84 ejercicios de repaso de NÚMERO REAL, POLINOMIOS, ECUACIONES e INECUACIONES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "84 ejercicios de repaso de NÚMERO REAL, POLINOMIOS, ECUACIONES e INECUACIONES"

Transcripción

1 8 ejercicios de repaso de NÚMERO REAL, POLINOMIOS, ECUACIONES e INECUACIONES Repaso úmero real. Itervalos: 1. Separar los siguietes úmeros e racioales o irracioales, idicado, de la forma más secilla posible, el porqué: 1 π 5 5, ,1 6, 8 (Soluc: Q; I; I; Q; Q; Q; Q; I; Q; Q; Q; I) 5 1, a) Represetar sobre la misma recta real los siguietes racioales: ,6,5, Costruir,, 5, 6, 7, 8 y 10 sobre la recta real (o ecesariamete sobre la misma), mediate regla y compás, y la aplicació del teorema de Pitágoras.. Completar: REPRES. GRÁFICA INTERVALO DEF. MATEMÁTICA 1 [-1,] 0 - [-,1) 5 { IR/ 1< 5} { IR/ <} 8 (0, ) 9-10 (-1,5) 11 { R/ 0} 1 [/, )

2 REPRES. GRÁFICA INTERVALO DEF. MATEMÁTICA 1 { IR/ -< } 1 { IR/ <} 15 { IR/ } [-1,1] 18 { IR/ <-1} 19-0 (-,-)U(, ) 1 (-,)U(, ) { IR/ 5} [-,] - Repaso fraccioes, potecias y raíces:. Operar, simplificado e todo mometo: 5 6 : 5 + : : + 5 : Completar: m a a a m a m ( a ) ( a b ) a b 0 a a a b 1 ( 1) par ( 1) impar ( ) par baseegativa ( ) impar baseegativa

3 Añadir estas fórmulas al formulario matemático de este curso. Utilizado las propiedades ateriores, simplificar la siguiete epresió: 0 1 ( ) ( 1 ) + 1 (Sol: 1) 6. Completar: Defiició de raíz -ésima a Casos particulares de simplificació Equivalecia co ua potecia de epoete fraccioario Simplificació de radicales/ídice comú Producto de raíces del mismo ídice Cociete de raíces del mismo ídice ( ) m p m p a b a b Potecia de ua raíz ( ) m a Raíz de ua raíz m a Itroducir/Etraer factores a Añadir estas fórmulas al formulario matemático de este curso. Utilizado las propiedades ateriores, simplificar la siguiete epresió: a a ( ) a a (Sol: a 1 ) Repaso poliomios y fraccioes algebraicas: 7. Dados P() y Q() - +, se pide: a) Etraer el máimo factor comú de Q() P()- Q() c) Q() Q() d) P() : Q() 8. Simplificar: Operar y simplificar: + + Sol : (Sol: +) + +

4 Repaso ecuacioes, sistemas e iecuacioes: 10. Resolver: a) y y 6 (Sol: 1, y-) c) ( + )( ) ( ) 1 (Sol: ±1) 6 d) + 7 (Sol: 11) e) f) y 1 + y 1 (Sol: -) (Sol: 1, y 1-; 1, y 0) g) ( - ) ( + )( ) + < + 6 [Sol: (0,7)] 6 h) i) 5 ( + ) ( + ) + ( +1) ( 1) +1 < [Sol: [-,)] [Sol: [-1,7)] Misceláea (I): 11. Idicar cuál es el meor cojuto umérico al que perteece los siguietes úmeros (N, Z, Q o I); e caso de ser Q o I, razoar el porqué: π (Soluc: I; I; N; Q; Z; Q; Q; I) 0, ,, Represetar e la recta real los siguietes itervalos y defiirlos empleado desigualdades: a) [,] (1,6) c) [1,5) d) (-1, ) e) (-,) f) (0, ) g) (-,] h) [-,] i) (5/, ) j) (-,-] Ejercicios libro: pág. 9: y ; pág. 7: 6, 7 y 8 1. Operar, simplificado e todo mometo: a) : 5 : 5

5 1 1 + ( ) + ( ) ( ) (Sol: -/179) c) 8 ( ) (Sol: 5 ) 1. Dados P() +6 -+, Q() -+7 y R()7 -+1, hallar: a) El valor umérico de P() para - La factorizació de R() c) P()+Q()+R() (Sol: ) d) P()-Q()-R() (Sol: - +-5) e) P()+Q()-R() (Sol: ) f) P() : (+) por Ruffii 15. Operar y simplificar: Sol : Resolver: a) c) y + z 6 + y z 9 + y + z (Sol: 0) (Sol: 1, y-; z) (Sol: 0; ±) d) + 1 e) (Sol: 5; 1/9) (Sol: ± ) f) g) h) y 1 + y 0 ( + 1)( 1) ( + )( ) > + 1 > + ( + ) ( + 6) [Sol: (-,-5]U[1, )] [Sol: (6,10)] i) 1 [Sol: [-1,0)U[1, )]

6 17. Señalar cuáles de los siguietes úmeros so racioales o irracioales, idicado el porqué: a), , c) 5, d) 0, e) 7, f), (Soluc: Q; I; Q; I; Q; I) 18. Represetar e la recta real los siguietes cojutos uméricos y ombrarlos empleado itervalos: a) { IR/ -< } d) { IR/ <0} g) { IR/ >-} j) { IR/ } { IR/ 1 } e) { IR/ } h) { IR/ 5} k) { IR/ } c) { IR/ } f) { IR/ >} i) { IR/ <5} 19. Operar, simplificado e todo mometo: a) 7 7 : : (Sol: 6/1697) ( ) (Sol: -1/6) ( 15) c) (Sol: ) 0. Dados P() y Q()-, se pide: a) Factorizar P(), por Ruffii Q 5 (), por Tartaglia c) P() Q()- Q () d) P() : Q() 1. Operar y simplificar: Sol : Resolver: a) + y z 0 y + z 1 + y + z (Sol:, y-1; z) (Sol: 1; -)

7 5 ALFONSO GONZÁLEZ c) d) y a ay > 5 15 e) +15+1<0 f) +15+1>0 g) ( + )( ) ( - )( + ) < h) ( -)( +)<0 (Soluc : a, y a ) (Sol: <) (Sol: soluc.) (Sol: R) [Sol: (-,-)U(, )]. Separar los siguietes úmeros e racioales e irracioales, idicado el porqué: 1,6 π ,7 0, ,75-1 6, 5 1, Ejercicios libro: pág. 8: 1 y. Hallar la U e de los siguietes itervalos: a) A[-,5) B(1,7) C(0,] D(, ) c) E(-,0] F(-, ) d) G[-5,-1) H(,7/] e) I(-,0) J[0, ) f) K(,5) L(5,9] g) M[-,-1) N(,7] h) O(-,7) P(,] 5. Calcular, aplicado, siempre que sea posible, las propiedades de las potecias, y simplificado e todo mometo. Cuado o sea ya posible aplicar las propiedades de las potecias, debido a la eistecia de ua suma o resta, pasar la potecia a úmero y operar: (Sol: -608/81) Ejercicios libro: pág. 5: 7, 8, 1 y 1 6. a) Etraer factores y simplificar: Sol : Sumar, reduciedo previamete a radicales semejates: 17 Sol : c) Racioalizar y simplificar: Sol :

8 6 ALFONSO GONZÁLEZ Sol : (Sol: ) 7. Dados P() y Q() -9, se pide: a) Factorizar P(), por Ruffii Q (), por Tartaglia c) P()-Q () Q () d) P() : Q() 8. Operar y simplificar: (Sol : + ) 9. Resolver: a) - -0 (Sol: 10, -1) 1 ( Sol : /, 1 - ) c) ( +1) 65 (Sol: ±) d) ( -1) 0 (Sol: ±1) e) , 10 ) 1 g) (Sol: 1-1, -) h) (Sol: 0, ±) i) + 5 (Sol: ) j) (Sol: 10, ; - ) k) -7-7 (Sol: 1) l) <9 [Sol: (-,)] f) 0 (Sol: soluc.) 0. Verdadero o falso? Razoar la respuesta: a) Todo úmero real es racioal. Todo úmero atural es etero. c) Todo úmero etero es racioal. d) Siempre que multiplicamos dos úmeros racioales obteemos otro racioal. e) Siempre que multiplicamos dos úmeros irracioales obteemos otro irracioal. f) Etre dos úmeros reales eiste siempre u racioal. g) " " " " " " " " Ejercicios libro: pág. 9: 6 1. Represetar los siguietes itervalos e idicar su uió e itersecció: a) [-,5) y [, ) (0,) y [9/, ) c) (-5,-1] y [-1,] d) (-1,) y [, ) Ejercicios libro: pág. 7: 9, 0 y 5

9 Ecuacioes e iecuacioes co valor absoluto:. Idicar para qué valores de se cumple las siguietes relacioes; e el caso de las desigualdades, idicar la solució mediate itervalos: a) 5 5 c) >5 c) - (Sol: 1, 6) d) - (Sol: [,6]) e) - > (Sol: (-,)U(6, )) f) + >5 (Sol: (-,-9)U(1, )) Ejercicios libro: pág. 7: 1 y g) - h) 0 i) < j) k) +1 (Sol: 1-, ) l) - (Sol: [-1,5]) m) 7 ) 6 o) > p) - <5 (Sol: (-,7)) q) + 7 (Sol: (-,-10]U[, )) r) <8 (Sol: (-,)) Resolució gráfica de iecuacioes y sistemas:. Resolver gráficamete los siguietes sistemas de ecuacioes de 1 er grado; resolverlos a cotiuació aalíticamete (por el método deseado), y comprobar que se obtiee idético resultado: a) + y 1 y (Soluc: 7, y5) d) + y 0 y 5 (Sol:, y-1) + y 6 y (Soluc: 0, y) e) + y 5 + y 7 (Sol:, y1) c) + y y 1 (Soluc: 1, y1) f) + y 1 y (Sol: 1, y0). Resolver gráficamete las siguietes iecuacioes de º grado; resolverlas a cotiuació aalíticamete y comprobar que se obtiee idético resultado: a) [Sol: (-,]U[, )] --<0 [Sol: (-1,)] c) -5+6>0 [Sol: (-,)U(, )] d) [Sol: [-,5]] e) [Sol: (-,1]U[7/, )] f) -16+<0 [Sol: (,6)] g) [Sol: IR] h) ->0 [Sol: (-,0)U(, )] i) - 0 [Sol: (-,-]U[, )] j) -+>0 [Sol: IR-{}] k) [Sol: IR] l) +6+9>0 [Sol: IR-{-}] m) -+1<0 [Sol: soluc.] ) -+ 0 [Sol: ] o) 6-5-6<0 [Sol: (-/,/)] p) -+7<0 [Sol: soluc.] r) -8+6<0 [Sol: (-, -1)] s) [Sol: [-, -]] t) [Sol: [1,]]

10 Sol : + ALFONSO GONZÁLEZ Notació cietífica: 5. Pasar a otació cietífica los siguietes úmeros: a) c) 0,5 d) 0, e) f) 0, g) , h) 0, i) j) 1 billoes k) 150 milloes $ l) 7, m) 7 ) 0, o) 10 p) 1 q) 0, r) s) -5,5 6. Realizar las siguietes operacioes de dos formas distitas (y comprobar que se obtiee el mismo resultado): - Si calculadora, aplicado sólo las propiedades de las potecias. - Utilizado la calculadora cietífica. a), ,6 10 7, , 10-8 c) 1, , 10 5 d), , e), , f), , g) 7, , h) ( 10 9 ) (, ) 9 i) 8, , j) ( )( ) k) ( 10 5 ) 5 Ejercicios libro: pág. 9: y ; pág. 7: 0 a 5 7. La estrella más cercaa a uestro sistema solar es α-cetauri, que está a ua distacia de ta sólo, años luz. Epresar, e km, esta distacia e otació cietífica. (Dato: velocidad de la luz: km/s) Cuáto tardaría e llegar ua soda espacial viajado a 10 km/s? (Sol:, km) Misceláea (II): 8. Si el lado de u cuadrado aumeta cm, su área aumeta 8 cm Cuáles so las dimesioes del cuadrado origiario? (Sol: Se trata de u cuadrado de lado 6 cm) 9. a) Qué otro ombre recibe el itervalo [0, )? Y (-,0]? A qué equivale IR + U IR -? Y IR + IR -? 0. a) Simplificar, reduciedo previamete a radicales semejates: Racioalizar y simplificar: (Sol: 11/7)

11 Sol : ALFONSO GONZÁLEZ Sol : c) Operar y simplificar: ( 7 + ) ( 5 1) d) Simplificar y operar: U grupo de estudiates alquila u piso por el que tiee que pagar 0 al mes. Uo de ellos hace cuetas y observa que si fuera dos estudiates más, cada uo tedría que pagar meos. Cuátos estudiates ha alquilado el piso? Cuáto paga cada uo? (Sol: 5 estudiates a 8 cada uo). Calcular el volume aproimado (e m ) de la Tierra, tomado como valor medio de su radio 678 km, dado el resultado e otació cietífica co dos cifras decimales. ( Volume de la esfera : π r ) (Sol: 1, m ). Co dos tipos de bariz, de,50 /kg y de 1,50 /kg, queremos obteer u bariz de, /kg. Cuátos kilogramos teemos que poer de cada clase para obteer 50 kg de la mezcla? (Ayuda: platear u sistema de ecuacioes de primer grado) (Sol: 18 kg del bariz de,50 y kg del de 1,50). Racioalizar deomiadores y simplificar: a) Sol : Sol : 1 c) + + d) (Sol: 7) Sol : Ejercicios libro: pág. 5 y ss.: 9, 10, 11, 1 y 15 (potecias de epoete fraccioario) pág. 1: 1,, y ; pág. : 5 y 6; pág. 6: 16, 17, 1,, y 7 (operacioes co radicales) pág. : 8; pág. 6: 5 y 6 (radicales semejates) pág. : 7; pág. : 9 y 10; pág. 6:, 8 y 9 (racioalizació) 5. Dos árboles de 15 m y 0 m de altura está a ua distacia de 5 m. E la copa de cada uo hay ua lechuza al acecho. De repete, aparece etre ellos u ratocillo, y ambas lechuzas se laza a su captura a la misma velocidad, llegado simultáeamete al lugar de la presa. A qué distacia de cada árbol apareció el rató? (Ayuda: Si se laza a la misma velocidad, recorre el mismo espacio, pues llega a la vez; aplicar el teorema de Pitágoras, y platear u SS.EE. de º grado) (Sol: a 15 m del árbol más alto) 6. E ua balaza de precisió pesamos cie graos de arroz, obteiedo u valor de 0, kg. Cuátos graos hay e 1000 toeladas de arroz? Utilícese otació cietífica. (Sol:, gr)

12 7. U almaceista de fruta compra u determiado úmero de cajas de fruta por u total de 100. Si hubiera comprado 10 cajas más y cada caja le hubiera salido por 1 meos, etoces habría pagado 10. Cuátas cajas compró y cuáto costó cada caja? (Sol: 0 cajas a 5 ) 8. La luz del sol tarda 8 miutos y 0 segudos e llegar a la Tierra. Calcular la distacia Tierra-Sol, empleado otació cietífica. (Sol: 1, km) 9. Hallar dos úmeros positivos sabiedo que su cociete es / y su producto 16 (Sol: 1 y 18) 50. TEORÍA: a) Qué es el discrimiate de ua ecuació de º grado? Qué idica? Si llegar a resolverla, cómo podemos saber de atemao que la ecuació ++1 carece de solucioes? Ivetar ua ecuació de º grado co raíces 1 / y, y cuyo coeficiete cuadrático sea c) Si resolver y si sustituir, cómo podemos asegurar que las solucioes de so 1 15 y -0? d) Calcular el valor del coeficiete b e la ecuació +b+60 sabiedo que ua de las solucioes es 1. Si ecesidad de resolver, cuál es la otra solució? 51. U rectágulo tiee 00 cm de área y su diagoal mide 5 cm. Cuáto mide sus lados? (Sol: 0 15 cm) 5. Resolver: a) (Sol: 1, -) (Sol: ±) c) 1 + y (Sol: 11; y 1; /5; y 1) y d) (Sol: 5) 5. U frutero ha comprado mazaas por valor de 6. Si el kilo de mazaas costara 0,80 meos, podría comprar 8 kg más. Calcular el precio de las mazaas y la catidad que compró. (Sol: 10 kg a,80 /kg) 5. Resolver la ecuació 1, sabiedo que ua de sus raíces es 1/ (Sol: ±1/, /) 55. Ua persoa compra ua parcela de terreo por 800. Si el m hubiera costado meos, por el mismo diero habría podido comprar ua parcela 00 m mayor. Cuál es la superficie de la parcela que ha comprado? Cuáto cuesta el m? (Sol: 600 m ; 8 ) 56. Resolver la ecuació (Sol: ) 57. El área de u triágulo rectágulo es 0 m y la hipoteusa mide 1 m. Cuáles so las logitudes de los catetos? (Sol: 1 m y 5 m) 58. Resolver la ecuació 1 (Ayuda: aplicar Tartaglia y Ruffii) (Sol: 1) 59. Calcular dos úmeros aturales impares cosecutivos cuyo producto sea 195 (Sol: 1 y 15)

13 Sol : a b ALFONSO GONZÁLEZ 60. Resolver: a) y y 1 (Sol: 1, y) 1 y y (Sol: 1; y1) 61. Si multiplicamos la tercera parte de cierto úmero por sus tres quitas partes, obteemos 05. Cuál es ese úmero? (Sol: 5) 6. a) Ivetar ua ecuació poliómica de grado que tega úicamete por solucioes -, 1 y Ivetar ua ecuació poliómica de grado que tega úicamete como raíces 1 y c) U poliomio de grado, cuátas raíces puede teer como míimo? Razoar la respuesta. (Sol: 1 raíz) 6. Varios amigos alquila u local por 800. Si hubiera sido tres más, habría pagado cada uo 60 meos. Cuátos amigos so? (Sol: 5 amigos) 6. Determiar el poliomio de grado que verifica: P(-1)P()P(-)0 y P(-) Uo de los lados de u rectágulo es doble que el otro y el área mide 50 m. Calcular las dimesioes del rectágulo. (Sol: 5 10 m) 66. Simplificar las siguietes fraccioes algebraicas: y a) 1 y y y c) a + b a+ b a+ b a b a b ab d) y y y : + y y y Sol : y (Sol: y) 1 Sol : + y 67. U campo rectagular de ha de superficie tiee u perímetro de 10 hm. Calcular, e metros, su logitud y su achura. (Recordar: 1 ha100 a; 1 a100 m ) (Sol: 100 m 00 m) 68. Demostrar que: a) a b c a c a d b d b a + b a b ( ) ( ) a b 69. Las diagoales de u rombo está e la relació de a. El área es de 108 cm. Calcular la logitud de las diagoales y el lado del rombo. (Sol: d1 cm; D18 cm; l 10,81 cm) 70. Operar y simplificar: Sol : + Ejercicios libro: pág. 71: 1, y ; pág. 9: 1 y (descomposició factorial; Ruffii); pág. 9: (simplificació de F.A.) pág. 7: ; pág. 7: y ; pág. 9: 5 y 6 (operacioes co F.A.)

14 71. El diámetro de la base de u cilidro es igual a su altura. El área total es 169,56 m. Calcular sus dimesioes. (Sol: dh6 m) 7. Trasformar e potecias de epoete fraccioario la siguiete epresió, operar y simplificar: 7. Despejar y simplificar: ( Sol : ± 5 ) 7. Demostrar que so ciertas las siguietes igualdades: a) ( 1) + ( +1) 75. Calcular la velocidad y el tiempo que ha ivertido u ciclista e recorrer ua etapa de 10 km sabiedo que, si hubiera ido 10 km/h más deprisa, habría tardado ua hora meos. (Sol: v0 km/h; t h) 76. Resolver: a) + (Sol: 1-1, ) (Sol: 1-1/; 7) Ejercicios libro: pág. 96: y E u terreo rectagular de lados 6 m y 80 m se quiere platar 57 árboles formado ua cuadrícula regular. Cuál será el lado de esa cuadrícula? (Ayuda: E el lado meor, por ejemplo, hay 6/ cuadrículas, y u árbol más que el úmero de cuadrículas) (Sol: m) 78. Operar, racioalizado previamete ( ) Sol : Al aumetar e 1 cm la arista de u cubo su volume aumeta e 71 cm. Cuáto mide la arista? (Ayuda: platear ua ecuació de er grado) (Sol: 9 cm)

15 80. Dos tiajas tiee la misma catidad de vio. Si se pasa 7 litros de ua a otra, ésta cotiee ahora el triple que la primera Cuátos litros de vio había e cada tiaja al pricipio? (Sol: 7 l) 81. U padre, preocupado por motivar a su hijo e Matemáticas, se compromete a darle 1 por problema bie hecho, mietras que, si está mal, el hijo le devolverá 0,5. Después de realizar 60 problemas, el hijo gaó 0. Cuátos problemas resolvió correctamete? (Ayuda: Platear u SS.EE. de 1 er grado) (Sol: 0 problemas) 8. Tres hermaos se reparte u premio de 50. Si el mayor recibe la mitad de lo que recibe el mediao; y el mediao la mitad de lo que recibe el pequeño, cuáto diero tedrá cada hermao al fial? (Sol: 50 el mayor, 100 el mediao y 00 el pequeño) 8. U gaadero decide repartir ua maada de 56 caballos etre sus hijos e hijas. Ates del reparto se efada co los dos úicos varoes, que se queda si caballos. Así, cada hija recibe 19 cabezas más. Cuátas hijas tiee el gaadero? (Sol. 6 hijas) 8. Ua cuadrilla de vedimiadores tiee que vedimiar dos ficas, ua de las cuales tiee doble superficie que la otra. Durate medio día trabajó todo el persoal de la cuadrilla e la fica grade; después de la comida, ua mitad de la gete quedó e la fica grade y la otra mitad trabajó e la pequeña. Durate esa tarde fuero termiadas las dos ficas, a ecepció de u reducido sector de la fica pequeña, cuya vedimia ocupó el día siguiete completo a u solo vedimiador. Co cuátos vedimiadores cotaba la cuadrilla? (Ayuda: Llamar al º de vedimiadores y s a la superficie que vedimia ua persoa e media jorada, y platear ua ecuació, o u sistema!) (Sol. 8 vedimiadores) Ejercicios libro: pág. 9 y ss.: 7, 8 y 9; pág. 97: 57 (ecuacioes de 1 er y o grado) pág. 75: 1 y ; pág. 9: 10 y 11 (ecuacioes bicuadradas) pág. 76: ; pág. 9: 1 y 1 (co radicales) pág. 77: ; pág. 9: 1; pág. 96: 5 (co la e el deomiador) pág. 96: y 7 (co valor absoluto) pág. 96: (ecuacioes de varios tipos) pág. 8: y ; pág. 9 y ss.: a 6 (SS.EE. lieales ; Gauss) pág. 81: 1 y ª; pág. 9: 0 y 1; pág. 96: 6 (SS.EE. o lieales ) pág. 97: 5 a 56 (cuestioes teóricas sobre ecuacioes y sistemas) pág. 85: 1; pág. 95: 8a,b (iecuacioes de 1 er grado) pág. 85: ; pág. 95: 9 (sistemas de iecuacioes de 1 er grado co ua icógita) pág. 86: ; pág. 95: 8 c,d,e,f y 0 (iecuacioes de o grado) pág. 97: 58a,b (iecuacioes de grado>) pág. 95: 1; pág. 97: 58 c,d (iecuacioes co cocietes) pág. 95 y ss.: a, 50, 51 (problemas de plateamieto de ecuacioes)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO FICHA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a a (Añade estas fórmulas al formulario, juto co la lista de los 0 primeros

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

10 EJERCICIOS de FRACCIONES ALGEBRAICAS 4º ESO opc. B

10 EJERCICIOS de FRACCIONES ALGEBRAICAS 4º ESO opc. B 0 EJERCICIOS de FRACCIONES ALGEBRAICAS º ESO opc. B. Utilizado idetidades otables, desarrollar las siguietes epresioes: () (-) ()(-) () (-5) () (-) ( (a- (-) (5) (-5) (-) (--) m) ( )( ) ) ( ) o) ( ). Razoar

Más detalles

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS. SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER. Matemática Básica APUNTES DOCENTES Departamento de Ciencias Básicas

UNIDADES TECNOLÓGICAS DE SANTANDER. Matemática Básica APUNTES DOCENTES Departamento de Ciencias Básicas Matemática Básica APUNTES DOCENTES Departameto de Ciecias Básicas 11 Coteido UNIDAD 1... CONJUNTOS NUMÈRICOS... UNIDAD... 1 EXPRESIONES ALGEBRAÌCAS... 1 UNIDAD... 19 PRODUCTOS Y COCIENTES NOTABLES... 19

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= )

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= ) Dadas las guiet ucio: 6 a e b EJERCICIO S DE FUNCIO NES g c 9 d h i 9 j log k log l L9 Hallar su domiio. Hallar los putos de corte co los ej. Comprobar las ucio b, c,, g, y h so par o impar. E las ucio

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Potencias, radicales y logaritmos

Potencias, radicales y logaritmos . Los úmeros egativos Potecias, radicales y logaritmos BLOQUE I: ARTIMÉTICA El tema comieza co el estudio de las potecias; éste se iicia co las potecias de expoete atural, se prosigue co las de expoete

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Orden en los números naturales

Orden en los números naturales 88 Aritmética U istrumeto para medir usado fraccioes comues Refleioes adicioales Dividir ua uidad e partes iguales: El Teorema de Thales se refiere a dividir u segmeto e cualquier úmero de segmetos iguales.

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Capítulo 2: Potencias y raíces

Capítulo 2: Potencias y raíces Matemáticas orietadas a las eseñazas aplicadas. º A de ESO Capítulo : Potecias y raíces www.aputesmareaverde.org.es Revisor: Sergio Herádez Ilustracioes: Baco de Imágees de INTEF 1 Potecias y raíces. º

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Distribuciones estadísticas dobles. n muchos campos del conocimiento surge la necesidad de establecer relaciones

Distribuciones estadísticas dobles. n muchos campos del conocimiento surge la necesidad de establecer relaciones UNIDAD 11 Distribucioes estadísticas dobles muchos campos del coocimieto surge la ecesidad de establecer relacioes E etre dos cojutos de datos, o dos variables estadísticas, au sabiedo que tal relació

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Está dividida cada área con un texto básico, actividades y trabajos individuales.

Está dividida cada área con un texto básico, actividades y trabajos individuales. MATEMÁTICA Este libro de Matemática Zapadí (9º año), correspode al último libro del Tercer Ciclo de la Educació Geeral Básica Abierta, el cual está dividido e cuatro áreas de coocimietos para este ivel.

Más detalles

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s.

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s. U automóvil (Citroe XM V6) tiee la geometría idicada e la figura. Su masa total es.42 Kg. Dispoe de u motor cuya relació par-velocidad puede expresarse mediate la relació: Tm=-,52.-3.w2+,38.w-5,583 N.m

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Cómo simplificar expresiones algebraicas?

Cómo simplificar expresiones algebraicas? Cómo simplificar expresioes algebraicas? Prof. Jea-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispoe de los comados [simplify] y [combie] del submeú desplegable Trasformació del meú

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Conjunto de Números. Contenidos. 1. Conjuntos Numéricos. Operaciones con Números Reales.

Conjunto de Números. Contenidos. 1. Conjuntos Numéricos. Operaciones con Números Reales. Programa Igualdad de Oportuidades. Cojuto de Números Coteidos 1. Cojutos Numéricos. Operacioes co Números Reales. 2. Múltiplos y Divisores. Máximo Comú Divisor y Míimo Comú Múltiplo.. Razoes y Proporcioes.

Más detalles

SESIÓN DE APRENDIZAJE Nº 06 FACULTAD DE

SESIÓN DE APRENDIZAJE Nº 06 FACULTAD DE E V A L U A C I Ó N SESIÓN DE APRENDIZAJE Nº 06 FACULTAD DE : ESCUELA PROFESIONAL DE : DOCENTE : CICLO: I ASIGNATURA : Lógico Matemática FECHA: TEMAS: Operacioes e los úmeros reales. Ecuacioes poliómicas.

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4.

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4. CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- CONCEPTO DE LÍMITE DE UNA FUNCIÓNN EN UN PUNTO....- LÍMITES LATERALES: CARACTERIZACIÓN....- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA DE LÍMITES... 5.-

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

CRIPTO II UT I N 01 BASES TEORICAS I

CRIPTO II UT I N 01 BASES TEORICAS I CRIPTO II UT I N 0 BASES TEORICAS I TEORIA DE NUMEROS cripto-scolik-hecht UT- UNIDAD TEMÁTICA N : Bases Teóricas. Teoría de Números: Aritmética Modular, Logaritmos Discretos. Geeració de úmeros primos.

Más detalles

ERRORES EN LAS MEDIDAS

ERRORES EN LAS MEDIDAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA DEPARTAMENTO DE FÍSICA APLICADA ERRORES EN LAS MEDIDAS I. Uidades de medició. Todas las medicioes costa de ua uidad que os idica lo que fue medido y u úmero que idica

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

FRACCIONES OPERACIONES. SUMA y RESTA MULTIPLICACIÓN DIVISIÓN POTENCIAS RAÍCES

FRACCIONES OPERACIONES. SUMA y RESTA MULTIPLICACIÓN DIVISIÓN POTENCIAS RAÍCES Es ua expresió del tipo b a dode a es el NUMERADOR e idica las partes que tomamos de la uidad. b es el DENOMINADOR e idica las partes iguales e que dividimos a la uidad. SIGNIFICADO o Expresa partes de

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Debemos pensar en un número entero tal que al multiplicarlo por 3 de por resultado 4. Qué número entero cumple con esta condición?

Debemos pensar en un número entero tal que al multiplicarlo por 3 de por resultado 4. Qué número entero cumple con esta condición? LOS NÚMEROS REALES La oció de úmero es muy atigua, los pueblos primitivos usaba piedras para cotar sus rebaños... E la actualidad de qué os valemos para cotar?... Los úmeros que usamos para cotar so los

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles