1-Características generales del movimiento

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1-Características generales del movimiento"

Transcripción

1 1-Caracerísicas generales del movimieno La pare de la física que se encarga de esudiar los movimienos de los cuerpos se llama Cinemáica. 1.1-Sisema de referencia, posición y rayecoria. Decimos que un cuerpo esa en movimieno cuando su posición cambia respeco de oro objeo o puno de referencia. Ese objeo o puno será el sisema de referencia del movimieno. Generalmene, como sisema de referencia se uilizan ejes de coordenadas imaginarios en que se especifica el lugar en el cual esa el origen de coordenadas La rayecoria es la línea imaginaria que describe un cuerpo al desplazarse. Esa línea la formas las posiciones por las cuales ha pasado el cuerpo en su movimieno. La rayecoria la podemos clasificar en: - Recilínea: línea reca - Curvilínea: describe una línea curva - Circular: describe una circunferencia. Graficas Posición iempo Las graficas Posición-Tiempo, permien conocer la posición de un cuerpo en cualquier insane. En la grafica del ejemplo, no dice que: -en el cuerpo se encuenra en Xo m (no se ha movido) -en el cuerpo se encuenra en X1 m -en 4 el cuerpo se encuenra en X m (es decir no se ha movido de a 4 seg.) -en 6 el cuerpo se encuenra en X3 4 m -en 1 el cuerpo se encuenra en X4 m (vuelve a donde salio)

2 1.-Desplazamieno Observa en el dibujo la posición que ocupan los corredores de las calles 1 y 3 al cabo de y 4 segundos, respecivamene de el inicio de la carrera. La rayecoria es reca, y los desplazamienos de los corredores durane los dos úlimos segundos son los siguienes: Corredora 1 1 m Corredora 1 m Corredora 3 8 m El desplazamieno es la diferencia de posición que ocupa un cuerpo enre dos insanes de iempo considerados. El desplazamieno no siempre coincide con el espacio o la disancia recorrida (solo coincide cuando la rayecoria es reca y el cuerpo se desplaza siempre en el mismo senido. Por ejemplo una avionea que describe un circulo, en el insane final se encuenra en la misma posición que al principio, luego el desplazamieno es nulo, y la disancia recorrida el la longiud de la circunferencia descria. Podemos concluir que si el movimieno es en línea reca y el móvil no cambia nunca de senido, el desplazamieno y la disancia o espacio recorrido es la misma. 1.3 Velocidad Media e insanánea Velocidad Media es la disancia recorrida en la unida de iempo Velocidad Media Espacio recorrido iempo inverido V m S-S T - T S En el Sisema Inernacional, la velocidad se expresa en (m/seg), aunque ambién es frecuene indicarla en Kms/h. Puede ocurrir que por ejemplo un auomóvil no manenga la velocidad consane en odo el recorrido (ambién puede haberse parado y reanudado la marcha). Velocidad Insanánea es la velocidad de un cuerpo o móvil en cada insane o en un puno deerminado de la rayecoria.

3 Movimieno Uniforme: La velocidad insanánea se maniene consane en odo el recorrido. Movimieno no uniforme o variado: la velocidad insanánea no se maniene consane en odo el recorrido. -Graficas Velocidad Tiempo Esa grafica permie conocer la velocidad de un cuerpo en cualquier insane de iempo. Los daos obenidos en la grafica son los siguienes: - En OA, la velocidad aumena de manera coninua durane 1 s hasa llegar a un ciero valor ( m/s) - En AB, la velocidad del móvil se maniene consane durane 3 s - En el ramo BC, la velocidad disminuye de manera coninua durane 5 seg hasa que el móvil se para, en ese momeno, la velocidad es cero. 1.4 Aceleración En el ejemplo descrio en la gráfica anerior vemos que la velocidad no iene por que ser consane, ya que puede disminuir o aumenar en la medida que ranscurre el iempo. La aceleración es la variación de la velocidad en la unidad de iempo. variacion de la velocidad aceleracio n iempo inverido a m v - v - v La unidad de medida de la aceleración en el SI será en m/s En la grafica anerior podemos obener los siguienes valores de aceleración: -En el ramo OA: m / s m / s a m m / s 1s s -En el ramo AB:

4 m / s m / s a m m / s 4s s -En el ramo BC m / s m / s a m 4m / s 45s 4s Si la aceleración es negaiva, lleva un signo menos, e indica que el movimieno es de frenada. La aceleración insanánea es la aceleración de un móvil en cada insane o en un deerminado puno de su rayecoria. Si en un inervalo de iempo la aceleración insanánea se maniene consane, enonces la aceleración media es igual a la insanánea en dicho inervalo de iempo; en ese caso decimos que es un movimieno uniformemene acelerado. -Movimieno recilíneo Uniformemene Variado Decimos que un movimieno es Movimieno recilíneo Uniformemene Variado cuando maniene una rayecoria recilínea y su aceleración es consane. Ese movimieno puede ser: -Acelerado: La velocidad aumena a medida que ranscurre el iempo. -Reardado o de frenada: La velocidad disminuye a medida que ranscurre el iempo. -1 Ecuación de la Velocidad Del ejemplo siguiene (movimieno recilíneo Uniformemene acelerado), vamos a deducir la ecuación de la velocidad. Velocidad m/s Tiempo (s) La pendiene de la reca es posiiva y su valor coincide con el de la aceleración: 5-3 Pendiene 1 3-1

5 La reca no pasa por el origen de coordenadas, ya que en el insane inicial la velocidad es de m/s. Por lo ano la ecuación de la reca en ese caso será: V +1* Recordemos que la ecuación de una reca es de la forma siguiene: y (valor_inicial_para x ) + (pendiene).x Por odo ello, la ecuación de la reca de forma general será: V V a. + En el caso de que en el insane inicial la velocidad fuera V, la ecuación de la velocidad seria esa: V a. y su grafica seria así:. Ecuación del espacio En un movimieno recilíneo cuyo senido no cambia, el desplazamieno y el espacio recorrido coinciden Vamos a represenar gráficamene un movimieno (espacio iempo) Los valores son los siguienes Espacio (m) Tiempo (seg) Recordemos que nos enconramos en un movimieno recilíneo uniformemene acelerado.

6 Como vemos la grafica es una parábola, el espacio crece mas aprisa que el iempo. Cuando el iempo es, la grafica no pasa por el origen de coordenadas, ya que en el insane inicial el móvil esa a meros del origen de coordenadas. La ecuación de la del espacio recorrido por un cuerpo en movimieno recilíneo uniformemene acelerado es: 1 s s + v. +. a. Si en el insane inicial, el móvil se encuenra en el origen de coordenadas, es decir que el espacio inicial s, la formula seria: y la grafica seria esa: 1 s v +.. a..3 Un caso paricular: el movimieno recilíneo y uniforme. El movimieno Recilíneo Uniforme (MRU) iene una rayecoria recilínea, y la velocidad maniene consane su modulo dirección y senido a lo largo del iempo, por lo ano la aceleración es nula. La ecuación del espacio La Ecuación del espacio seria la siguiene:

7 Y su formula seria: s s v. + si en el insane inicial, el móvil esa siuado en el origen de coordenadas, la ecuación del espacio seria: s v. y la grafica pasaría por el origen de coordenadas:.5 Movimieno de caída libre Galileo Galilei, en el siglo XVII. Demosró que si no exisiera la resisencia del aire, odos los cuerpos, independienemene de cual sea su masa, caen hacia la ierra con la misma aceleración, la de la gravedad: g9.8 Ese movimieno de caída libre es un movimieno uniformemene acelerado. Se supone que el origen de referencia esa en el lugar desde donde se deja caer el cuerpo. Por ello la formula del espacio será la que ya conocemos con unas peculiaridades: 1 s s + v. +. a. s el origen de coordenadas esa en el puno inicial V el cuerpo pare de velocidad m / s a g la aceleracion es la de la gravedad g Susiuyendo: 1 s g. 1 s. g. Y la formula de la velocidad será ambién la que conocemos con las siguienes peculiaridades:

8 V V V + a. el cuerpo pare de velocidad a g la aceleracion es la de la gravedad g susiuyendo: V + g. V g. 3-Fuerzas y aceleraciones La dinámica se rige por res principios fundamenales: 3-1 Primer principio de la dinámica-principio de Inercia El primer principio de la dinámica o principio de inercia dice: Todo cuerpo se maniene en esado de reposo o de movimieno recilíneo uniforme, mienras no acúe sobre ese una fuerza resulane (si la resulane de varias fuerzas es nula, no hay fuerza resulane) La inercia es la endencia de un cuerpo a manenerse en su esado de reposo o de movimieno Es decir, si un cuerpo esa acelerando o frenando, o si la dirección de su movimieno esa cambiando, el principio de inercia nos permie deducir que exise una fuerza acuando sobre ese cuerpo. Si no exise fuerza, el esado de reposo o de movimieno recilíneo y uniforme serian invariables. Es evidene que un cuerpo en reposo no se moverá sin que exisa sobre ese la acción de una fuerza. 3. Segundo principio de la Dinámica Si la fuerza resulane que acúa sobre un cuerpo es disina de, se producirá una aceleración. Las fuerzas producen aceleraciones. Supongamos que hemos aplicado 4 fuerzas a un mismo cuerpo. Cada fuerza a dado una aceleración diferene. Aplicando la siguiene formula: 1 s s v. +. a. a Hemos calculado la aceleración en cada caso obeniendo esos valores: Fuerza (N) Aceleración m / s Si dividimos los fuerzas por las aceleraciones que provocan obenemos un valor consane, en ese caso : Fuerza consane masa inere aceleracion

9 Esa consane es la masa inere y represena la inercia del cuerpo (sobre el cual acúa la fuerza) ane cualquier cambio en su esado de reposo o de movimieno recilíneo y uniforme. F nea m. a La aceleración de un cuerpo es proporcional a la fuerza resulane ejercida sobre ese, con la misma dirección y senido que esa fuerza e inversamene proporcional a la masa del cuerpo F a m Definición de la Unidad de Fuerza La unidad para medir la Fuerza en el SI, es el Newon (N) que se define: Newon es la fuerza necesaria para comunicar a 1Kgr de masa una aceleración de 1 m / s. 1Newon 1Kgr.1m / s 1Kgr. m / s Una fuerza denominada Peso En el caso de la caída libre de los cuerpos, es la fuerza de aracción de la Tierra la responsable de ello. Los cuerpos esán someidos a una aceleración llamada aceleración de la gravedad (g) y su valor es g 9'8m / s. Esa Fuerza de aracción recibe el nombre de Peso del cuerpo. Si la masa del cuerpo es m, su peso P, será: P m. a Para no confundir masa y peso: - Masa canidad de maeria de un cuerpo. Para medir masas se uiliza la balanza ( se oma como referencia una masa parón) - Peso es la Fuerza con que la Tierra arae al cuerpo. Se mide en basculas de resore o dinamómeros La unidad para medir el peso (es una Fuerza) es el Newon. Como el Peso en una fuerza esa compueso de: - modulo produco de la masa por la gravedad - dirección es verical - senido hacia el cenro de la Tierra - puno de aplicación se siúa en el cenro de gravedad del cuerpo. El Cenro de Gravedad Cada una de las infinias parículas que componen un cuerpo pesa. El peso oal es la resulane de un conjuno de pequeñas fuerzas paralelas y con el mismo senido. El Cenro de Gravedad es el puno de aplicación de esa resulane

10 Si se raa de un cuerpo regular y homogéneo, el cenro de gravedad coincide con el cenro de simería del cuerpo. Si el cuerpo es irregular, podemos deerminar su cenro de gravedad de la siguiene manera: Lo colgamos de dos punos disinos y razamos sus vericales. El lugar donde se cruzan es el cenro de gravedad del cuerpo. Equilibrio Un cuerpo apoyado sobre una superficie horizonal, solo vuelca cuando lo inclinamos de al manera que la verical que pasa por su cenro de gravedad no cae denro de la base que lo susena. Por lo ano, para que un cuerpo se manenga en equilibrio y no vuelque, es necesario que la verical que pasa por su cenro de gravedad caiga denro de la base de susenación. Conra más grande sea la base de susenación y más pequeña sea la alura del cenro de gravedad, más grande será la inclinación necesaria para que el cuerpo caiga. Podemos disinguir res ipos de equilibrio: - Inesable: como la peonza, que en cuano movemos el cuerpo ligeramene de su posición de equilibrio, cae - Indiferene: como la peloa. Separando el cuerpo ligeramene de su posición de equilibrio, se maniene ambién en equilibrio en su nueva posición - Esable: como el eneieso. Separando el cuerpo de su posición de equilibrio iende a volver a su posición de equilibrio Fuerzas de rozamieno Según el primer principio de la dinámica, un cuerpo en MRU, se manendría indefinidamene en ese esado. Según el segundo principio, oda fuerza aplicada a un cuerpo, por pequeña que sea, produce una aceleración. En la prácica podemos comprobar que odo eso no se cumple, y es debido a la presencia de una fuerza: La Fuerza de Rozamieno. La Fuerza de rozamieno, es aquella fuerza opuesa al movimieno que se manifiesa en la superficie de conaco de dos cuerpos siempre que uno se mueva o ienda a moverse sobre oro.

11 Vamos a realizar el siguiene experimeno: 1-Colocamos pesos al pora-pesos hasa que empiece a deslizarse el bloque de madera (omamos noa de los valores). -Reiramos los pesos y colocamos arriba del bloque una masa conocida. 3-Ves añadiendo pesos al pora-pesos hasa que empiece a deslizarse y vuelve a omar noa. 4- Repeimos la acción con oros pesos de masa conocida Conclusiones: el peso del pora-pesos equivale a la fuerza que se ha de aplicar para equilibrar la fuerza de rozamieno. Supongamos que hemos obenido los siguienes resulados: Peso del Bloque (N) Fuerza de Rozamieno (N) F roz P `5 N 1N N, 5 µ 1N N 4N Podemos observar que la relación enre la fuerza de rozamieno y el peso del bloque es consane,5 en ese caso. Esa consane se llama coeficiene de rozamieno, µ, y carece de unidades. F roz µ.p F roz µ. m. g -La fuerza de rozamieno es independiene de del área de las superficies en conaco -La fuerza de rozamieno depende de la nauraleza de las superficies en conaco y de su grado de pulimeno. La fuerza de rozamieno siempre es una fuerza de frenada. Se produce rozamieno porque las superficies de conaco de los cuerpos no son perfecamene lisas, sino que presenan rugosidades. 3.3 Tercer principio de la dinámica Cuando dos cuerpos A y B ineracúan, ejercen una serie de fuerzas enre si, es decir, el cuerpo A ejerce una fuerza sobre el cuerpo B, y simuláneamene el cuerpo B ejerce una fuerza sobre el cuerpo A.

12 Esas fuerzas surgen únicamene como resulado de la ineracción enre cuerpos y, por consiguiene, siempre responden a un proceso de acción-reacción. Las fuerzas de acción-reacción, ienen modulo y dirección idénicas pero senidos opuesos Por lo ano el Tercer Principio de la dinámica (principio de acción-reacción), se enuncia así: Cuando dos cuerpos ineraccionan, las fuerzas que ejercen uno sobre oro, ienen modulo y dirección idénicos, pero senidos opuesos. El ercer principio de la dinámica describe una propiedad imporane de las fuerzas: siempre se presenan en parejas. Las fuerzas de acción reacción nunca pueden equilibrasen enre si, porque acúan sobre cuerpos diferenes.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2]

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2] UNIVERSIDAD TECNOLÓGICA NACIONAL Faculad Regional Rosario UDB Física Cáedra FÍSICA I CAPITULO : Movimieno en una dirección [S.Z.F.Y. ] Cinemáica: La Cinemáica se ocupa de describir los movimienos de los

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

Trayectoria es la línea imaginaria que describe un cuerpo en el transcurso del movimiento. Clases de trayectoria:

Trayectoria es la línea imaginaria que describe un cuerpo en el transcurso del movimiento. Clases de trayectoria: Cinemáica 1 Cinemáica 1. SISTEMA DE REFERENCIA. La posición es el lugar que ocupa un cuerpo en el espacio con respeco a un puno que consideramos fijo. Sisema de referencia es el marco con respeco al cual

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?.

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?. CINEMÁTICA: MRU 1. Pasar de unidades las siguienes velocidades: a) de 36 km/ a m/s. b) de 10 m/s a km/. c) de 30 km/min a cm/s. d) de 50 m/min a km/. 2. Un móvil recorre 98 km en 2, calcular: a) Su velocidad.

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 4 CINEMÁTICA DEL MOVIMIENTO UNIDIMENSIONAL.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 4 CINEMÁTICA DEL MOVIMIENTO UNIDIMENSIONAL. Página 1 de 6 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA I/11 PRÁCTICA No. 4 CINEMÁTICA DEL

Más detalles

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática Índice Tema 1: Cinemáica Capíulo 1: Inroducción a la Cinemáica TEMA 1: CINEMÁTICA Capíulo 1: Inroducción a la cinemáica Inroducción Dos nuevas ciencias Galileo Galilei (1564 164) El movimieno en el Renacimieno.

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 007 Insiuo de Física Faculad de Ineniería UdelaR TITULO AUTORES MAQUINA DE ATWOOD EPERIMENTAL Maximiliano Bellas, Erneso Pasarisa INTRODUCCIÓN Geore Awood (745-807),

Más detalles

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica.

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica. TEMA 5 TRABAJO Y ENERÍA MECÁNICA ENERGÍA Se denomina energía a la capacidad que ienen los cuerpos para producir ransformaciones, como, por ejemplo, realizar un rabajo. Hay múliples formas de energía: Energía

Más detalles

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular.

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular. CINEMÁTICA /34 Un ren pare de una esación. Una niña senada en su inerior lanza hacia arria una peloa y la recoge al caer. Diuja la rayecoria de la peloa al como la ven la niña y la jefe de esación siuada

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación)

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación) .1. ASPECTOS GENERALES DE LA DINÁMICA (coninuación).1.3. Sobre un plano inclinado (ángulo de inclinación alfa), esá siuado un cuerpo de masa M. Suponiendo despreciable el rozamieno enre el cuerpo y el

Más detalles

CINEMÁTICA Física I IQ Prof. G.F. Goya

CINEMÁTICA Física I IQ Prof. G.F. Goya Unidad - Cinemáica CINEMÁTICA Física I IQ Prof. G.F. Goya CINEMÁTICA Unidad - Cinemáica Qué vamos a ver Posición, velocidad, aceleración. Modelo. Magniud. Problemas. Soluciones. Coordenadas caresianas

Más detalles

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA).

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). 1 TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). Movimieno recilíneo uniforme. 1.- Un objeo se encuenra en el puno de coordenadas (4,) en unidades del SI moviéndose en el senido posiivo del

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE FÍSICA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE FÍSICA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE FÍSICA Curso 016-017 Tes de física 016/17 INSTRUCCIONES GENERALES 1. No escriba en ese cuadernillo las respuesas.. DEBERÁ CONTESTAR CON LÁPIZ EN LA HOJA

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

CINEMÁTICA II. pendiente = t(s)

CINEMÁTICA II. pendiente = t(s) C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II Tipos de movimienos i) Movimieno recilíneo uniforme (MRU): cuando un cuerpo se desplaza con rapidez consane a lo largo de una rayecoria recilínea,

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilaciones (9 hs. Movimieno rmónico Simple (MS. Oscilaciones amoriguadas 3. Oscilaciones forzadas y resonancia 4. Superposición de MS. Cinemáica y dinámica del MS. Sisema muelle-masa.3 Péndulos.4

Más detalles

- FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE VARIADO

- FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE VARIADO E L - CONCEPTO - ELEMENTOS : - M O - I M I E N T O CLASES TEMA: EL MOIMIENTO - SEGÚN EL PUNTO DE REFERENCIA - SEGÚN LA TRAYECTORIA - SEGÚN LA ELOCIDAD UNIFORME ARIADO - FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: rabajo y poencia mecánica SGUICES020CB32-A16V1 Solucionario guía Energía I: rabajo y poencia mecánica Íem Alernaiva Habilidad 1 D Comprensión 2 C Aplicación

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

EL CERTAMEN TIENE 5 PÁGINAS CON 20 PREGUNTAS EN TOTAL.

EL CERTAMEN TIENE 5 PÁGINAS CON 20 PREGUNTAS EN TOTAL. FÍSICA 1 CETAEN Nº 3 de Noviembre de 9 A. ATENO A. ATENO NOBE OL US - EL CETAEN TIENE 5 ÁGINAS CON EGUNTAS EN TOTAL. TIEO: 9 INUTOS SIN CALCULADOA SIN TELÉFONO CELULA SIN EODUCTO DE ÚSICA COECTA: 5 UNTOS

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

Facultad Regional Rosario Universidad Tecnológica Nacional UDB Física - Cátedra FÍSICA I

Facultad Regional Rosario Universidad Tecnológica Nacional UDB Física - Cátedra FÍSICA I Faculad Regional Rosario Universidad Tecnológica Nacional UDB Física - Cáedra FÍSICA I Pregunas y Cuesiones de Físicas Recopilación y Edición: Ing. Hugo Cogliai Ing. Ricardo Pérez Soile 0 AÑO 2018 UNIVERSIDAD

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

CIENCIA QUE ESTUDIA MATEMÁTICAMENTE LA NATURALEZA

CIENCIA QUE ESTUDIA MATEMÁTICAMENTE LA NATURALEZA FÍSICA CIENCIA QUE ESTUDIA MATEMÁTICAMENTE LA NATURALEZA Galileo Galilei (1564-164) Iaac Newon (164-177) Alber Einein (1879-1955) UNIDAD 6: FUERZA Y MOVIMIENTO 1. CINEMÁTICA: Pare de la Fíica que eudia

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

DPTO. DE ÁREA DE FÍSICA

DPTO. DE ÁREA DE FÍSICA UNIVERSIDD UTÓNOM CHPINGO DPTO. DE PREPRTORI GRÍCOL ÁRE DE FÍSIC Movimieno Recilíneo Uniforme Guillermo ecerra Córdova E-mail: gllrmbecerra@yahoo.com TEORÍ La Cinemáica es la ciencia de la Mecánica que

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 1: CINEMÁTICA RECTILÍNEA-SOLUCIÓN DE LAS ECUACIONES DIFERENCIALES- Diego Luis Arisizábal R.,

Más detalles

Unidad Temática IX. Cinemática del Cuerpo Rígido

Unidad Temática IX. Cinemática del Cuerpo Rígido 0//06 Unidad Temáica IX Cinemáica del Cuerpo ígido Conenido: Traslación y roación de un cuerpo rígido. Medidas angulares. Coordenadas angulares, velocidad y aceleración angulares. Cinemáica de la roación

Más detalles

6. Movimiento Rectilíneo Uniforme

6. Movimiento Rectilíneo Uniforme 6. Movimieno Recilíneo Uniforme La velocia e un vehículo es mayor en las recas que en las curvas. Cuano un físico se refiere a la prisa con la que se mueve un cuerpo, aemás e conocer su rapiez, necesia

Más detalles

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es SECCIÓN.4 Vecores angenes vecores normales 859 En la sección precedene se vio que el vecor velocidad apuna en la dirección del movimieno. Esa observación lleva a la definición siguiene, que es válida para

Más detalles

Capítulo 2 Cinemática

Capítulo 2 Cinemática Capíulo 2 Cinemáica 32 Problemas de selección - página 29 (soluciones en la página 104) 17 Problemas de desarrollo - página 40 (soluciones en la página 105) 27 2.A PROBLEMAS DE SELECCIÓN Sección 2.A Problemas

Más detalles

Física Nivel medio Prueba 1

Física Nivel medio Prueba 1 M16/4/HYSI/SM/SA/TZ/XX Física Nivel medio rueba 1 Viernes 6 de mayo de 16 (mañana) 45 minuos Insrucciones para los alumnos yno abra esa prueba hasa que se lo auoricen. yconese odas las pregunas. yseleccione

Más detalles

= kv y a una fuerza constante F

= kv y a una fuerza constante F ROZ. VISCOSO: Una lancha de masa m naega en un lago con elocidad. En el insane se desconeca el moor. Suponiendo que la fuerza de resisencia del agua al moimieno de la lancha es proporcional a la elocidad

Más detalles

MOVIMIENTO RECTILÍNEO. Parte de la Física que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen.

MOVIMIENTO RECTILÍNEO. Parte de la Física que estudia el movimiento de los cuerpos sin tener en cuenta las causas que lo producen. Transparencia Nº 1. CINEMÁTIC. MVIMIENT QUÉ ES EL MVIMIENT? Cambio de posición de un móil con el iempo. TIPS DE MVIMIENT Según su rayecoria Todo moimieno es RELTIV Lo rápido del cambio lo indoca m i rapidez

Más detalles

3 Definición y ejemplos de Procesos Estocásticos

3 Definición y ejemplos de Procesos Estocásticos 3 Definición y ejemplos de Procesos Esocásicos 3. Definición de un Proceso Esocásico. Supongamos que se esudia el número de personas que asisen al servicio médico en ciero hospial. En un inervalo de iempo

Más detalles

Sistemas de coordenadas en movimiento relativo

Sistemas de coordenadas en movimiento relativo Capíulo 4 Sisemas de coordenadas en movimieno relaivo 4.1 Sisemas de coordenadas acelerados y Principio de Equivalencia Para complear la descripción de los sisemas de coordenadas no inerciales, consideremos

Más detalles

1.7.MOVIMIENTO ARMÓNICO SIMPLE

1.7.MOVIMIENTO ARMÓNICO SIMPLE 1.7.MOVIMIENTO ARMÓNICO SIMPLE 1.7.1. La gráfica elongación-iempo de un movimieno vibraorio armónico (M.A.S.) iene la forma de la figura. Luego, la expresión de su velocidad será: a) v = A. ω cosω b) v

Más detalles

Elección 0 Altivar 71

Elección 0 Altivar 71 Elección de velocidad Alivar 7 Opciones: módulos y resisencias de frenado Deerminación del módulo y de la resisencia de frenado El cálculo de las diferenes poencias de frenado permie deerminar el módulo

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

at x En magnitud esa aceleración debe ser la misma que la radial es decir: a r t r 2 v m 2.52 m s m 81

at x En magnitud esa aceleración debe ser la misma que la radial es decir: a r t r 2 v m 2.52 m s m 81 Serie 8. M.C. y M.A.S. RESUELTA 1. Un auo enra en una curva a 7 km/h. Si una laa de refresco vacía, con 17 g de masa, en el asieno rasero se mueve desde el reposo hasa 1.6 m de donde esaba en.74 s. Cuál

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 217

10Soluciones a los ejercicios y problemas PÁGINA 217 PÁGIN 217 Pág 1 P RCTIC 1 a) Represena en papel cuadriculado la figura H 1 obenida a parir de H mediane la raslación del vecor 1 (3, 2) b) Dibuja la figura H 2 ransformada de H 1 mediane la raslación 2

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

TEMPORIZADORES Y RELOJES

TEMPORIZADORES Y RELOJES EMPORIZADORES Y RELOJES ircuios de iempo Asable No iene esado esable. Se usa para generar relojes. Monoesable 1 esado esable y oro inesable. Se usa como emporizador. Biesable 2 esados esables. Se usa como

Más detalles

TEMA 2: TEOREMAS DE CONSERVACIÓN

TEMA 2: TEOREMAS DE CONSERVACIÓN EMA : EOREMAS DE CONSERVACIÓN 1.- IDEAS INICIALES OBJEIVO: ESUDIO DE LA EVOLUCIÓN DE LOS SIEMAS (CAUSAS Y EFECOS) HERRAMIENA: USO DEL CÁLCULO DIFERENCIAL PARA ESUDIO CUANIAIVO SISEMAS EN ESUDIO: LOS SISEMAS

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

FÍSICA 100 CERTAMEN GLOBAL 06 de Julio de En un día, se remueven de la mina de Chuquicamata aproximadamente 6 10

FÍSICA 100 CERTAMEN GLOBAL 06 de Julio de En un día, se remueven de la mina de Chuquicamata aproximadamente 6 10 UNIERSIDAD ÉCNICA FEDERICO SANA MARÍA DEPARAMENO DE FÍSICA FORMA W FÍSICA CERAMEN GLOBAL 6 de Julio de 9 AP. PAERNO AP. MAERNO NOMBRE ROL USM - EL CERAMEN CONSA DE PÁGINAS CON PREGUNAS EN OAL. IEMPO: MINUOS

Más detalles

a) Obtén la ecuación de trayectoria para un movimiento bajo la fuerza gravitacional y con fuerza constante del viento actuando sólo en la horizontal.

a) Obtén la ecuación de trayectoria para un movimiento bajo la fuerza gravitacional y con fuerza constante del viento actuando sólo en la horizontal. 1. Calcula el valor de la aceleración graviaoria en las superficies lunar, marciana, joviana y solar. (Es necesario invesigar masas y radios promedio para cada planea). Movimieno proyecil con fuerza horizonal

Más detalles

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

ALUMNO: GRADO 1 BGU ASIGNATURA: Física PROFESOR(A) Francisco Raúl Casanella Leyva FECHA:. /

ALUMNO: GRADO 1 BGU ASIGNATURA: Física PROFESOR(A) Francisco Raúl Casanella Leyva FECHA:. / Insrucciones: Esa es una prueba para evaluar sus conocimienos y desrezas en FÍSICA Trabaje con aención para que pueda resolverla. UNIDAD EDUCATIVA STELLA MARIS. EXAMEN SUPLETORIO. PRIMERO BI ALUMNO: GRADO

Más detalles

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico CUACION D MAW as leyes experimenales de la elecricidad y del magneismo se resumen en una serie de expresiones conocidas como ecuaciones de Maxwell. sas ecuaciones relacionan los vecores inensidad de campo

Más detalles

Movimiento rectilíneo uniformemente variado (parte 1)

Movimiento rectilíneo uniformemente variado (parte 1) Moimieno recilíneo uniformemene ariado Moimieno recilíneo uniformemene ariado Empecemos! A diferencia del MRU cuya elocidad es consane, en nuesra ida diaria obseramos oro ipo de moimieno en el que hay

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc aleos Física para iencias e ngeniería APÍTUL 1.09-2 UT 1 1.09 2.1 arga de un condensador a ravés de una resisencia La figura muesra un condensador descargado de capacidad, en un circuio formado por una

Más detalles

ESQUEMA DE DESARROLLO

ESQUEMA DE DESARROLLO Movimieno oscilaorio. Inroducción ESQUEM DE DESRROLLO 1.- Inroducción..- Cinemáica del movimieno armónico simple. 3.- Dinámica del movimieno armónico simple. 4.- Energía de un oscilador armónico. 5.- Ejemplos

Más detalles

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio FACULTAD DE INGENIERÍA (CAMPUS MEXICALI) CARRERA TRONCO COMÚN PLAN DE ESTUDIO CLAVE ASIGNATURA 2005-2 4348 DINÁMICA NOMBRE DE LA ASIGNATURA PRÁCTICA No. DIN-01 LABORATORIO DE CIENCIAS BÁSICAS DURACIÓN

Más detalles

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t )

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t ) FÍSICA - LAB. CINEMÁTICA Y DINÁMICA LINEAL NOTA IMPORTANTE: para la realización de ese laboraorio cada alumno deberá raer calculadora y dos hojas de papel milimerado, las que al concluir el laboraorio

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

Tema 2: Cinemática de la Partícula

Tema 2: Cinemática de la Partícula Física I-Grupo 3 (Curso 013/14) Tema : Cinemáica de la Parícula Grado en Ingeniería Diseño Indusrial y Des. Prod. Doble Gra. en Ing. Diseño Ind. y D.P e Ing. Mecánica Escuela Poliécnica Superior Universidad

Más detalles

ELECTRICIDAD IV. Un capacitor está formado por dos conductores, muy cercanos entre sí, que transportan cargas iguales y opuestas.

ELECTRICIDAD IV. Un capacitor está formado por dos conductores, muy cercanos entre sí, que transportan cargas iguales y opuestas. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-30 ELECTRICIDAD I EL CAPACITOR Un capacior esá formado por dos conducores, muy cercanos enre sí, que ransporan cargas iguales y opuesas. El capacior más sencillo

Más detalles

TRABAJO PRÁCTICO Nº 5 SEÑALES Y MEDICIONES

TRABAJO PRÁCTICO Nº 5 SEÑALES Y MEDICIONES Área Elecrónica Laboraorio 4º Año TRABAJO PRÁCTICO Nº 5 SEÑALES Y MEDICIONES ) Inroducción Teórica Podemos clasificar a las señales como consanes y variables, siendo consane aquella que no cambia de valor

Más detalles

CAPÍTULO 1 LA FUNCIÓN DERIVADA

CAPÍTULO 1 LA FUNCIÓN DERIVADA CAPÍTULO LA FUNCIÓN DERIVADA. LA DERIVADA En el fascículo anerior uilizase el concepo de la razón de cambio a ravés de problemas o siuaciones de la vida real e ilusrase gráficamene 0 o, dando una inerpreación

Más detalles

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición. 1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,

Más detalles

Carga y Descarga de un Condensador Eléctrico

Carga y Descarga de un Condensador Eléctrico ACUMULADORES DE CARGA ELÉCTRICA Acumuladores de Carga Elécrica Carga y Descarga de un Condensador Elécrico 1. OBJETIVOS - Esudiar los procesos de carga y de descarga de un condensador. - Medida de capacidades

Más detalles

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA Inroducción a la Física Experimenal Universidad de La Laguna CINEMÁTIC Y DINÁMIC DE UN PRTÍCUL Para la realización de esa prácica el alumno deberá venir al laboraorio proviso con hojas de papel milimerado

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA

REPÚBLICA BOLIVARIANA DE VENEZUELA EXPERIMENTAL LA VICTORIA REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA LA VICTORIA LA VICTORIA- ESTADO ARAGUA

Más detalles

Práctico 1. Macro III. FCEA, UdelaR

Práctico 1. Macro III. FCEA, UdelaR Prácico 1. Macro III. FCEA, UdelaR Ejercicio 1 Suponga una economía que se compora de acuerdo al modelo de crecimieno de Solow-Swan (1956), se pide: 1. Encuenre la ecuación fundamenal del modelo de Solow-Swan.

Más detalles

TEMA 3: CINEMATICA DE UNA PARTICULA

TEMA 3: CINEMATICA DE UNA PARTICULA La Mecánica es la pare de la Física que esudia el moimieno de los cuerpos. La cinemáica es la pare de la mecánica que describe el moimieno en sí, sin ener en cuena la causa del mismo. La Dinámica es la

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

ESTE CERTAMEN CONSTA DE 25 PREGUNTAS 11 PÁGINAS. TIEMPO: 120 MINUTOS SIN CALCULADORA. CELULARES APAGADOS Y GUARDADOS. + es

ESTE CERTAMEN CONSTA DE 25 PREGUNTAS 11 PÁGINAS. TIEMPO: 120 MINUTOS SIN CALCULADORA. CELULARES APAGADOS Y GUARDADOS. + es UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE FÍSICA FORMA R FÍSICA 1 CERTAMEN GLOBAL 19 de Julio de 1 AP. PATERNO AP. MATERNO NOMBRE Rol USM: - Si su rol comienza con 9 coloque 9 ESTE CERTAMEN

Más detalles

Unidad II. Cinemática

Unidad II. Cinemática Unidad II. Cinemáica Conenido Definiciones Diagramas de moimieno Marco de referencia Magniudes de la cinemáica Clasificación del moimieno Moimieno recilíneo uniforme Moimieno uniformemene ariado Moimieno

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

CAPÍTULO II. Conceptos de Confiabilidad

CAPÍTULO II. Conceptos de Confiabilidad CAPÍTULO II Concepos de Confiabilidad CAPÍTULO II CONCEPTOS DE CONFIABILIDAD Una de las áreas de ingeniería de confiabilidad es la modelación de la misma, debido a que los procesos en general se comporan

Más detalles

CARGA Y DESCARGA DE UN CONDENSADOR

CARGA Y DESCARGA DE UN CONDENSADOR 1. Objeivos CARGA Y DESCARGA DE UN CONDENSADOR Esudiar los procesos de carga y de descarga de un condensador. Deerminar el iempo caracerísico, τ, del circuio. 2. Fundameno eórico Un condensador es un sisema

Más detalles

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan Señales Elemenales Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica Tuxpan Índice 3.1. Señales elemenales en iempo coninuo: impulso uniario, escalón uniario, rampa uniaria y la señal

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles