EQUILIBRIO QUÍMICO. Constante de equilibrio K C

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EQUILIBRIO QUÍMICO. Constante de equilibrio K C"

Transcripción

1 EQUILIBRIO QUÍMIO Un e ls pliiones más importntes e l termoinámi son ls reiones químis en equilibrio. En ls reiones que trnsurren, presión y tempertur onstnte, si G sistem kj / mol, el proeso es reversible y, se ie, que l reión iret y l invers se están relizno en oniiones e equilibrio químio. En ests oniiones ls trnsformiones químis, iret e invers, se prouen l mism veloi, e tl form que l nti e sustni e espeie no vrí on el tiempo y el proeso químio se ie que está en equilibrio. L termoinámi nos permite preeir en un reión en equilibrio ls presiones o ls onentriones e ls mezls. Ls reiones químis trnsurren hi un equilibrio inámio en l que los retivos y los proutos están presentes, pero no tienen teneni sufrir mbios netos. vees en l mezl en equilibrio l onentrión e los proutos es muho myor que l onentrión e los retivos que no se hn trnsformo, y efetos prátios eimos que l reión está omplet. Sin embrgo, en muhos sos importntes l mezl en equilibrio tiene uns onentriones lts e retivos y e proutos. Vmos nlizr ómo l termoinámi se us pr preeir l omposiión e equilibrio bjo uns etermins oniiones. Too esto es muy importnte. or ejemplo, en un proeso inustril es muy importnte obtener el máximo renimiento por lo que hy que onoer si se onsigue umentno o isminuyeno l tempertur o l presión. Tmbién poemos estr interesos en onoer el mino, que l omi que ingerimos, sigue en l serie ompli e reiones bioquímis que tienen lugr en el lentmiento el uerpo, o pr esrrollr l poteni musulr o en l energí el sistem nervioso. onstnte e equilibrio Nos vmos referir equilibrios homogéneos, es eir, quellos en los que tos ls espeies químis presentes se enuentrn en l mism fse (gses o isoluiones líquis). Si expresmos el equilibrio e l form: bb D un tempertur existe un relión onstnte entre ls onentriones e ls sustnis en el equilibrio, llm onstnte e equilibrio: [ ] (ley e ión e mss) b L ini que est onstnte es funión e ls onentriones. Los exponentes oinien on los oefiientes estequiométrios e ls sustnis en l reión just. oiente e reión Si plimos l ley e ión e mss un reión que no h onseguio el equilibrio: bb D Se obtiene el siguiente oefiiente: [ ] Q b 1

2 Este se obtiene on ls onentriones fuer el esto e equilibrio, y nos sirve pr ver l evoluión que v tener lugr: 1) Q <. El sistem no está en equilibrio. L relión proutos/retivos es menor que l que existe en el equilibrio. r onseguirse el equilibrio hn e onsumirse retivos y formrse proutos (l reión se esplz hi l ereh). ) Q >. El sistem no está en equilibrio. L relión proutos/retivos es myor que l que existe en el equilibrio. r onseguirse el equilibrio hn e onsumirse 3) Q. proutos y formrse retivos (l reión se esplz hi l izquier). El sistem se enuentr en equilibrio. onstnte e equilibrio En el so e gses en equilibrio es útil introuir un nuev onstnte, que expres el equilibrio en funión e ls presiones priles e los gses e l mezl. Es l llm : (g) bb (g) (g) D (g) D b B l igul que ourre on, el vlor e : 1) Es rterístio e equilibrio, pero epene e los oefiientes estequiométrios e l euión. ) Vrí on l tempertur. 3) Es inepeniente e ls nties iniiles e retivos y proutos. Relión entre y Si onsiermos que los gses son ieles, poemos relionrlos trvés e l euión: n V RT RT ([ ] RT ) ([ RT ) [ ] ( b) ( RT ) b b ( RT ) ([ RT ) ( RT ) n ( RT ) n En el so e ser n, entones. Energí libre y onstnte e equilibrio En termoquími vimos que el vlor e G nos permite preeir si un sistem v evoluionr o no en un etermino sentio. L energí libre se relion on l energí libre estánr por: G G RT lnq

3 En el equilibrio G kj/mol, sieno Q ( es o ): G RT ln e G RT 1) uno G < kj/mol > > 1. L reión se esplz hi l ereh (formión e proutos). ) uno G > kj/mol > < 1. L reión se esplz hi l izquier (formión e retivos). Ftores que fetn l equilibrio químio El prinipio e Le htelier espeifi los ftores que fetn l equilibrio químio y e qué form: uno un sistem químio está en equilibrio y se somete un perturbión, tles omo lterr l tempertur o l presión totl el sistem o l omposiión e lguno e los omponentes, el sistem siempre se opone l perturbión minimizno sus efetos. Efeto e l tempertur. Si se lter l tempertur e un sistem químio, en equilibrio, el sistem se opone esplzno el equilibrio químio en el sentio en que se prouz el efeto ontrrio e l lterión. or ejemplo, si umentmos l tempertur el sistem químio, en equilibrio, éste se esplz pr bjrl. Esto lo he el sistem esplzánose en el sentio e l reión enotérmi. Y hemos iho que, un mbio e l tempertur e un sistem químio en equilibrio, fet l propio equilibrio, porque lo esplz en un sentio. ero emás se lter el propio vlor e l onstnte e equilibrio: G H T S RT ln ln 1 H R 1 T 1 T1 (Euión e Vn t Hoff) Efeto e l presión. L presión no fet l vlor e l onstnte e equilibrio, pero sí puee fetr l propio equilibrio químio. Si se ument l presión e too el sistem, éste respone oponiénose y, por tnto, tiene isminuirl. Es eir, el equilibrio químio se esplz hi one isminuy el número e moles gseosos y sí isminuir l presión. De tl form que, l bo e un tiempo el equilibrio nuevo se lnz uno se lne el vlor e l onstnte e equilibrio que orrespon l tempertur espeifi. Efeto el volumen. Si isminuye este, el sistem evoluionrá en el sentio en que isminuy el número e prtíuls en esto gseoso. Y vievers. Efeto e l onentrión. L vriión e l onentrión e un e ls espeies no fet l vlor e l onstnte e equilibrio, pero sí puee fetr l propio equilibrio químio. Si se lter l onentrión e un e ls espeies en equilibrio químio, retnte o prouto, el sistem se esplz oponiénose ih lterión. or ejemplo, si umentmos l onentrión e un espeie, el equilibrio se esplz en el sentio en que isminuy l onentrión e ih espeie. Si isminuimos l onentrión e un espeie, el equilibrio químio se esplz en el sentio e l formión e es espeie. De tl form que, l bo e un tiempo el nuevo equilibrio se lnz uno se lne el vlor e l onstnte e equilibrio que orrespon l tempertur espeifi. 3

4 Equilibrio e solubili Un isoluión stur es quell en l que el soluto isuelto y el soluto sin isolver están en equilibrio inámio. Un isoluión stur es otro ejemplo e un equilibrio inámio, es eir, en el que el proeso ireto y el inverso trnsurren l mism veloi. En este so, el soluto se isuelve l mism veloi que retorn l sólio. Un isoluión stur es un isoluión en l que l isoluión e un soluto y su preipitión están en equilibrio inámio: gl (s) gl ( Se efine l solubili e un sustni omo su onentrión en l isoluión stur. L solubili epene el isolvente, e l tempertur y e l presión (en gses). lguns sustnis, son solubles en gu, otrs son poo solubles y otrs son insolubles. Ls isoluiones sturs se ltern on los mbios en sus oniiones y que están en equilibrio inámio. or ejemplo, uno e los mbios más signifitivos es l moifiión el ph e l isoluión por l iión e un áio o e un bse. Otro mbio, es l moifiión e l onentrión e lguno e los iones, que se enomin el efeto e un ion omún. r estuir el equilibrio e solubili e un sl, lo vmos her on sles muy poo solubles, y que ls isoluiones e ests sles son muy iluis, por tnto no tenremos en uent ls interiones entre los iones e l isoluión, unque ést se enuentre stur. Si tenemos un pequeño volumen e un isoluión e iones plt g ( (proeentes e un isoluión e l sl gno 3 ), y lo ñimos un isoluión que ontiene iones loruro l - ( (que proen e un isoluión e l sl Nl), se observ que l mezlrls pree un fse sóli y se proue inmeitmente un preipito. El preipito formo, que es e l sl loruro e plt, estblee rápimente un equilibrio inámio heterogéneo on sus iones en l isoluión. El gl es un ejemplo e sl muy poo soluble en gu. El equilibrio lo poemos esribir espeifino l reión e equilibrio, l onstnte e equilibrio y l onstnte e solubili: gl (s) g ( l - ( [ g( ] l( [ gl ] ( s) ] S S q [ g( ] l( ) ] omo l onentrión molr reltiv e un sólio puro es 1, l oniión pr el equilibrio puee expresrse en términos e onstnte e solubili. Ls onstntes e solubili se pueen obtener iretmente prtir e l solubili molr, s, e un ompuesto. L solubili molr e un ompuesto es l onentrión molr el ompuesto en l isoluión stur. Luego l onstnte e solubili se obtiene: S g( ] l( ] [ s r sber si se proue o no preipito, poemos tener tres sos: 1) Si Q S < s l isoluión resultnte no h llego l sturión y no hbrá preipito. ) Si Q S s l isoluión resultnte está stur y no hy preipito. 3) Si Q S > s l isoluión resultnte está sobrestur y ourre l preipitión. 4

5 L solubili e un sl, en un isoluión, es un fenómeno e equilibrio inámio entre l sl en l fse sóli y los iones en l isoluión. or tnto, l solubili e un sl se verá fet por los ftores que feten l propio equilibrio e solubili. Los ftores que fetn l solubili son: ) L tempertur. Los gses son menos solubles uno se ument l tempertur. or el ontrrio, muhos sólios iónios y moleulres son más solubles en gu tempertur lt que bj. En generl, plimos el prinipio e Le htelier. b) L onentrión e lgún ion omún los iones e l sl. uno un sl soluble, tiene un ion en omún, on otr sl muy poo soluble y que tmbién está presente en l isoluión, se omprueb que l solubili e l sl muy poo soluble se reue. ) El ph e l isoluión. Lo veremos en el siguiente tem. 5

Rama de la termodinámica que estudia la forma en la que los sistemas biológicos adquieren, canalizan y utilizan la energía.

Rama de la termodinámica que estudia la forma en la que los sistemas biológicos adquieren, canalizan y utilizan la energía. BIOENERGÉTICA Rm e l termoinámi que estui l form en l que los sistems biológios quieren, nlizn y utilizn l energí. CONCEPTOS BÁSICOS DE BIOENERGÉTICA Sistem es l prte el universo que elegimos pr el estuio.

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

"EQUILIBRIO QUÍMICO" 3. CONSTANTE DE EQUILIBRIO COCIENTE DE REACCIÓN...8

EQUILIBRIO QUÍMICO 3. CONSTANTE DE EQUILIBRIO COCIENTE DE REACCIÓN...8 TEM 4º "EQUILIBRIO QUÍMICO" 1. ESTUDIO DINÁMICO DE LS RECCIONES QUÍMICS.... INTRODUCCIÓN.... B. VELOCIDD DE RECCIÓN:... C. TEORÍ DE LS COLISIONES. COMLEJO CTIVDO:...3 D. ECUCIÓN DE VELOCIDD....3 E. FCTORES

Más detalles

Capítulo 14. Equilibrio químico

Capítulo 14. Equilibrio químico Cpítulo 14 Equilirio químio Éste es el primero e vrios pítulos que trt sore los oneptos e uilirio químio. Pree ser que el tem e uilirio químio result ifíil pr muhos lumnos. Sólo espués e iferentes pliiones

Más detalles

Todos los ejercicios se escribirán utilizando factores de conversión.

Todos los ejercicios se escribirán utilizando factores de conversión. Ejeriios TIPO e estequiometrí Ftores Conversión 1CI noviemre 011 1 Resumen e ejeriios tipo e estequiometrí Toos los ejeriios se esriirán utilizno ftores e onversión. Oserv que l llve que te re toos los

Más detalles

Ley de Acción de masas. Constante de equilibrio.

Ley de Acción de masas. Constante de equilibrio. Tema 5. Equilibrio Químio Ley e Aión e masas. Constante e equilibrio. Coiente e reaión. Caraterístias el equilibrio químio. Formas e eresar las onstantes e equilibrio y relaiones entre ellas. Grao e isoiaión.

Más detalles

Ciclos Termodinámicos

Ciclos Termodinámicos Cpítulo 5 Cilos Termoinámios 5.1. Cilo e Crnot Consieremos un gs iel sometio l siguiente proeso ílio: b isoterm f ibt ibt o isoterm V V V Figur 5.1: Cilo e Crnot. Proeso b : Aibt reversible El gs se omprime

Más detalles

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales.

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales. COMPETENCIA Estleer reliones y iferenis entre iferentes notiones e números reles pr eiir sore su uso. 2.. NÚMEROS RACIONALES Los números Frionrios se simolizn on l letr Q. Se lsifin en Números Rionles

Más detalles

ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS

ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS Cinemáti e Menismos Tem 3 Itzir Mrtij López Mier Loizg Grmeni Deprtmento e Ingenierí Meáni Meknik Ingeniritz Sil 2 ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS 1.

Más detalles

NÚMEROS RACIONALES. y Números Irracionales Q

NÚMEROS RACIONALES. y Números Irracionales Q CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA Y AMBIENTAL

DEPARTAMENTO DE INGENIERÍA QUÍMICA Y AMBIENTAL www.upt.es DEARTAMENTO DE INGENIERÍA QUÍMICA Y AMBIENTAL BLOQUE ENERGÍA Y DINÁMICA 8 DE LAS REACCIONES QUÍMICAS EQUILIBRIO QUÍMICO Objetivos 1. Conoer los proesos inámios que tienen lugar en el equilibrio

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma: PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

Ejemplo para transformar un DFA en una Expresión Regular

Ejemplo para transformar un DFA en una Expresión Regular Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES. PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio.

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio. . Introuón Equlro Químo ermonám. em 4 El esto e equlro e ls reones químs reversles en sstems y onstntes tene ls sguentes rterísts: ) L omposón e los omponentes e l reón no vrí en el tempo. or eso, es posle

Más detalles

2.2 Asumiendo un comportamiento ideal, calcular el área ocupada por molécula de butanoico en el límite de concentraciones elevadas del mismo.

2.2 Asumiendo un comportamiento ideal, calcular el área ocupada por molécula de butanoico en el límite de concentraciones elevadas del mismo. . Se introdue un pilr de rdio.5 mm dentro de un disoluión uos en useni de surftnte ºC onsiguiendo un ltur en el interior del pilr, h 1. A ontinuión se introdue el mismo pilr en un disoluión uos que ontiene

Más detalles

Introducción al álgebra en R

Introducción al álgebra en R Autor: hristin ortes Introuión l álger en R.- El álger trt e nties omo en l ritméti pero en form más generl; que mientrs que l ritméti utili nties enots por números on un solo vlor efinio el álger us letrs

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

Equilibrio químico. Equilibrio químico. Contenidos. Qué es un equilibrio químico? ? 2 HI. Qué es un equilibrio químico? Reacción: H 2 2 HI H 2 + I 2

Equilibrio químico. Equilibrio químico. Contenidos. Qué es un equilibrio químico? ? 2 HI. Qué es un equilibrio químico? Reacción: H 2 2 HI H 2 + I 2 Equilibrio químio Contenios TEMA 3 1.- Conepto e equilibrio químio 2.- Ley e aión e masas. K C 3.- Coiente e reaión Equilibrio químio 4.- Equilibrios heterogéneos: preipitaión y solubilia 5.- Equilibrios

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10 UNIDAD 10: Equilibrio de solubilidd y precipitción Problems resueltos selecciondos Problem El PbCl (s) no es un compuesto muy soluble en gu. PbCl (s) Pb (c) Cl (c) = [Pb ][Cl ] = 1,6 10 5 PS Clcule l concentrción

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

Compensación: diseño de Gc. Ejemplo 1: Sea una planta Gs () =

Compensación: diseño de Gc. Ejemplo 1: Sea una planta Gs () = Compenión: ieño e G Ejemplo : Se un plnt G () =, e neeit relimentr l ( + )( + )( + ) plnt. El enor utilio tenú vee l li (G LCBF =) y lo requerimiento el item relimento on lo iguiente: ) Anho e bn, BW=r/eg

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Números Irracionales

Números Irracionales Números Irrionles Los griegos ern onoedores de los números nturles: 0, 1,,,, 5, Estos números son los que se utilizn pr numerr o ontr, pero no nos sirven si queremos expresr ntiddes no exts, omo "l mitd

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL Exmen pr oinienis INSTRUCCIONES

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

Ficha de Trabajo: Gráficas 2 año Ciencias Físicas Material elaborado por Prof. Alberto Censato GRÁFICAS

Ficha de Trabajo: Gráficas 2 año Ciencias Físicas Material elaborado por Prof. Alberto Censato GRÁFICAS Fich e Trbjo: Gráfics 2 ño Ciencis Físics Mteril elboro por Prof. Alberto Censto GRÁFICAS El uso e gráfics es un herrmient e grn utili en l myorí e los trbjos científicos, en este reprtio veremos lguns

Más detalles

Los Números Racionales ( ) son todos aquellos que se pueden escribir como fracciones. a b

Los Números Racionales ( ) son todos aquellos que se pueden escribir como fracciones. a b 0.1 TRAB AJ O DE DOCU MENTACI ON FRACCI ONES Los Números Rionles ( ) son toos quellos que se pueen esriir omo friones. = /,, 0} Too número rionl siempre se puee esriir o omo frión o omo eiml Rionl Frión

Más detalles

Cometa. Pág max. 50 C. 6mm. b TSP 4x30

Cometa. Pág max. 50 C. 6mm. b TSP 4x30 Comet Guí e uso Pág. 1 Fije el progrmor l pre, en un lol erro, resguro e los gentes tmosférios y el gu, on un tempertur miente e 0 50 C. No instle el prto l intemperie ni en rquets enterrs. 1 2 OK! 3 mx.

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente

Más detalles

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013 MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operiones omins on números enteros. - Potenis ríes urs. - Operiones on friones. - Operiones on números eimles. - Euiones e primer seguno gro. - Usr e form eu

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

Conceptos básicos de la Teoría de Grafos

Conceptos básicos de la Teoría de Grafos Mtemáti Disret y Lógi 2 Coneptos ásios e l Teorí e Grfos 1. Definiiones A menuo, uno se utiliz un mp e rreters interes oservr omo ir e un puelo otro por ls rreters inis en el mismo. En onseueni se tienen

Más detalles

Reinaldo Núñez Universidad Sergio Arboleda

Reinaldo Núñez Universidad Sergio Arboleda ACERCA DEL TRIÁNGULO DE PASCAL Reinldo Núñez Universidd Sergio Aroled reinldo.nunez@us.edu.o, reinldonunez@gmil.om El Triángulo de Psl es un onepto que se ve en l seundri undo se desrroll ( ) n o lguns

Más detalles

QUIMICA ANALITICA I. SEPTIEMBRE SOLUCIÓN PRIMERA PARTE

QUIMICA ANALITICA I. SEPTIEMBRE SOLUCIÓN PRIMERA PARTE QUC NLTC. SPTBR 9. SLUCÓN PRR PRT.- Se mezlan, ml e áio asórbio ( ), on, ml e hiróxio sóio, y se enrasa la isoluión resultante a, ml ) Determine la onentraión total nominal o analítia e los os sistemas

Más detalles

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra clases.microeconomia.

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra  clases.microeconomia. Competeni Monopolísti EJERCICIOS Profesor Guillermo Pereyr guillermopereyr@miroeonomi.org www.miroeonomi.org lses.miroeonomi.org 1. Cuál e ls siguientes lterntivs no es rterísti e l ompeteni monopolísti?

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

El Duopolio EJERCICIOS. Profesor Guillermo Pereyra clases.microeconomia.

El Duopolio EJERCICIOS. Profesor Guillermo Pereyra  clases.microeconomia. El Duopolio EJERCICIOS Profesor Guillermo Pereyr guillermopereyr@miroeonomi.org www.miroeonomi.org lses.miroeonomi.org 1. Aueros entre empress en un inustri en ireión fijr un ierto preio o estleer un iert

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

INTRODUCCIÓN DE LAS PROPIEDADES DE MEZCLADO PARA EL CÁLCULO DE VOLUMENES ESPECIFICOS EN ECUACIONES CÚBICA DE ESTADO RESUELTAS POR EL MÉTODO DE CARDANO

INTRODUCCIÓN DE LAS PROPIEDADES DE MEZCLADO PARA EL CÁLCULO DE VOLUMENES ESPECIFICOS EN ECUACIONES CÚBICA DE ESTADO RESUELTAS POR EL MÉTODO DE CARDANO Termodinámi Avnzd INTRODUIÓN DE LAS ROIEDADES DE MEZLADO ARA EL ÁLULO DE VOLUMENES ESEIFIOS EN EUAIONES ÚBIA DE ESTADO RESUELTAS OR EL MÉTODO DE ARDANO INTRODUION Ls euiones úbis de estdo son un herrmient

Más detalles

FORMACIÓN DEL CONJUNTO DE NÚMEROS RACIONALES

FORMACIÓN DEL CONJUNTO DE NÚMEROS RACIONALES Fult e Ingenierí - Universi Rel Lnívr Revist Eletróni No. FORMACIÓN DEL CONJUNTO DE NÚMEROS RACIONALES Por Li. Julio Césr Slzr, jisoslzr@yhoo.om RESUMEN A vees no se tiene mno el esrrollo orml el onjunto

Más detalles

Integrales múltiples.

Integrales múltiples. Pro. Enrique Mteus Nieves otoro en Euión Mtemáti Integrles múltiples. Introuión. En el primer urso e Funmentos se plnteó el prolem e hllr el áre ompreni entre l grái e un unión positiv y x, el eje OX y

Más detalles

Seminario de problemas. Curso Soluciones Hoja 18

Seminario de problemas. Curso Soluciones Hoja 18 Seminrio de problems. Curso 015-16. Soluiones Hoj 18 10. Sen, b, y d utro números enteros. Demostrr que el produto de ls seis diferenis b,, d, b, d b, d es múltiplo de 1. Soluión Vemos que diho produto

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTGALS MÚLTIPLS 1.1. INTGAL OBL SOB UN CTÁNGULO Se f : 2 un funión otd de dos vribles, denid sobre el retángulo = [, b] [, d] = {(x, y) 2 : x b, y d} A ontinuión se onsider un prtiión de en subretángulos.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

Tema 2 Matrices Matemáticas CCSSII 2º Bachillerato 1

Tema 2 Matrices Matemáticas CCSSII 2º Bachillerato 1 Tem Mtries Mtemátis CCSSII º hillerto TEM MTRICES OPERCIONES CON MTRICES EJERCICIO D l mtri ompre qe = I sieno I l mtri ienti Usno l fórml nterior ll Compromos qe = - I igles Son I Utilino qe = - I llmos

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

XI Política macroeconómica con tipo de cambio flexible

XI Política macroeconómica con tipo de cambio flexible XI Políti mroeonómi on tipo de mio flexile Modelo sin juste de preios En este so prtiulr, el tipo de mio nominl E es un vrile endógen y no está más fijd por l utoridd monetri. Reordemos ls expresiones

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b): TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un

Más detalles

Figura 1. Figura 2. Resultados y discusiones A continuación se muestran los resultados obtenidos para cada uno de los rectificadores:

Figura 1. Figura 2. Resultados y discusiones A continuación se muestran los resultados obtenidos para cada uno de los rectificadores: RECTIFICDORES λ Y λ/ CON DIODOS Diego Jvier Sánhez T. iegotl_nl@yhoo.om, Nelson ntonio eerr C. nelsonntonio@yhoo.om, Jime lerto López R. jimelopezr@yhoo.om, Progrm e Ingenierí Eletróni, Eletróni Inustril,

Más detalles

Apéndice 1. Ecuaciones del Modelo de Pitzer

Apéndice 1. Ecuaciones del Modelo de Pitzer Apéndie uiones del Modelo de Pitzer Apéndie. uiones del Modelo de Pitzer. n el prtdo..b. se expusieron ls euiones del odelo Pitzer pr el oefiiente osótio,, y los oefiientes de tividd pr los tiones, γ M,

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

Óvalo dados los dos ejes: óvalo óptimo

Óvalo dados los dos ejes: óvalo óptimo l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Uni Nº Resoluión e sisems meine eerminnes! PR EPEZR, RELEXION Y RESUELVE Deerminnes e oren! Resuelve uno e los siguienes sisems e euiones lul el eerminne e l mri e los oefiienes: E sumno E E sumno λ,s.c.i.,

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

TEMA 4: Integración múltiple

TEMA 4: Integración múltiple TEMA 4: ntegrión múltiple Cálulo ngeniero de Teleomuniión Cálulo () TEMA 4 ngeniero de Teleomuniión 1 / 32 1 L integrl de Riemnn en R n 2 ntegrl doble ntegrl doble sobre un retángulo ntegrl doble sobre

Más detalles

COMPRENSIÓN ESPACIAL

COMPRENSIÓN ESPACIAL COMPRENSIÓN ESPACIAL El áre e COMPRENSIÓN ESPACIAL pretene evlur ls estrezs el spirnte pr periir y omprener, trvés e l Representión Gráfi: 1.- Forms y Cuerpos Geométrios ásios y ls reliones entre sus respetivos

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL MODELO INSTRUCCIONES Y CRITERIOS

Más detalles

5 Integral doble de Riemann

5 Integral doble de Riemann Miguel eyes, Dpto. de Mtemáti Aplid, FI-UPM 1 5 Integrl doble de iemnn 5.1 Definiión Llmremos retángulo errdo de 2 l produto de dos intervlos errdos y otdos de, es deir = [, b] [, d] = { (x, y) 2 : x b,

Más detalles