PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:"

Transcripción

1 PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro vriles ( ) ( ) ( ). L funión simplifi es

2 y su iruito implifir l siguiente funión y otener su iruito eletrónio on el menor número e puerts: (eletivi nluz) Otenemos l expresión nóni y l simplifimos por el métoo e Krnugh F ( ) ( ) F F Como l funión nóni que F F ) (

3 L funión oteni es F y el iruito F D l siguiente funión: ) Oteng su form nóni omo sum e proutos lógios. ) Oteng su expresión más signifitiv. ) Relie l funión empleno sólo puerts NND. (Propuesto nluí 96/97). Otenemos su funión nóni omo sum e proutos ( ) ( ) ( ). itumos los términos e l funión sore l uríul pr tres vriles y simplifimos l funión por Krnugh L funión oteni es. Trnsformmos l funión pr ser reliz on puerts NND

4 y el iruito que otenemos Diseñr un iruito eletrónio que umpl l siguiente tl e ver pr l funión F(,, ) on el menor número e puerts lógis. F (eletivi nluz) itumos los términos que hen verer l funión sore l uríul e tres vriles pr simplifir por el métoo e Krnugh L funión oteni es F

5 y su iruito Do el siguiente esquem, oteng l funión e sli () y simplifíquel. (Propuesto nluí 97/98) ore el iruito vmos otenieno ls operiones efetus trvés e ls puerts, hst llegr l sli C C C C Oteni l funión l simplifimos lgerimente ( ) ( ) C C C C C C C

6 Un motor elétrio puee girr en mos sentios por meio e os onttores: "D" pr el giro ereh y "I" pr el giro izquier. Estos os onttores son omnos por os pulsores e giro "" (ereh) e "i" (izquier) y un interruptor e seleión "L" e uero on ls siguientes oniiones: Estleer : i sólo se puls uno e los os otones e giro, el motor gir en el sentio orresponiente. i se pulsn los os otones e giro simultánemente, el sentio e giro epene el esto el interruptor "L" e form que, i "L" está tivo, el motor gir l ereh. i "L" está en reposo, el motor gir l izquier. ) L tl e ver. ) Ls funiones lógis D e I y simplifirls. ) u iruito lógio meinte puerts.. Relizmos l tl e ver ontemplno ls os slis i L D I (eletivi nluz). De ls funiones euis e l tl, situmos sus términos sore ls uríuls orresponientes e tres vriles y ls simplifimos por Krnugh D i L i L i L I i L i L i L il il D i L I i i L ( i L) I i ( L ) D

7 . El iruito será i i L L i L D i L I Diseñe un iruito ominionl que relie l sum ritméti e os números inrios, uno e un it y otro e os its, y uyo resulto tmién esté o en inrio. Represente el iruito meinte puerts lógis. (Propuesto nluí 97/98) L sum e los os números serí Tenrímos que sumr órenes igules, por lo que hrímos que porí r un rreo C C C H C

8 El rreo C se tenrá que sumr on el oren superior el número e os its, e l form C, y porí r un rreo C C C C H C C C C C C C El iruito que result oplno los os móulos nteriores C H C H C C L sum venrí expres por el número C, sieno el it e menor peso.

9 Un motor es ontrolo meinte tres pulsores, y C. Diseñe su iruito e ontrol meinte puerts lógis que umpl ls siguientes oniiones e funionmiento: i se pulsn los tres pulsores el motor se tiv. i se pulsn os pulsores ulesquier, el motor se tiv pero se eniene un lámpr iionl omo señl e emergeni. i sólo se puls un pulsor, el motor no se exit, pero se eniene l lámpr inior e emergeni. i no se puls ningún interruptor, ni el motor ni l lámpr se tivn. (eletivi nluz septiemre-97) Otenemos l tl e ver pr ls os slis, según ls espeifiiones, y expresmos sus funiones nónis C M L M C C C C L C C C C C C Por el métoo tulr otenemos sus funiones simplifis C C M C C L C C

10 Diujmos su iruito C C C L C C C C M C C C En un sistem etermino, pr relizr un funión espeífi, se ee tur sore uno u otro e los os pulsores isponiles. e pie: ) Tl e ver el proeso. ) Relizr el esquem e tres iruitos, uno elétrio, otro neumátio y otro eletrónio que relien l funión ini. ) Comprr los tres iruitos inino ventjs, inonvenientes y pliiones e estos.. L tl e ver y l funión que se eue e ell son: P P 2 (eletivi nluz)

11 P P2 P P2 P P2. Los tres iruitos porín ser R P P 2 P P 2 P P 2 P P2 P Elétrio P 2 Eletrónio Neumátio P P P 2 P P 2 2 P 2 P P. Comprmos los tres tipos e iruitos e os forms iferentes; un sánonos en su rterístis generles y otr en funión e los proesos relizr. Ciruitos Ventjs Inonvenientes pliiones Elétrios Pueen ontrolr grnes potenis por sí solos Desgstes meánios y prouión e hisps Ciruitos e ontrol simples Neumátios No neesitn iruito e retorno e fluio Ruiosos y ros pliiones inustriles Eletrónios Muy files Pueen relizr funiones lógis No existen esgstes meánios No pueen ontrolr grnes potenis iretmente on slis lógis Controles relimentos No neesitn instliones pess

12 Otener l tl e ver que se orrespone on el iruito e l figur, y ls euiones e un e ls funiones,,, 2 y (Propuesto nluí 98/99) ore el iruito vmos otenieno ls operiones efetus trvés e ls puerts, hst llegr l sli 2 3 Oservno el iruito relizmos su tl e ver 2 3 sánonos en el iruito o en l tl poemos esriir ls funiones e ls slis 2 3

13 En relión on el esquem junto: ) Oteng l funión lógi F (x, y, z, v). ) Oteng su tl e ver. ) Relíel e nuevo on el menor número e puerts lógis. x y z v F (Propuesto nluí 97/98). L funión que se otiene el iruito es x z xy xz xy xz F [ (xy)(xz)] (xz) (v y) z v v y xz L funión resultnte según se ini en l figur nterior F ( x y) ( x z) ) ( x z) ( v y) si l simplifimos lgerimente por l propie e sorión que esrrollánol F ( x z) ( v y) F x y v y v z

14 . Otenemos su expresión nóni pr poer relizr su tl e ver F x y v y v z x y v ( z z) y v z ( x x) x y v z x y v z x y v z x y v z x y v z x y v z x y v z L tl será x y v z. itumos los tres términos sore l uríul pr simplifirlos por Krnugh F x y v z x y v z x y v z vz xy y otenemos l funión, que no es otr que l que se otuvo por simplifiión lgeri F x y v y v z

15 El iruito resultnte será x x y v y x y v y z v z y z v v Un iruito igitl posee un entr e señl, E, otr entr e seleión,, y os slis e señl Y e Y 2, sieno su funionmiento el siguiente: i, Y E y Y 2 i, Y 2 E y Y Oteng un iruito lógio que relie ih funión. Relizmos primermente su tl e ver (Propuesto nluí 98/99) E Y Y 2 Ls funiones otenis son Y E Y 2 E El iruito resultnte será E Y Y 2

16 Un sistem eletrónio e lrm está onstituio por utro etetores,, y. L lrm ee isprrse uno se tiven tres o utro etetores. i se tivn sólo os etetores su ispro es iniferente. L lrm nun ee isprrse si se tiv un solo etetor o ninguno. Por último y por rzones e seguri, se eerá tivr si,, y. Diseñe un iruito e ontrol pr est lrm on el menor número posile e puerts lógis. Relizmos l tl e ver sánonos en ls oniiones iniiles X X X X X X (Propuesto nluí 96/97) X X X X X X ólo utilizremos los términos iniferentes neesrios pr l simplifiión. De los grupmientos euimos l funión simplifi

17 El iruito resultnte será El iruito e l figur es un ompror inrio e os números ( y ) e os its. Ls slis (, y 2 ) tomn el vlor lógio "" uno >, < y, respetivmente. Oteng ls funiones lógis e sli y simplifíquels por Krnugh. Número Compror Número 2 (eletivi nluz junio-98) Relizmos l tl e ver y expresmos ls funiones nónis pr ls tres slis y ls simplifimos por Krnugh > < 2

18 Ls funiones resultntes ' 2 2

19 Un funión lógi epene e utro vriles " ", " ", " " y " " y tom el vlor lógio " " si el número e vriles on el mismo vlor es pr. Enunir ih funión y simplifirl por proeimientos lgerios y por el métoo e Krnugh. (eletivi nluz) Relizmos l tl e ver en funión e ls espeifiiones L funión resultnte será L simplifimos por el métoo lgerio ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ο Ο Ο

20 i situmos los términos sore l tl, pr plir el métoo e Krnugh, oservmos en l uríul que no existen términos yentes; sin emrgo l isposiión nos ini l existeni e funiones OR y NOR Exlusivs. L expresión resultnte prtieno e l isposiión e estos términos ( ) ( ) ( ) ( ) Ο Ο Ο El ontrol e un luz e esler se reliz meinte os interruptores " " y " ", oloos en los extremos e l mism. e pie: ) Estlez l tl e ver. ) Oteng l funión lógi. ) Represéntel meinte un esquem utilizno puerts lógis. (eletivi nluz septiemre-98). Relizmos l tl e ver. Otenemos l funión

21 . Diujmos el iruito Un proeso e friión es ontrolo por utro sensores,, C y D, e form que sus slis son " " o " ", según estén estivos o tivos respetivmente. El proeso eerá etenerse uno está tivo el sensor o uno lo estén os sensores ulesquier. e pie: ) Relie l tl e ver. ) implifique l funión por el métoo e Krnugh. ) Represente el esquem el iruito on puerts lógis.. Relizmos primermente su tl e ver (eletivi nluz septiemre-99). i situmos los términos sore l uríul pr simplifirl por Krnugh CD

22 . Otenemos l funión D C D C El iruito resultnte será C C D D C D C D C D C D Un iruito igitl posee os entrs e señl I e I, un entr e seleión,, y un sli, W, sieno su funionmiento el siguiente: i, W I o i, W I Oteng un iruito lógio que relie ih funión. (Propuesto nluí 98/99) Relizmos primermente su tl e ver I I W L funión oteni W I I I I I I I I

23 i l simplifimos por el métoo e Krnugh I I Result W El iruito será I I I W I I I Prtieno el ronogrm e l figur, iseñe un iruito lógio que lo umpl, on el menor número posile e puerts lógis. F (Propuesto nluí 98/99) Relizmos primermente su tl e ver F

24 i situmos los términos sore l uríul pr simplifirl por Krnugh Result El iruito será F F Un iruito igitl ept en su entr un número inrio, N, e utro its y, su sli, os señles, y 2. se tiv si 9 < N 5. 2 permnee estiv si N es ero o múltiplo e 2. Oteng ls tls e ver y ls funiones lógis pr un e sus slis. (eletivi nluz junio - 99) Otenemos l tl e ver e ls os slis y sus funiones nónis prtir e ls oniiones s 2 2

25 implifimos ls funiones por Krnugh y relizmos el iruito ( ) 2 ( ) 2 En un sistem etermino, pr relizr un funión espeífi se ee tur simultánemente sore los os pulsores isponiles. e pie: ) Tl e ver el proeso. ) Relizr el esquem e TRE iruitos, uno elétrio, otro neumátio y otro eletrónio que relien l funión ini. ) Comprr los tres iruitos inino lguns ventjs, inonvenientes o pliiones e éstos. (eletivi nluz). L tl e ver según l oniión exigi P P

26 . Los tres iruitos R P P P P P P Elétrio Eletrónio Neumátio P P P P. Comprmos los tres tipos e iruitos e os forms iferentes; un sánonos en su rterístis generles y otr en funión e los proesos relizr. Ciruitos Ventjs Inonvenientes pliiones Elétrios Pueen ontrolr grnes potenis por sí solos Desgstes meánios y prouión e hisps Ciruitos e ontrol simples Neumátios No neesitn iruito e retorno e fluio Ruiosos y ros pliiones inustriles Eletrónios Muy files Pueen relizr funiones lógis No existen esgstes meánios No pueen ontrolr grnes potenis iretmente on slis lógis Controles relimentos No neesitn instliones pess

27 e ese ontrolr un lámpr empleno tres interruptores, e form que sólo se enien uno esté tivo un solo interruptor o los tres simultánemente. e pie: ) L tl e ver. ) L funión lógi. ) Relizr un iruito on puerts lógis que lo ejeute.. L tl e ver según ls oniiones iniiles L. L funión lógi que se eue e l tl. L i l simplifimos lgerimente, result L ( ) ( ) L ( ) ( ) L (Propuesto nluí 97/98) i l simplifimos por el métoo e Krnugh, oservmos, el mismo moo que L ( ) ( ) L

28 . El iruito resultnte será L Prtieno el iruito e l figur, otener l euión e l funión implement, simplifirl y relizrl e nuevo on el menor número e puerts lógis. (eletivi nluz) ore el iruito vmos otenieno ls operiones efetus trvés e ls puerts, hst llegr l sli F Oteni l funión l simplifimos lgerimente ( ) F F F

29 i simplifimos por Krnugh, otenieno primermente l funión nóni, resultrá ( ) ( ) ( ) ( ) F Operno F Tmién por este métoo el resulto es el mismo, otenieno F El iruito será el inio F

30 Un iruito igitl onst e utro entrs y os slis. Un e ls slis tom el vlor lógio " uno " sólo uno existe myorí e entrs "uno ". L otr sli se tiv sólo si hy igul número e entrs " uno " que " ero ". ) Confeione l tl e ver. ) implifique l funión resultnte por Krnugh. ) Represente l funión on puerts lógis.. L tl e ver orresponiente l enunio el prolem 2 (eletivi nluz junio-). El mp e Krnugh orresponiente y 2 y ls funiones simplifis: 2 2

31 . Ls representiones e ls funiones otenis 2

32 Est págin está intenionmente en lno

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2 Exmen Finl Junio - Eletroteni Generl 1 er Cutrimestre/Teorí de Ciruitos 4º Curso de Ingenierí Industril Espeilidd Orgnizión Indsutril 11-VI-2001 Prolem 1 Clulr el equivlente Norton del iruito de l figur.

Más detalles

AUTOMATISMOS INDUSTRIALES

AUTOMATISMOS INDUSTRIALES AUTOMATISMOS INDUSTRIALES Tem 1 Introduión los Automtismos Elétrios Introduión Definiión: Sistem que he que un máquin funione de form utónom, reliz ilos ompletos de operiones que se pueden repetir, on

Más detalles

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2. Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole

TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole TEMA 1 Eletróni digitl. Ciruitos ominiones. Álger de Boole 1. Introduión Un iruito ominionl es quel que en d instnte present un estdo de slid que depende únimente del estdo de sus entrds. Un señl nlógi

Más detalles

Álgebra de Boole (Relés y ecuaciones en el mundo industrial)

Álgebra de Boole (Relés y ecuaciones en el mundo industrial) Alger de Boole (Automtismos ominionles) Álger de Boole (Relés y euiones en el mundo industril) UPCO CA Deprtmento de Eletróni y Automáti 1 Alger de Boole (Automtismos ominionles) Vriles y uniones lógis

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra clases.microeconomia.

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra  clases.microeconomia. Competeni Monopolísti EJERCICIOS Profesor Guillermo Pereyr guillermopereyr@miroeonomi.org www.miroeonomi.org lses.miroeonomi.org 1. Cuál e ls siguientes lterntivs no es rterísti e l ompeteni monopolísti?

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

Práctica 3. Convertidores de códigos

Práctica 3. Convertidores de códigos . Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL MODELO INSTRUCCIONES Y CRITERIOS

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Guí e iniio rápio Revisión A MAfee Firewll Enterprise Control Center versión 5.3.2 Est guí e iniio rápio proporion instruiones e lto nivel pr l instlión e MAfee Firewll Enterprise Control Center. 1 Comproión

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

La Plataforma Next Generation Guía rápida

La Plataforma Next Generation Guía rápida Guí rápi Est reve guí h sio prepr pr yurle fmilirizrse más rápimente on ls múltiples funiones y herrmients isponiles en l pltform Next Genertion. Aprenerá óne enontrr los instrumentos pr operr y ls notiis

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

MAGISTER OPOSICIONES AL PROFESORADO Educación Primaria TEMA 22

MAGISTER OPOSICIONES AL PROFESORADO Educación Primaria TEMA 22 MAGISTER OPOSICIONES AL PROFESORADO Euión Primri TEMA LOS NÚMEROS Y EL CÁLCULO NUMÉRICO. NÚMEROS NATURALES, ENTEROS, FRACCIONARIOS Y DECIMALES. SISTEMAS DE NUMERACIÓN. RELACIÓN ENTRE LOS NÚMEROS. OPERACIONES

Más detalles

NÚMEROS RACIONALES. y Números Irracionales Q

NÚMEROS RACIONALES. y Números Irracionales Q CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE

Más detalles

Cálculo del tamaño muestral en estudios de casos y controles

Cálculo del tamaño muestral en estudios de casos y controles Investigión: Cálulo el tmño muestrl en estuios e sos y ontroles /5 Cálulo el tmño muestrl en estuios e sos y ontroles Pértegs Dí S., Pit Fernáne S. Uni e Eiemiologí Clíni y Bioestísti. Comlexo Hositlrio

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

2. LEYES DE VOLTAJES Y CORRIENTES DE KIRCHHOFF

2. LEYES DE VOLTAJES Y CORRIENTES DE KIRCHHOFF . LEES DE OLTAJES COENTES DE KCHHOFF.. NTODUCCÓN Este pítulo trt e ls leyes e voltjes y orrientes e Kirhhoff llms KL y KCL respetivmente. KL estlee que l sum lgeri e ls ís e voltje en un seueni err e noos

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

COMPRENSIÓN ESPACIAL

COMPRENSIÓN ESPACIAL COMPRENSIÓN ESPACIAL El áre e COMPRENSIÓN ESPACIAL pretene evlur ls estrezs el spirnte pr periir y omprener, trvés e l Representión Gráfi: 1.- Forms y Cuerpos Geométrios ásios y ls reliones entre sus respetivos

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

TI. 955 99 99 30 Fax 955998912 Email santiponce@dipusevilla.es " www.santiponce.es

TI. 955 99 99 30 Fax 955998912 Email santiponce@dipusevilla.es  www.santiponce.es Fx 955998912 Emil sntipone@ipusevill.es " www.sntipone.es DE SANTIPONCE Nomre: Cul es el olor hitul e los metros e rpintero? mrillo zul negro vere 2 Que uni e mei us el sonómetro eielio lux herio vtio

Más detalles

Cometa. Pág max. 50 C. 6mm. b TSP 4x30

Cometa. Pág max. 50 C. 6mm. b TSP 4x30 Comet Guí e uso Pág. 1 Fije el progrmor l pre, en un lol erro, resguro e los gentes tmosférios y el gu, on un tempertur miente e 0 50 C. No instle el prto l intemperie ni en rquets enterrs. 1 2 OK! 3 mx.

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC Eletrói Bási Álger de Boole Eletrói Digitl José Rmó Sedr Sedr Dpto. de Igeierí Eletrói y Automáti ULPGC 2 Ciruito de omutió p.e. sistem de otrol idustril sistem teleóio ordedor et. El Álger de Boole sirve

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador. TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...

Más detalles

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA NOMBRE DE LA ASIGNATURA CLAVE ASIGNATURA PLAN DE ESTUDIO ELECTRONICA DIGITAL IT0208 2004IT PRACTICA No. LABORATORIO DE NOMBRE DE

Más detalles

C 5 Q V ab. 3 (capacitores en serie) C eq 5 C 1 1 C 2 1 C 3 1 c (capacitores en paralelo) U 5 Q2 2C 5 1 2 CV 2 5 1 2 QV.

C 5 Q V ab. 3 (capacitores en serie) C eq 5 C 1 1 C 2 1 C 3 1 c (capacitores en paralelo) U 5 Q2 2C 5 1 2 CV 2 5 1 2 QV. CPÍTULO 24 RESUMEN Cpitores y pitni: Un pitor es too pr e onutores sepros por un mteril islnte. Cuno el pitor está rgo hy rgs e igul mgnitu Q y signo opuesto en los os onutores, y el potenil V el onutor

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

Ciclos Termodinámicos

Ciclos Termodinámicos Cpítulo 5 Cilos Termoinámios 5.1. Cilo e Crnot Consieremos un gs iel sometio l siguiente proeso ílio: b isoterm f ibt ibt o isoterm V V V Figur 5.1: Cilo e Crnot. Proeso b : Aibt reversible El gs se omprime

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

AERODINÁMICA A CIERTO FALSO CUALQUIER PUNTO DE BAJA VELOCIDAD ES UN PUNTO DE BAJA PRESIÓN

AERODINÁMICA A CIERTO FALSO CUALQUIER PUNTO DE BAJA VELOCIDAD ES UN PUNTO DE BAJA PRESIÓN EROINÁMI Pregunta Respuesta orrecta Opción Opción Opción Opción LS UTRO FUERZS QUE TÚN SORE UN VIÓN EN VUELO NIVELO, SON: EN UN VIÓN EN VUELO RETO Y NIVELO VELOI ONSTNTE, UÁLES SON LS FUERZS QUE PERMNEEN

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

AVIÓNICA TMA 1 C TAMAÑO DEL PANEL TIPO DE PANEL REDUCIR LA INTERFERENCIA EN LOS RADIO-RECEPTORES

AVIÓNICA TMA 1 C TAMAÑO DEL PANEL TIPO DE PANEL REDUCIR LA INTERFERENCIA EN LOS RADIO-RECEPTORES VIÓNI TM 1 Pregunta Respuesta orrecta Opción Opción Opción Opción EL NÚMERO E SOPORTES MORTIGUORES, REQUERIOS PR L INSTLIÓN E UN PNEL E INSTRUMENTOS, ES ETERMINO POR: TMÑO EL PNEL TIPO E PNEL PESO E L

Más detalles

EL MERCADO DE BIENES Y LOS MERCADOS FINANCIEROS EN ECONOMÍAS CON SISTEMA BANCARIO DOLARIZADO Waldo Mendoza Bellido Pedro Herrera Catalán Junio, 2004

EL MERCADO DE BIENES Y LOS MERCADOS FINANCIEROS EN ECONOMÍAS CON SISTEMA BANCARIO DOLARIZADO Waldo Mendoza Bellido Pedro Herrera Catalán Junio, 2004 6 L MRCDO D BINS Y LOS MRCDOS FINNCIROS N CONOMÍS CON SISTM BNCRIO DOLRIZDO Wlo Menoz Bellio Pero Herrer Ctlán Junio, DOCUMNTO D TRBJO 6 http://www.pup.eu.pe/eonomi/pf/ddd6.pf L MRCDO D BINS Y LOS MRCDOS

Más detalles

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c.

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES GENERALES Y CALIFICACIÓN

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07 MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr

Más detalles

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD UNICIENCIA 22 UNICIENCIA 22, 2008 pp. 5-9 2008 TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD Diego Chverri y Roerto J. Moy Deprtmento de Físi, Universidd Nionl RESUMEN

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

2. Impedancia Serie de Líneas de Transmisión

2. Impedancia Serie de Líneas de Transmisión ANEXO. Impenci Serie e Línes e Trnsmisión Prolem # Un conuctor e luminio ientifico con el nomre e Mgnoli est compuesto por 7 hilos conuctores e iámetro 0.606 pulgs. Ls tls crcterístics pr conuctores e

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Conceptos básicos de la Teoría de Grafos

Conceptos básicos de la Teoría de Grafos Mtemáti Disret y Lógi 2 Coneptos ásios e l Teorí e Grfos 1. Definiiones A menuo, uno se utiliz un mp e rreters interes oservr omo ir e un puelo otro por ls rreters inis en el mismo. En onseueni se tienen

Más detalles

del equipo y comprobación de los componentes Cartuchos de tinta dotacionales

del equipo y comprobación de los componentes Cartuchos de tinta dotacionales Guí e onfigurión rápi Iniio MFC-J6920DW Le primero l Guí e seguri el prouto ntes e onfigurr el equipo. A ontinuión, le est Guí e onfigurión rápi pr un orret onfigurión e instlión. ADVERTENCIA AVISO IMPORTANTE

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1 MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL Introduión l eletróni digitl INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. INTRODUCCIÓN. SEÑALES ANALÓGI- CAS Y DIGITALES. Podemos dividir l eletróni en dos grndes mpos: l eletróni nlógi y l eletróni digitl,

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr

Más detalles

Fuentes de alimentación

Fuentes de alimentación I. EL PROYETO > SUMINISTRO DE ENERGÍ Fuentes de limentión Independientemente del uso que se destinen, ls fuentes de limentión se diferenin ásimente por su poteni, su utonomí, el origen de su energí y su

Más detalles

EXAMEN PSICOTÉCNICOS GUARDIA CIVIL

EXAMEN PSICOTÉCNICOS GUARDIA CIVIL EXAMEN PSICOTÉCNICOS GUARDIA CIVIL Este exmen onst e DOS prtes esrits: L primer es un prue e ortogrfí, l segun es un psioténio. Pr un e ests prtes existe un tiempo que se le inirá en seión. Est prte (ortogrfí)

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2013/15 Confereni de los Estdos Prte en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 30 de septiemre de 2013 Espñol Originl: inglés Quinto período de sesiones Pnmá,

Más detalles

Medida y Control eléctrico. Transformadores de Medida y Shunts

Medida y Control eléctrico. Transformadores de Medida y Shunts Medid y Control elétrio Trnsformdores de Medid y Shunts M7 - Trnsformdores y Shunts Trnsformdores de Medid y Shunts serie MC-1 Trnsformdores de orriente efiientes monofásios M7-7 serie MC-3 Trnsformdores

Más detalles

Sensor de ultrasonidos S18U

Sensor de ultrasonidos S18U Sensores serie S18U Sensor e ultrsonios S18U Crterístis LEDs e ignóstio integros y progrmión e otones Zon intiv mínim Moo e eteión retro-sónio Ciruitos e ompensión e l tempertur Supresión el fono progrmle

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

Mitutoyo Mexicana, S.A. de C.V. Catálogo M25

Mitutoyo Mexicana, S.A. de C.V. Catálogo M25 Mitutoyo Mexin, S.A. e C.V. Ctálogo M25 PRODUCTOS NUEVOS Cliror Digimti ABS SERIE 500 Con Proteión Polvo/Agu Conforme l Nivel IP66 Cliror e Crátul SERIE 505 Con Movimiento Extrsuve Clirores Clirores Digitles

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

Álgebra de Boole y circuitos con puertas lógicas

Álgebra de Boole y circuitos con puertas lógicas Tem 3 Álger de Boole y circuitos con puerts lógics Los circuitos que componen un computdor son muy diversos: los hy destindos portr l energí necesri pr ls distints prtes que componen l máquin y los hy

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles