Semiconductores. Dr. J.E. Rayas Sánchez

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Semiconductores. Dr. J.E. Rayas Sánchez"

Transcripción

1 Semicoductores Alguas de las figuras de esta resetació fuero tomadas de las ágias de iteret de los autores del texto: A.R. Hambley, Electroics: A To-Dow Aroach to Comuter-Aided Circuit Desig. Eglewood Cliffs, NJ: Pretice Hall,

2 Átomos Semicoductores Aislados electroes de valecia Si Ge + + úcleo

3 Niveles de Eergía e u Átomo Aislado Eergía vacío de eergía vacío de eergía etc. ivel de valecia o. ivel (caa siguiete e la estructura atómica) 3er. ivel (etc.) úcleo 3

4 Badas de Eergía Eergía bada de codució esacio rohibido bada de valecia a. bada 1a. bada 4

5 Coductores, Semicoductores y Aislates bada de coducció Eergía (ev) bada rohibida > 5 ev arox. 1 ev electró libre hueco bada de valecia Coductor Aislate Semicoductor Hueco de eergía a 0 K ara el Si 1.1 ev, ara el Ge ev 5

6 Coducció e Metales E Camo Eléctrico (V/m) J Desidad de Corriete Eléctrica (A/m ) σ Coductividad (Ω 1 /m) J σe σ qµ Cocetració de electroes libres (m 3 ) µ Movilidad de los electroes (m /Vs) q Carga del electró ( C) 6

7 Silicio Itríseco a 0 Kelvis 7

8 Silicio Itríseco a T > 0 Kelvis 8

9 Corriete de Huecos e u Semicoductor 9

10 Corriete de Arrastre e u Semicoductor J σe COND J COND ( σ + σ ) E J q µ + µ )E COND ( Cocetració de electroes libres (m 3 ) Cocetració de huecos (m 3 ) µ Movilidad de los electroes (m /Vs) µ Movilidad de los huecos (m /Vs) Para u semicoductor uro, (cocetració i itríseca de ortadores libres) J q µ + µ )E i ( 10

11 Ejemlo l I r 300 µm, l 5 mm, calcular V ara ua I 10 µa, si el material es r J a) Alumiio (σ Ω 1 /m) b) Silicio ( i /cm 3, µ 1,300 cm /Vs, µ 500 cm /Vs) 10µA 3.54mA / cm π (300µm ) V + I A a) / 0.93µV/m, E J σ V El (0.93µV/m)( m) 4.63V 11

12 Ejemlo (cot.) l I r 300 µm, l 5 mm, calcular V ara ua I 10 µa, si el material es r J a) Alumiio (σ Ω 1 /m) b) Silicio ( i /cm 3, µ 1,300 cm /Vs, µ 500 cm /Vs) 10µA 3.54mA / cm π (300µm ) V + I A b) E J q i ( µ + µ ) ( mA/cm 10 3 C)( /cm )(1800cm / Vs) E 819.4V / cm V El ( 819.4V/cm)(5mm) 409.7V 1

13 Cotamiació (Doig)! Es el roceso de agregar imurezas a u semicoductor itríseco! Semicoductor cotamiado semicoductor extríseco! Imurezas doadoras átomos etavaletes (Sb, P, As) semicoductor tio! Imurezas acetoras átomos trivaletes (B, Ga, I) semicoductor tio 13

14 Cotamiació co Átomos Doadores 14

15 Cotamiació co Átomos Acetores 15

16 Ley de Acció de Masas i! Semicoductor itríseco + i! Semic. tio (N D : cocetració de átomos doadores) como N N D D >>, N D,! Semic. tio (N A : cocetració de átomos acetores) + N A como N A N >>, i D N A, N i A 16

17 Corriete de Difusió l d 0 cotamiació tio, o-uiforme d l x gradiete de cocetració d J DIF qd D Costate de difusió de los electroes (m /s) J DIF Desidad de corriete de difusió de los electroes (A/m ) 17

18 Corriete de Difusió (cot.) l d 0 cotamiació tio, o-uiforme d l x gradiete de cocetració de huecos d J DIF qd D Costate de difusió de los huecos (m /s) J DIF Desidad de corriete de difusió de los huecos (A/m ) 18

19 Corriete Total e u Semicoductor Graduado J J + J σ E + J COND DIF qd J J + J d COND DIF J σ E qd J J + J d 19

20 Relació de Eistei Relacioa dos feómeos termodiámicos y estadísticos D D VT µ µ V T kt q T 11,594 V T k T Voltaje equivalete de temeratura (V) Costate de Boltzma J/K Temeratura e Kelvis (K) 0

21 Potecial Itero d 0 d 0 J, J DIF DIF semicoductor graduado Como J J 0 J J, COND COND tal que qµ E qd d qµ E qd d E itero V itero ( V E) 1

22 Potecial Itero (cot.) semicoductor graduado V dv V V 1 T 1 d Como E qµ E E D µ dv qd d d V T d V V1 V l aálogamete 1 T V V1 VT l 1

23 Ley de Acció de Masas -extedida- 1 V V1 VT l V V1 VT l 1 e 1 V V 1 V T V V V 1 T e Para u semicoductor o graduado, 1, 1, i 3

24 4 Semicoductor Graduado e Escaló D i A T N N V V V / l l V V V T 0 l / l i D A T D i A T N N V N N V ψ (diferecia de otecial de cotacto) (otecial itero de ua uió - abruta) N A N D (1) ()

25 Problema Para u trozo de silicio graduado e escaló, calcular su otecial itero a temeratura ambiete si a) N A /cm 3 N D N AN D ψ 0 VT l i kt T V T q 11, ,594 i ( T 300K) 5.87mV cm 3 ψ mV) l ( V 5

26 Problema (cot.) Para u trozo de silicio graduado e escaló, calcular su otecial itero si b) N A /cm 3 y N D /cm 3 ψ mV) l ( V 6

27 Ecuació de Cotiuidad >> N D E equilibrio, o, o τ Tiemo medio de vida de los huecos Al alicar ua erturbació... Como, solo los ortadores mioritarios se ve afectados sigificativamete m o o luz se eciede luz se aaga t 7

28 Ecuació de Cotiuidad (cot.) d/dt Velocidad de cambio de /τ g Dismiució e or segudo debido a la recombiació Icremeto e or segudo debido a la radiació d g dt τ Como o y d/dt 0 cuado o hay radiació d dt t o d dt τ τ t m o 0 τ o + ( m o) e g o τ 8

29 Ecuació de Cotiuidad (cot.) >> m N D o o luz se eciede luz se aaga t ( t) o + ( m t 0 o ) e t τ Variació e la cocetració de los ortadores mioritarios debida a la geeració y recombiació 9

30 Exerimeto de Shockley-Hayes 30

31 Exerimeto de Shockley-Hayes (cot.) Si alicar E... 31

32 Exerimeto de Shockley-Hayes (cot.) Co u E alicado... 3

33 Ecuació de Cotiuidad Caso Geeral I d dt o τ E geeral, la cocetració de los ortadores mioritarios es fució del tiemo y de la distacia x x+ Icremeto e or segudo debido a la agitació térmica meos la dismiució e or segudo debido a la recombiació A I +di di Dismiució del úmero de Coulombs or segudo e el volume dv debido a la corriete I di /q Dismiució de huecos or segudo e el volume dv debido a la corriete I 33

34 Ecuació de Cotiuidad Caso Geeral di Dismiució del úmero de Coulombs or segudo e el volume dv debido a la corriete I di /q Dismiució de huecos or segudo e el volume dv debido a la corriete I 1 qa di 1 q dj Dismiució de or segudo e el volume dv debido a la corriete I Luego o 1 t τ q J x Ecuació de Cotiuidad 34

35 Iyecció de Portadores Mioritarios Radiació '(0) (x) Exceso de ortadores mioritarios >> N D o x x A J o Como 1 t τ q x E estado estable... 1 J q x L Y como d D o τ J D τ τ DIF o qd d Logitud de difusió de los huecos 35

36 Iyecció de Portadores Mioritarios Radiació >> A d L o N D x / L x / L ( x) K1e + Ke + 0 '(0) (x) Exceso de ortadores mioritarios o x K 0 K 1 '(0) L x / L ( x) '(0) e + 0 D τ x 36

JUNTURA METAL SEMICONDUCTOR

JUNTURA METAL SEMICONDUCTOR JUNTURA METAL SEMICONUCTOR. EQUILIBRIO E SISTEMAS E FERMI EN CONTACTO Supogamos dos sistemas co eergías de Fermi diferetes. esigamos como E F, ; g, ();f F, ();, () y v, () a las eergías de Fermi, la fució

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Tema 7. El transistor. El transistor bipolar de unión. Tema 7. El Transistor

Tema 7. El transistor. El transistor bipolar de unión. Tema 7. El Transistor Tema 7. l trasistor Tema 7. l trasistor Objetivos: teder cualitativamete el fucioamieto de los trasistores de uió y de efecto camo. oocer alguas alicacioes de trasistores. hockley, ardee, rattai (1948)

Más detalles

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

COLECCIóN DE EJERCICIOS RESUELTOS DISPOSITIVOS ELECTRONICOS Y FOTONICOS II

COLECCIóN DE EJERCICIOS RESUELTOS DISPOSITIVOS ELECTRONICOS Y FOTONICOS II COLECCIó DE EJERCICIOS RESUELTOS DISPOSITIOS ELECTROICOS Y FOTOICOS II Problema E u MESFET defia, explicado su setido físico y obteiedo expresioes que permita calcularlos, los siguietes parámetros: a)

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

Calcular la resistencia equivalente de asociaciones de resistencias. Conocer los efectos energéticos de la corriente eléctrica y el efecto Joule.

Calcular la resistencia equivalente de asociaciones de resistencias. Conocer los efectos energéticos de la corriente eléctrica y el efecto Joule. Capítulo 3 Corriete cotiua y resistecia eléctrica 3.1 Itroducció 3.2 Corriete cotiua y corriete altera 3.3 Corriete y movimieto de cargas 3.4 Itesidad y desidad de corriete 3.5 Ley de Ohm. Resistecia 3.6

Más detalles

Tema: Análisis de ruido en circuitos electrónicos DCSE

Tema: Análisis de ruido en circuitos electrónicos DCSE Tema: Aálisis de e circuitos electróicos DCSE Ídice Itroducció Tipos de Caracterizació del Ejemplos de uido e A.O. uido e circuitos electróicos Deiició y propiedades Cualquier perturbació o luctuació ideseada

Más detalles

Tema 2: Semiconductores intrínsecos y extrínsecos

Tema 2: Semiconductores intrínsecos y extrínsecos lectróca de dsostvos Dr.. Reg 5/6 Tea : Secoductores trísecos y extrísecos a. : K. Kao Itroduccó Desdad de stados (De) ucó de dstrbucó de er-drac Desdad de ortadores e secoductores trísecos. vel de er

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

Rectificador de media onda

Rectificador de media onda Electróica y microelectróica ara cietíficos ectificador de media oda Como u diodo ideal uede mateer el flujo de corriete e ua sola direcció, se uede utilizar ara cambiar ua señal de ca a ua de cd. E la

Más detalles

Protón Neutrón Electrón

Protón Neutrón Electrón 1 Descubrimieto de las partículas subatómicas Tema 4. Estructura Atómica y Sistema Periódico Electró (Stoey, 1891) Protó (Rutherford, 1911) Neutró (Chadwick, 193) Crookes (1.875). rayos catódicos Viaja

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eame preseta dos opcioes: A y B. El alumo deberá elegir ua de ellas y cotestar razoadamete a los cuatro ejercicios de que costa dicha opció. Para

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

1.3- Amplificadores con un transistor de efecto de campo

1.3- Amplificadores con un transistor de efecto de campo 1.3- Amplificadores co u trasistor de efecto de campo 1.3.1- Cofiguracioes básicas y polarizació 1.3.- Modelo de señal pequeña del JFET 1.3.3- Amplificador fuete comú 1.3.4- Amplificador compuerta comú

Más detalles

El Transistor de Efecto de Campo (FET)

El Transistor de Efecto de Campo (FET) El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

2. Tecnologías del silicio

2. Tecnologías del silicio 2. Tecologías del silicio 2.1. Itroducció. 2.2. Familias lógicas 2.3. Trasistores MOS, riciio de fucioamieto 2.4. Iversores MOS y CMOS. 2.5. Tecologías CMOS 2. Tecologías del silicio 2.1. Itroducció. 2.2.

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Tema 7. Circuitos de corriente continua.

Tema 7. Circuitos de corriente continua. Tema 7. Circuitos de corriete cotiua. 7. Itesidad y desidad de corriete. Ecuació de cotiuidad. 7. Coductividad eléctrica. Ley de Ohm. 7.. Asociació de resistecias 7.3 Eergía de la corriete eléctrica. Ley

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

gas interfase líquido

gas interfase líquido F.- Los cálculos mecao-estadísticos idica que, a temperaturas cosiderablemete iferiores a la temperatura crítica, la desidad de ua sustacia pura a medida que se atraviesa la iterfase líquido-vapor se puede

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

Semiconductores ( ) Masa Efectiva. Masa Efectiva. Masa Efectiva. Hueco. Masa Efectiva. v g dk h dk. m * Cualquier electrón está sujeto a fuerzas

Semiconductores ( ) Masa Efectiva. Masa Efectiva. Masa Efectiva. Hueco. Masa Efectiva. v g dk h dk. m * Cualquier electrón está sujeto a fuerzas Semdutres Masa Efeta Cualquer eletró está sujet a fuerzas ttal ext + t ma S resams la euaó sól e fuó de las fuerzas exteras ext m a El eletró se mrta m s su masa ambara. Esta es la masa efeta. Masa Efeta

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA.2µm A. Herrera-Favela y F. Sadoval-Ibarra Electroics Desig Grou CINESTA, Guadalajara Uit Prol. Lóez-Mateos Sur 590, 45235 Guadalajara JAL. (México) aherrera@gdl.civestav.mx

Más detalles

Medios de Transmisión

Medios de Transmisión 39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. EXAMEN FINAL 5 02-2003. PROBLEMAS

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. EXAMEN FINAL 5 02-2003. PROBLEMAS Págia e 6 04/0/004 FUNDAMENTOS FÍSICOS DE A INFORMÁTICA. EXAMEN FINA 5 0-003. PROBEMAS - q D - P.- Cuatro cargas iguales os a os e valores q y (q y > 0) está colocaas e los vértices e u rombo e iagoales

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión:

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión: 1 CENTRALES IRÁULICAS TURBINAS IRÁULICAS INTROUCCIÓN E el capítulo aterior se hizo referecia a la trasformació eergética que se preseta e la tubería La eergía potecial del agua se trasforma e eergía de

Más detalles

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9.

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9. II. CRECIMIENTO FÍSICO EN CENTROAMÉRICA Y REPÚBLICA DOMINICANA: MEDIDAS ABSOLUTAS PESO Y TALLA, POR EDAD Y SEXO Y COMPARACIÓN CON EL PATRÓN CRECIMIENTO LA OMS (2005) A. Por países 1. Costa Rica E los cuadros

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

3.2. Resolución de la ecuación de Poisson en la región espacial de carga. 3.2.1. La unión abrupta. 3.2.2. La unión gradual.

3.2. Resolución de la ecuación de Poisson en la región espacial de carga. 3.2.1. La unión abrupta. 3.2.2. La unión gradual. TEM 3 : Fíica de la uió P-. TEM 3: FÍSIC E L UIÓ P- Itroducció. 3.1. La uió - e euilibrio térmico. Formació de la regió eacial de carga. Barrera de otecial y bada de eergía. Corriete de arratre y de difuió.

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

TEMA 1. SEMICONDUCTORES

TEMA 1. SEMICONDUCTORES http://www.tech-faq.com/wp-cotet/uploads/images/itegrated-circuit-layout.jpg IEEE 125 Aiversary: http://www.flickr.com/photos/ieee125/with/2809342254/ 1 1. Sólidos Cristalios 2. Semicoductores 3. Semicoductores

Más detalles

Modelo Planetario de Rutheford para el Átomo

Modelo Planetario de Rutheford para el Átomo Modelo Plaetario de Rutheford para el Átomo Átomo cosiste de electroes orbitado e toro a ua pequeña pero muy desa carga cetral (el úcleo atómico) Pricipal problema de este modelo, Átomo de Hidrogeo debiera

Más detalles

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= )

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= ) Dadas las guiet ucio: 6 a e b EJERCICIO S DE FUNCIO NES g c 9 d h i 9 j log k log l L9 Hallar su domiio. Hallar los putos de corte co los ej. Comprobar las ucio b, c,, g, y h so par o impar. E las ucio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Juio, Ejercicio 4, Opció A Juio, Ejercicio 5, Opció B Reserva 1, Ejercicio 2, Opció B Reserva 2, Ejercicio 5, Opció

Más detalles

Física de Semiconductores Curso 2007

Física de Semiconductores Curso 2007 Física de Semiconductores Curso 007 Ing. Electrónica- P00 Ing. Electrónica/Electricista P88 3er. Año, V cuat. Trabajo Práctico Nro. 3: Bloque Sólidos: Semiconductores intrínsecos Objetivos: Estudiar las

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4 ÁRE DE IGEIERÍ QUÍMIC Operacioes Básicas de Trasferecia de Materia Tea 4 Operacioes Básicas de Trasferecia de Materia ITRODUCCIÓ a aoría de las corrietes de u proceso quíico está costituidas por varios

Más detalles

Pruebas de hipótesis para dos muestras.

Pruebas de hipótesis para dos muestras. Prueba de hiótei ara do muetra. Prueba de Hiótei ara do muetra grade, deviacioe etádar de la oblacioe deiguale. La roiedade de la Ditribució Normal o tambié umamete útile cuado queremo ecotrar i do cojuto

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

5.1. Tipos de convergencia

5.1. Tipos de convergencia Estadística Tema 5 Covergecia de Variables Aleatorias 51 Tipos de covergecia 52 Ley de los grades úmeros 53 Teorema cetral del límite 54 Método delta Objetivos 1 Motivació estudio secuecias de VAs 2 Covergecia

Más detalles

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL República Bolivariaa de Veezuela Miisterio del Poder Popular para la Educació Superior Uiversidad Nacioal Experimetal Rafael María Baralt Programa: Igeiería y Tecología Proyecto: Igeiería e Gas Profesor:

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Instalaciones eléctricas de baja tensión

Instalaciones eléctricas de baja tensión Istalacioes eléctricas de baja tesió Págia CÁLCULO DE LAS CORRIENTES DE CORTOCIRCUITO 1 Itroducció, causas y cosecuecias de los cortocircuitos... Itroducció Orige de los cortocircuitos 6 Tipos de cortocircuitos

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Práctica 5. Aproximar numéricamente la derivada de una función a partir de valores conocidos de la función. f a h f a h

Práctica 5. Aproximar numéricamente la derivada de una función a partir de valores conocidos de la función. f a h f a h PRÁCTICA DERIVACIÓN NUMÉRICA Prácticas Matlab Objetivos Práctica 5 Aproximar uméricamete la derivada de ua fució a partir de valores coocidos de la fució. Comados de Matlab eps Es el epsilo máquia, su

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Diagrama Tensión deformación de la mampostería

Diagrama Tensión deformación de la mampostería Diagrama Tesió deformació de la mampostería EFECTO DEL TIPO DE EN LA DEL PRISMA RELACIÓN DE DEL : PROPIEDADES TIPO PRISMA A 1 : 1/4 : 3,00 1,06 B 1 : 1/ : 4y1/ 1,00 1,00 C 1 : 1 : 6 0,50 0,85 D 1 : : 9

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0503) Dinámica de Rotación

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0503) Dinámica de Rotación Física Geeral aralelos 05 y. rofesor odrigovergara 050) Diámica de otació E las rotacioes, tal como e las traslacioes, existe ua iercia y u pricipio que la rige. El pricipio de iercia para rotació dice

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 3 Progresioes Recuerda lo fudametal Curso:... Fecha:... PROGRESIONES SUCESIONES Ua sucesió es u cojuto de...... Se llama térmio geeral de ua sucesió a... Por ejemplo, e la sucesió 1, 4, 9, 16, 5, el térmio

Más detalles

ONDAS SOBRE UNA CUERDA

ONDAS SOBRE UNA CUERDA ONDAS SOBRE UNA CUERDA Objetivo: Aalizar el comportamieto de las odas estacioarias e ua cuerda relacioado la tesió, la frecuecia de oscilació, la logitud de la cuerda y el úmero de segmetos que se forma

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

Lección 4. La conducción en semiconductores. Unión PN.

Lección 4. La conducción en semiconductores. Unión PN. Lecció 4 La coducció e semicoductoes. Uió PN. 1. Caacteísticas geeales de los semicoductoes. 1 2. Semicoductoes itísecos y extísecos. 4 3. La coducció e semicoductoes 3.1. Coiete de aaste. Coductividad.

Más detalles

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias

Más detalles

GUÍA DE ESTUDIO DE CIRCUITOS DE CORRIENTE CONTINUA

GUÍA DE ESTUDIO DE CIRCUITOS DE CORRIENTE CONTINUA UNESDD NCONL EXPEMENL FNCSCO DE MND E DE ECNOLOGÍ. COMPLEO CDEMCO EL SBNO DEPMENO DE FSC Y MEMÁC UNDD CUCUL: FÍSC POF. CMEN DN CONCEPCÓN GUÍ DE ESUDO DE CCUOS DE COENE CONNU COENE ELÉCC La corriete que

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

(C.) (D) : Presionar la tecla de incremento : Presionar la tecla de decremento

(C.) (D) : Presionar la tecla de incremento : Presionar la tecla de decremento T-200 Caracteristicas: Temporizador digital triple programable por teclado. Base de tiempo: 1- Segudos(0-9999). 2- Miutos(0-9999). 3- Horas(0-9999). 4- Segudos decimales(0.0-999.9). 5- Miutos decimales(0.0-999.9).

Más detalles

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES L. GENERALIZACIÓN DEL A.F.C. : ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES 1. Itroducció Las «ecuestas» se

Más detalles

Problemas. 1. Un objeto está situado a 12 cm de un espejo cóncavo cuyo radio de curvatura es 6 cm. Hallar a que distancia se encuentra la imagen.

Problemas. 1. Un objeto está situado a 12 cm de un espejo cóncavo cuyo radio de curvatura es 6 cm. Hallar a que distancia se encuentra la imagen. Problemas. U objeto está situado a cm de u espejo cócavo cuyo radio de curvatura es 6 cm. Hallar a que distacia se ecuetra la image. Sabemos que la ocal de u espejo viee dada por r 3 cm Al ser el espejo

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR NVESDD SMON BOLV COMPOMENO DE L MQN CON Hoja Nº -63 EXCCÓN EN DEVCON 1. La máquia e derivació coectada a ua red de tesió costate. La ecuació para la tesió es (cosiderado circuito pasivo): + ). + E ( (

Más detalles

TEMA 3: Diodos de Unión

TEMA 3: Diodos de Unión TEMA 3: Diodos de Unión Contenidos del tema: Unión PN abrupta: condiciones de equilibrio Diodo PN de unión: Electrostática Análisis en DC o estacionario del diodo PN Desviaciones de la característica ideal

Más detalles

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17. EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo

Más detalles