Estudio y optimización del algoritmo de ordenamiento Shellsort

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estudio y optimización del algoritmo de ordenamiento Shellsort"

Transcripción

1 Estudo y optmzacó del algortmo de ordeameto Sellsort Bejam Bustos Departameto de Cecas de la Computacó, Uversdad de Cle Resume Este estudo aalza, e forma empírca, el desempeño del algortmo de ordeameto Sellsort co dferetes seres de pasos. Se estuda optmzacoes al algortmo para evtar los peores casos y se compara su redmeto co algortmos de ordeameto efcetes (Qucksort, Mergesort y Heapsort), dscutédose la utldad del algortmo para resolver el problema de ordeameto de cojutos de tamaño medo.. Itroduccó El estudo de algortmos de ordeameto tee ua gra mportaca detro de la Ceca de la Computacó, pues ua buea catdad de los procesos realzados por medos computacoales requere que sus datos esté ordeados. Además, el eco de almacear los datos de maera ordeada permte mplemetar algortmos de búsqueda muy rápdos (por ejemplo: búsqueda bara). Esta y mucas otras razoes de f práctco mpulsaro el estudo y la búsqueda de algortmos de ordeameto efcetes. Desde los comezos del uso de computadores se coocía algortmos que resolvía el problema e tempo cuadrátco respecto del tamaño del problema, pero era rutas muy secllas y letas. El algortmo de ordeameto Sellsort fue publcado e 959 por Doald L. Sell, y fue uo de los prmeros e romper la barrera del orde cuadrátco, auque esto e realdad se probó u par de años después de su publcacó. El objetvo de este estudo es demostrar empírcamete que mplemetar Sellsort co seres de pasos depedetes del tamaño del arreglo puede llegar a ser muco más efcete que co las seres cláscas, las cuales so depedetes del tamaño del arreglo, pero ay que aplcar ua optmzacó seclla para obteer bueos resultados: todos los pasos de la sere debe ser úmeros mpares. Además,

2 este estudo muestra que dada la smplcdad de programacó del algortmo, su bue peor caso y caso promedo, y su ejecucó place, es decr, o ecesta espaco adcoal para realzar el ordeameto del arreglo, lo ace u bue caddato para resolver el problema de ordeameto cuado la catdad de elemetos a ordear o es muy grade (meos de elemetos). 2. Descrpcó del algortmo de ordeameto Sellsort El problema cosste esecalmete e ordear u úmero fto de elemetos e u tempo razoable. Para estos efectos, dremos que cada elemeto ocupa ua celda detro de u arreglo prevamete defdo. Sellsort trabaja medate ua sere de teracoes, utlzado u algortmo de ordeacó smple (Isert Sort) etre elemetos que se ecuetra a determada dstaca detro del arreglo, dstaca que dsmuye a medda que avazamos e teracoes, co lo que la últma teracó correspode al algortmo de ordeacó tradcoal de Isert Sort (cuado la dstaca es ). E prmer lugar aalcemos el algortmo de Isert Sort utlzado pseudocódgo: for j 2 to do KEY L[j]; j wle >0 ad L[]>KEY do L[+] L[]; ed L[+] KEY ed dode correspode al úmero total de elemetos a ordear y L es orgalmete el arreglo desordeado. El algortmo actúa tomado cada elemeto desde el segudo e adelate, y se va tercambado co los elemetos aterores a él metras ecuetre que el elemeto a su zquerda e el arreglo es mayor que él. De esta forma, cuado vamos a comparar el elemeto -esmo, todos los elemetos aterores (asta el (-)ésmo) se ecuetra ya ordeados. Cuado terma la ejecucó, L preseta los elemetos ordeados de meor a mayor. Se puede demostrar que el tempo promedo que demora el algortmo Isert

3 Sort e ordear u arreglo es de O ( 2 ), y que el algortmo es muy rápdo s el arreglo está semordeado. E partcular, s el arreglo está ordeado el algortmo de sercó demora O (). El algortmo de Sellsort actúa de maera smlar, pero etre elemetos separados a ua dstaca que va dsmuyedo e cada teracó. Lo que obteemos co esto es que cuado se emplee el algortmo tradcoal de Isert Sort, los elemetos ya está ordeados relatvamete, y así la catdad de comparacoes que tee que acer es muco meor. Elgedo las dstacas adecuadas, el algortmo de Sellsort preseta u mejor orde promedo que Isert Sort. A cotuacó se preseta el algortmo de Sellsort e pseudocódgo: for s t to by {s es el ídce del cremeto o dstaca} dst[s] { es el cremeto o dstaca etre elemetos a comparar} for j + to {j empeza e el segudo elemeto del arreglo orgal} KEY L[j]; j wle >0 ad L[]>KEY do L[ + ] L[]; j ed L[ + ] KEY ed ed dode t correspode al úmero de teracoes, dst es u arreglo que cotee la dstaca etre elemetos a comparar para cada teracó (la prmera e el arreglo sempre es gual a y correspode a la últma dstaca ocupada por el algortmo, mometo e el cual es equvalete a Isert Sort), es el úmero de elemetos a ordear y L es orgalmete el arreglo desordeado. Luego de su ejecucó, e L está ordeados los elemetos de meor a mayor. ejemplo: Para que esto quede más claro covee lustrar el problema y su solucó co el sguete

4 La razó para usar el método de sercó para ordear los subarreglos de las etapas sucesvas de Sellsort, es por su secllez y por el eco que el trabajo realzado e etapas prevas se matee al ordear la etapa actual. E efecto, s se defe como arreglo t-ordeado aquel e el cual los elemetos que se ecuetra a dstaca t, detro del arreglo, está ordeados, se puede demostrar que s u arreglo -ordeado es trasformado a k-ordeado (co k<), se matee -ordeado,. Esto permte que a medda que el paso se va acedo más pequeño, los elemetos ya está bastate ordeados globalmete y al realzar la últma etapa co paso = (que es ua ordeacó por Isercó), práctcamete se lleva a cabo e ua sola pasada ( O () ), dado todo el trabajo realzado e las teracoes prevas. Este algortmo es u claro ejemplo de como ua pequeña modfcacó a u algortmo leto lo puede covertr e uo bastate más rápdo. El úmero de comparacoes efectuado por Sellsort es ua fucó de las secuecas de cremeto o dstacas que utlza. Su aálss es extremadamete dfícl y requere respuestas a varos problemas matemátcos todavía o resueltos. Por lo tato, la mejor secueca posble de cremetos aú o a sdo determada, auque alguos casos específcos a sdo estudados. Por ejemplo, para la sere

5 3 2 =. 72 y = 5 ( 3 se a demostrado que el tempo de ejecucó es O ), lo que puede parecer sorpredete: acedo ua sola pasada preva se mejora el algortmo de sercó que e promedo es O ( 2 ). Las sere de pasos almaceados e el arreglo dst tee la característca de ser depedete del tamaño del arreglo al cual se aplca durate el desarrollo del algortmo, por lo que sus valores puede ser pre-calculados ates de ejecutar el ordeameto. E geeral, al programar el algortmo esto o es así, y los valores de los pasos se calcula cada vez que ua teracó terma, lo cual o fluye e ada e la efceca del algortmo: durate las pruebas realzadas e el estudo, las dferecas de tempo etre teer pre-calculados los pasos e rlos calculado e cada teracó o superaro el marge de error de las pruebas (meos del 0.0% del tempo promedo obtedo). S perjuco de lo ateror, exste otras seres de pasos que so depedetes del tamaño del arreglo al cual se aplca, como por ejemplo +, partedo co t = y termado cuado 2 =. El comportameto de ésta sere o es muy dferete a la de = 2, pero s se camba el factor de dvsó 2 por uo lgeramete superor, dgamos 2.2, el algortmo se acelera otablemete. E la lteratura se recomeda o utlzar este tpo de seres, pues s ates el aálss matemátco era muy complcado, co este tpo de seres depedetes es mposble realzarlo. S embargo, este estudo demuestra empírcamete que alguas seres de este tpo puede llegar a ser muy efcetes s se le aplca al algortmo ua pequeña optmzacó, la cual se aalza a cotuacó. 3. Evtado el peor caso Durate el desarrollo del estudo se probó el redmeto de la sguete sere: + 2.4, partedo co t = y termado cuado = 4.8. Para esto, se geeraro arreglos co elemetos

6 al azar, partedo desde u tamaño de 00 asta u tamaño de y agregado 00 elemetos e cada teracó del expermeto ( u test bastate exaustvo!). El algortmo fucoaba bastate be, pero resaltaro dos problemas: las dferecas e el tempo utlzado etre catdades de elemetos muy smlares era grades, y el algortmo se comportaba estreptosamete mal co arreglos de exactamete elemetos (u orde de magtud de dfereca co respecto a arreglos de y elemetos), lo cual era bastate extraño. La raíz del problema radcaba, curosamete, e los msmos cos del algortmo: Se a demostrado que el peor caso de Sellsort ocupado los cremetos de Sell, es decr = 2 ( es poteca de 2), ejecuta u úmero de comparacoes O ( 2 ), s los elemetos está dstrbudos orgalmete e el arreglo de tal maera que la mtad mayor se ecuetre e celdas pares y la mtad meor e celdas mpares. Dado que todos los cremetos so pares exceptuado el últmo, cuado se a llegado a la últma teracó, co el úco cremeto mpar gual a, cotúa estado todos los elemetos mayores e las celdas pares y los meores e las celdas mpares. De este modo e el últmo paso (equvalete al algortmo de Isert Sort) se debe realzar ua gra catdad de comparacoes (recordemos que Isert Sort es, e promedo, O ( 2 ) ). Efectvamete esto era lo que ocurría co la sere de pasos estudada. Todas las aproxmacoes de partedo co t = 4.8 da úmeros pares (y es el úco valor etre 00 y , múltplos de 00, e el que ocurre este feómeo), co lo que el últmo paso, gual a u Isert Sort, debía realzar ua gra catdad de trabajo al o aberse comparado uca las poscoes mpares del arreglo co las pares, lo que degradaba otablemete el redmeto del algortmo. Realzado la pequeña optmzacó de restarle uo al paso s éste resulta par, se obtee u algortmo muco más omogéeo y efcete e su comportameto. La aplcacó de esta optmzacó debera realzarse a todas las seres de pasos, sea éstas depedetes del tamaño del arreglo o o.

7 4. Comparacó del redmeto de dsttas seres de pasos Las seres mplemetadas para realzar el estudo (y que fuero pre-seleccoadas por ser las más efcetes), so las sguetes:. 3* + ( =, 4, 3, 40, 2, 364, 093, ), e dode el paso mayor es el úmero de la = sere más cercao a = 2, e dode el paso mayor es el úmero de la sere más cercao a = 2, e dode el paso mayor es el úmero de la sere que se ecuetra dos poscoes ates del más cercao a k (restádole s resulta par), dode: (a) k = 2.2, (b) k = 2.4, y el paso mayor es k t = 2 *. Se geeraro arreglos de úmeros eteros co valores aleatoros, cuya catdad de elemetos varó etre los y elemetos (múltplos de 5.000). Cada teracó del test cosstó e repetr 30 veces el algortmo co arreglos dsttos pero co la msma catdad de elemetos, calculado luego el tempo promedo que tomaba el algortmo e ordear el arreglo. Para verfcar la valdez de los datos, se calculó el tervalo de cofaza I e el cual se ecotraría la meda real de los tempos obtedos, co u vel de cofaza del 95%: I S S = [ X * 2.262, X + * 2.262], = 30 para cada teracó. X = * X = (meda empírca) S (varaza empírca) 2 = 2 * ( X X ) =

8 El test fue realzado e u PC co procesador Petum 200 MMX y sstema operatvo Lux (kerel ). Los algortmos fuero mplemetados e leguaje C. Los resultados obtedos se muestra e el sguete gráfco: Comparacó etre seres de Sellsort 0,9 0,8 0,7 Tempo [seg] 0,6 0,5 0,4 0,3 0,2 0, Sere Sere 2 Sere 3 Sere 4a Sere 4b Nº de elemetos Los putos represeta el tempo promedo obtedo por cada algortmo. Los tervalos de cofaza calculados posee u aco promedo del 2% del tempo promedo obtedo, por lo que dcos tempos se acerca bastate a la meda real. Se observa e el gráfco que las seres depedetes del tamaño del arreglo supera amplamete a la mejor sere depedete del arreglo. E partcular, la sere de pasos reduce e u 24% el tempo de la mejor sere clásca ( 3* + ) e arreglos co elemetos. La curva que =

9 mejor aproxma a los datos obtedos utlzado esta sere es Y , = e * X, es decr, el tempo promedo que toma el algortmo e ordear es de O ) aproxmadamete. 9 ( 8 Se realzó el msmo test pero aora comparado Qucksort, Mergesort y Heapsort co la mejor sere de Sellsort, El resultado obtedo fue el sguete: Comparacó de Sellsort co algortmos de ordeameto efcetes Tempo [seg] 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, Sellsort Qucksort Mergesort Heapsort Nº de elemetos Cabe destacar que Mergesort se demora lo msmo e ordear u arreglo desordeado de elemetos que Sellsort, pero éste o ocupa espaco extra para realzar el ordeameto. Qucksort sgue sedo el algortmo más efcete, pero asta los Sellsort sólo toma el doble de tempo que Qucksort para ordear el arreglo.

10 Resumedo: para arreglos de meos de elemetos Sellsort se comporta mejor que Heapsort, que tee complejdad e tempo O ( * l( )) y opera " place"; Mergesort se comporta u poco mejor que Sellsort e tempo de ejecucó, pero tee la desvetaja que o trabaja " place"; Qucksort se comporta muco mejor que Sellsort y també opera " place", pero tee la desvetaja de teer u peor caso O ( 2 ). 5. Coclusoes S be Sellsort o es el algortmo más efcete para ordear arreglos, comparado co la complejdad O( *l( )) de los algortmos Qucksort, Mergesort y Heapsort, es u algortmo muco más fácl de programar. Su smplcdad radca e que derva del algortmo más smple para ordear, Isert 9 ( 8 Sort. Además, su complejdad promedo e tempo de ) + O ocupado la sere 2.2, y su complejdad e espaco de O (), debdo a que opera place, lo ace u bue caddato para resolver el problema de ordeameto e cojutos de meos de elemetos. Es vtal para la efceca del algortmo que todos los elemetos de la sere de pasos sea úmeros mpares, para lo cual basta co restarle al paso s éste es par. Co esta pequeña modfcacó se reduce el tempo promedo de ejecucó y su varaza. Además, el estudo demuestra empírcamete que alguas seres depedetes del tamaño del arreglo reduce el tempo de ejecucó del algortmo co respecto a las seres cláscas. S embargo, aú o se sabe co certeza cuál es la efceca real del algortmo, y es muy posble que exsta seres de pasos que reduzca los tempos de ejecucó obtedos e los tests descrtos. 6. Referecas Mark Alle Wess, Data Structures ad Algortm Aalyss, Bejam/Cummgs, 2ª ed., 995, pág

11 Mca Hofr, Aalyss of Algortms: Computatoal Metods ad Matematcal Tools, Oxford Uversty Press, 995, pág Robert Sedgewck, Algortms C++, Addso-Wesley, 992, pág Sara Baase, Computer Algortms: Itroducto to Desg ad Aalyss, Addso-Wesley, 978, pág

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico. Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Ensayos de control de calidad

Ensayos de control de calidad Esayos de cotrol de caldad Fecha: 0170619 1. lcace. Este procedmeto es aplcable e la evaluacó del desempeño del persoal que ejecuta pruebas e la Dvsó de Laboratoros de Ifraestructura de la Coordacó de

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones.

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones. Objetvos El alumo será capaz de programar algortmos que cluya el maejo de arreglos utlzado fucoes. Al fal de esta práctca el alumo podrá:. Realzar etosamete programas que haga uso de arreglos como parámetros

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo

Más detalles

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: wschmd@ceam.mx Resume: De acuerdo al Teorema

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo.

Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo. ANUALIDADES SERIES UNIFORMES SERIE UNIFORME Se defe como u Cojuto de Pagos Iguales y Peródcos. El Térmo PAGO hace refereca tato a Igresos como a Egresos. També se deoma ANUALIDADES: Se defe como u Cojuto

Más detalles

METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO)

METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO) METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO) I. Descrpcó del cálculo de los dcadores IFO CIFO La flota e operacó se medrá a través de los mecasmos IFO y CIFO, de acuerdo a lo establecdo

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008 Solucó del exame de Ivestgacó Operatva de Sstemas de septembre de 008 Problema : (3 putos) E Vllafresca uca hace sol dos días segudos. S u día hace sol, hay las msmas probabldades de que el día sguete

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

GENERACION DE NUMEROS ALEATORIOS

GENERACION DE NUMEROS ALEATORIOS GENERACION DE NUMEROS ALEATORIOS U paso clave e smulacó es teer rutas que geere varables aleatoras co dstrbucoes especfcas: epoecal, ormal, etc. Esto es hecho e dos fases. La prmera cosste e geerar ua

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran.

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran. Actvdad: Elabora u resume de la formacó que se muestra a cotuacó y aalza los procedmetos que se muestra. Fudametos matemátcos de la electróca dgtal Sstemas de umeracó poscoales E u sstema de esta clase,

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

TEMA 9. Contrastes no paramétricos y bondad de ajuste

TEMA 9. Contrastes no paramétricos y bondad de ajuste TEMA 9. Cotrastes o paramétrcos y bodad de ajuste 9. Al falzar el tema el alumo debe coocer... fereca etre u cotraste parámetrco y uo o paramétrco Característcas de la estmacó utlzado los cotrastes o test

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

FUNCIONES ALEATORIAS

FUNCIONES ALEATORIAS Uversdad de Medoza Ig. Jesús Rubé Azor Motoya FUNCIONES ALEATORIAS Ua varable aleatora se defe como ua fucó que represeta gráfcamete el resultado de u expermeto a los úmeros reales, esto es, X(), dode

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

GENERACION DE VARIABLES ALEATORIAS

GENERACION DE VARIABLES ALEATORIAS GENERACION DE VARIABLES ALEATORIAS Hay ua varedad de métodos para geerar varables aleatoras. Cada método se aplca solo a u subcojuto de dstrbucoes y para ua dstrbucó e partcular u método puede ser más

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Análisis de la Varianza

Análisis de la Varianza Descrpcó breve del tema Aálss de la Varaza Tema. troduccó al dseño de expermetos. El modelo. Estmacó de los parámetros. Propedades de los estmadores 5. Descomposcó de la varabldad 6. Estmacó de la dfereca

Más detalles

EVALUACIÓN ECONÓMICA.

EVALUACIÓN ECONÓMICA. EVALUACIÓN ECONÓMICA. 1. ANTECEDENTES GENERALES. La evaluacó se podría defr, smplemete, como el proceso e el cual se determa el mérto, valor o sgfcaca de u proyecto. Este proceso de determacó os lleva

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

Métodos Numéricos para Ingenieros Químicos

Métodos Numéricos para Ingenieros Químicos CONTENIDO Métodos Numércos para Ieeros Químcos Itroduccó Formas de resolucó de ecuacoes trascedetes Método ráco Tema Ecuacoes Trascedetes () Métodos cerrados Bseccó Iterpolacó Secate Clase 3 - Láma Ecuacoes

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL 3. CARACTERISTICAS NUMERICAS DE UNA VARIABLE S tratamos de represetar uestras edades medate u polígoo de frecuecas, y os ubcamos e el tempo: hace 0 años, hoy

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

Incertidumbre en las mediciones directas e indirectas

Incertidumbre en las mediciones directas e indirectas Icertdumbre e las medcoes drectas e drectas Comezaremos por dstgur dos dferetes tpos de medcoes: Medcoes drectas: La medda de la cota se obtee e ua úca medcó co u strumeto de lectura drecta. Medcoes drectas:

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! INTRODINTRODUCCIÓN D etro del estudo de muchos feómeos de

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización.

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización. Optmzacó de ua cartera de versoes utlzado algortmos geétcos María Graca Leó, Nelso Ruz, Ig. Fabrco Echeverría Isttuto de Cecas Matemátcas ICM Escuela Superor Poltécca del Ltoral Vía Permetral Km 30.5,

Más detalles

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva. Estadístca Alguos Coceptos Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas 5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal

Más detalles

Estructura y Tecnología de Computadores. Módulo G. Estructura del procesador. Concepto de aritmética. La aritmética en el computador.

Estructura y Tecnología de Computadores. Módulo G. Estructura del procesador. Concepto de aritmética. La aritmética en el computador. Estructura y Tecología de Computadores Módulo G. Estructura del procesador Tema 5. Artmétca José Mauel Medías Cuadros Dpto.. Arqutectura de Computadores y Automátca Uversdad Complutese de Madrd cotedos.

Más detalles