calcular de uevo el apartado a). c) Co los datos de los apartados a y b costrur u gráfco co el dagrama de caja, de ambos apartados. Para el cálculo del apartado a) utlzaremos la tabla 7.. a) - Meda: X = Varaza de la poblacó: Desvacó típca de la poblacó: σ = 608 X 65,80 36 σ= σ = 65, Varaza muestral o cuasvaraza: 36 S = 65, Desvacó típca muestral: S = S = Prmer cuartl: 9 y =0 = Q = 60 = Tercer cuartl: 3 7 y = + = 8 Q3 = = Medaa: = 8 y + = M = = b) El rago tercuatílco y las barreras del gráfco so: IQR=75-59=6 LS =mí[ x máx, Q ]=mí[8, 99]=8. LI =máx[ x m, Q -.5 6]=máx[, 35]=35. El valor x= ºF es ua temperatura atípca del cojuto de datos. x N x x Tabla 7. - I

12 c) S omtmos la observacó ºF y procedemos de forma aáloga al apartado a) se tee: x N x x ,5 3,5 3,5,5 0,5 0 Tabla 7. - Meda: X = = Varaza de la poblacó: - Varaza muestral: σ = X = S =. = Desvacó típca de la poblacó: - Desvacó típca de la muestra: - Prmer cuartl: 8.75 = Q = 60 σ= σ = - Tercer cuartl: = Q3 = S = S = Medaa: 7.5 = M = 68 Los valores del rago tercuartílco y de las barreras so: Rago tercuartílco: IQR=75-59=5. LI =máx[ x m, Q -.5 6] = máx[0, 37.5]=0. LS =mí[ x máx, Q ] = mí[8, 97.5] = 8. Co los datos calculados aterormete, obteemos el dagrama de cajas de ambas seres de datos Realzado el dagrama de cajas e ambos casos, ua lectura de este gráfco sería que la dspersó y la asmetría so mayores e el apartado a) que e el apartado b). E a) la caja es algo más acha y, por tato, mayor la dspersó. També observamos que e b) la meda está más próxma a la medaa que e a) y por ello es más smétrca y más sgfcatva e b) al ser meor la dspersó. Ejerccos resueltos

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA Atoo Morllas A. Morllas: C. o paramétrcos (I 1 CONTRASTES NO PARAMÉTRICOS: BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA Ifereca realzada

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 0 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES. TEMA : PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.. INTRODUCCIÓN Hasta ahora hemos vsto cómo se puede resumr los datos obtedos del estudo de ua muestra (o ua poblacó) e ua tabla estadístca

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO CURO PROBABILIDAD Y ETADITICA FM75 PROFEOR RODOLFO TORO DEPARTAMETO DE FIICA Y MATEMATICA UIVERIDAD ACIOAL ADRE BELLO EL MÉTODO CIETÍFICO La Estadístca, costtuye así, ua dscpla cetífca extremadamete ampla

Más detalles

Métodos Estadísticos aplicados a la Ingeniería. 1º Ingeniería Industrial

Métodos Estadísticos aplicados a la Ingeniería. 1º Ingeniería Industrial Métodos Estadístcos aplcados a la Igeería º Igeería Idustral º cuatrestre 8/9 Itroduccó - Qué es la Estadístca? La estadístca es la ceca que se ocupa del dseño de experetos o ecuestas edate uestras, para

Más detalles

3. La distribución normal multivariada

3. La distribución normal multivariada 3. La dstrbucó ormal multvarada Por qué es mportate la dstrbucó ormal multvarada? o Muchas de las téccas multvaradas supoe que los datos fuero geerados de ua dstrbucó ormal multvarada. o E la vda real

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

Identificación de Valores Atípicos

Identificación de Valores Atípicos STATGRAPHICS Rev. 4/5/007 Idetfcacó de Valores Atípcos Resume El procedmeto Idetfcacó de Valores Atípcos está dseñado para ayudar a determar s ua muestra de observacoes umércas cotee o o valores atípcos.

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Apuntes de Estadística para profesores

Apuntes de Estadística para profesores Aputes de Estadístca para profesores Curso 006/007 Cocepcó Bueo García Tomás Escudero Escorza Isttuto de Cecas de la Educacó Uversdad de Zaragoza Capítulo. Coceptos geerales.- Itroduccó Las dos grades

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Tabla de Distribución de Frecuencias

Tabla de Distribución de Frecuencias Tabla de Dstrbucó de Frecuecas H. Mata 1 Tal como puede leerse e la lteratura estadístca ésta es ua ceca que se ecarga de recoger, orgazar y aalzar los hechos de aturaleza umérca reerete a cualquer tópco.

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 40 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 47 Meddas Descrptvas Numércas Frecuetemete ua coleccó de datos se puede reducr a ua o uas cuatas meddas umércas secllas que resume al cojuto

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

2.2 Distribuciones de frecuencias unidimensionales.

2.2 Distribuciones de frecuencias unidimensionales. Itroduccó a la Estadístca Empresaral Capítulo - Aálss de ua varable CAPITULO - AALISIS DE UA VARIABLE Itroduccó E este capítulo se dará u cojuto de strumetos que permtrá el aálss descrptvo de ua varable

Más detalles

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS Autores: Dr. Ig. Roberto Pzarro T. Ig. Jua Pablo Flores V. Ig. Clauda Sagüesa P. Ig. Ezo Martíez A. 1. INTRODUCCIÓN El presete documeto fue extraído

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

CAPITULO III ORGANIZACION DE DATOS

CAPITULO III ORGANIZACION DE DATOS Estadstca Descrptva 5 CAPITULO III ORGANIZACION DE DATOS 3. ORGANIZACION DE DATOS CUALITATIVOS CUADRO DE FRECUENCIAS. Se recomeda realzar la tabla o cuadro de frecuecas. Ejemplo: A 40 alumos que había

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

Unidad I Estadística Descriptiva

Unidad I Estadística Descriptiva PRESENTACIÓN DEL CURSO Udad I Estadístca Descrptva La ESTADISTICA es la parte de las matemátcas ecargada de la presetacó y aálss de los datos de u expermeto. Normalmete la estadístca se dvde e: Estadístca

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Fórmulas Estadísticas. Recuerde: Hay k Categorías; n Datos en una muestra, N datos en una población.

Fórmulas Estadísticas. Recuerde: Hay k Categorías; n Datos en una muestra, N datos en una población. Uiversidad Diego Portales Facultad de Ecoomía y Negocios Fórmulas Estadísticas Capítulo 2 Recuerde: Hay k Categorías; Datos e ua muestra, N datos e ua població. Frecuecia Relativa de Clase (f) Cuátas Clases

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES.

VARIABLES ESTADÍSTICAS BIDIMENSIONALES. CONTENIDOS: VARIABLES ESTADÍSTICAS BIDIMENSIONALES. Orgazacó de dato: tabla de frecueca de doble etrada. Frecueca margale. Dagrama de dperó. Regreó leal: recta de regreó. Coefcete de correlacó leal. Iterpretacó.

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE - INTRODUCCION Es tecó aalzar e este trabajo las coocdas relacoes costo-volume-utldad para el caso e que sus compoetes sea: w : costo varable utaro

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

I n t r o d u c i ó n A l a E s t a d í s t i c a 1

I n t r o d u c i ó n A l a E s t a d í s t i c a 1 Estadístca I t r o d u c ó A l a E s t a d í s t c a INTRODUCCIÓN: La Estadístca descrptva es ua parte de la Estadístca cuyo objetvo es examar a todos los dvduos de u cojuto para luego descrbr e terpretar

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

TEMA 4: NÚMEROS COMPLEJOS

TEMA 4: NÚMEROS COMPLEJOS TEMA : COMPLEJOS 1 EN FOMA BINÓMICA 1.1 DEFINICIONES Sabemos que la resolucó de alguas ecuacoes de º grado coduce a ua raíz cuadrada de u º egatvo. Dcha raíz o tee setdo e el cojuto de los úmeros reales.

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

T. 5 Estadísticos de forma de la distribución

T. 5 Estadísticos de forma de la distribución T. 5 Estadístcos de forma de la dstrbucón 1 1. Asmetría 2. Apuntamento o curtoss Ya ha sdo abordado en temas precedentes el análss de la forma de la dstrbucón de frecuencas desde una aproxmacón gráfca.

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA PRÁCTICA 3: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA E ocasoes ocurre que el ecargado de hacer u trabajo estadístco o está seguro de la dstrbucó de ua determada varable aleatora. Para solucoar

Más detalles

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS El conocmento de las meddas de centralzacón no es sufcente para caracterzar completamente a una dstrbucón por ejemplo: s las edades medas de

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Figura 1

Figura 1 Regresó Leal Smple 7 Regresó Leal Smple 7. Itroduccó Dra. Daa Kelmasky 0 E muchos problemas cetífcos teresa hallar la relacó etre ua varable (Y), llamada varable de respuesta, ó varable de salda, ó varable

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT

UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT RAFAEL HERRERÍAS PLEGUEZUELO FEDERICO PALACIOS GONZÁLEZ JOSÉ CALLEJÓN CÉSPEDES EDUARDO PÉREZ RODRÍGUEZ Departameto. de Ecoomía Aplcada.

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

MODELO 2. CONVERSION DE TASAS (parte 2) CASO 2: CONVERSIÓN DE UNA TASA EFECTIVA ANUAL A TASA NOMINAL

MODELO 2. CONVERSION DE TASAS (parte 2) CASO 2: CONVERSIÓN DE UNA TASA EFECTIVA ANUAL A TASA NOMINAL MODELO 2. CONVERSION DE TASAS (parte 2) CASO 2: CONVERSIÓN DE UNA TASA EFECTIVA ANUAL A TASA NOMINAL PROPÓSITO: Dseñar u modelo e hoja de cálculo que permta covertr ua tasa efectva, a su equvalete omal

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos Feómeos determístcos TEMA I. ESTADÍSTICA DESCRIPTIVA Llamados també causales,

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población

Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población ESTADÍSTICA U poco de hstora El orge de la estadístca se ecuetra e el térmo Estado, pues uero los goberates los que prmero se preocuparo de elaborar y clascar las termables lstas de los recursos humaos

Más detalles

Frecuencia absoluta Les gusta 28 No les gusta 12 Total 40. Posibles resultados. Revisoras: Raquel Caro y Nieves Zuasti

Frecuencia absoluta Les gusta 28 No les gusta 12 Total 40. Posibles resultados. Revisoras: Raquel Caro y Nieves Zuasti 116 Capítulo 7: Estadístca. Azar y probabldad TEORÍA. Matemátcas 4º de ESO 1. ESTADÍSTICA 1.1. Muestras. Estudos estadístcos S queremos hacer u estudo estadístco teemos que: a) Recoger los datos b) Descrbr

Más detalles

Ejercicios resueltos de funciones generatrices. Matemática discreta 4º Ingeniería Informática

Ejercicios resueltos de funciones generatrices. Matemática discreta 4º Ingeniería Informática Ejerccos resueltos de fucoes geeratrces. Matemátca dscreta º Igeería Iformátca. Determa la fucó geeratrz para el úmero de formas de dstrbur 5 moedas de u euro etre cco persoas, s (a o hay restrccoes; (b

Más detalles

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran.

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran. Actvdad: Elabora u resume de la formacó que se muestra a cotuacó y aalza los procedmetos que se muestra. Fudametos matemátcos de la electróca dgtal Sstemas de umeracó poscoales E u sstema de esta clase,

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

Regla de Bayes. Pedro J. Rodríguez Esquerdo

Regla de Bayes. Pedro J. Rodríguez Esquerdo Regla de Bayes Pedro J. Rodríguez Esquerdo Isttuto de Estadístca y Sstemas Computadorzados de Iformacó Facultad de Admstracó de Empresas y Departameto de Matemátcas Facultad de Cecas Naturales Recto de

Más detalles