Divergencia de un Campo Vectorial en el Plano (R 2 )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Divergencia de un Campo Vectorial en el Plano (R 2 )"

Transcripción

1 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno ivergenci de un Cmpo Vectoril en el Plno R 2 do un cmpo vectoril F : R 2 R 2, se tiene que F represent el cmpo de velociddes de un uido en un cierto instnte; es decir, si x, y es un punto por el cul ps un uido, entonces F x, y representrá l velocidd con l que vij el uido en ese punto. Ahor bien, si considermos un segmento de rect por donde ps el uido y elegimos un vector ˆN que punte en un dirección norml l segmento de rect ecimos que el número F ˆN ll Longitud del segmento nos d l medid en términos de un áre de que tnto se expnde el uido trvés de L en un unidd de tiempo, y que est expnsión es en l dirección en l que punt ˆN. Supongmos que el cmpo F : R 2 R 2 ddo por F M, N denido en de R 2 es el cmpo de velociddes de un corriente de un uido. Estmos interesdos en estimr cuánto uido ps por un "pequeñ"porción de. Se p x.y y consideremos el rectángulo R con centro en p ddo por R {x, y R 2 x h x x + h, y k y y + k} Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 1

2 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno Tomndo h y k sucientemente pequeños podemos segurr que R. Un estimción de cunto uido ps trvés del rectángulo R l podemos obtener sumndo lo que ps por los ldos b y d, y los ldos cd y bc. Hgmos el cálculo de l cntidd de uido que ps por el ldo b Lo que entr l ldo b En este cso pr el ldo b se tiene F x, y k ĵ 2 h Mx, y k, Nx, y k, 1 2 h 2hNx, y k Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 2

3 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno nlogmentre pr ldo d se tiene Pr el ldo dc se tiene F x h, y î2k 2kMx h, y F x, y + k ĵ2h 2hNx, y + k Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 3

4 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno Pr ldo cb F x + h, y î2k 2kMx + h, y Entonces l cntidd de uido que ps trvés del rectángulo R es proximdmente 2hNx, y k 2kMx h, y + 2hNx, y + k + 2kMx + h, y 2kMx + h, y 2kMx h, y + 2hNx, y + k 2hNx, y k 2kMx + h, y Mx h, y + 2hNx, y + k Nx, y k El cociente F ˆN ll re de R se puede interpretr como l expnsión promedio producid por F trvés de R. Por lo tnto ividiendo 2kMx + h, y Mx h, y + 2hNx, y + k Nx, y k entre el áre encerrd por el rectángulo R igul 4 hk, obtenemos un medid de l cntidd de uido que ps por R por unidd de áre. Ést es entonces Mx + h, y Mx h, y 2h + Nx, y + k Nx, y k 2k hciendo que h, k tiendn cero, obtenemos informción sobre cuánto uido ps por el punto p por unidd de áre Mx + h, y Mx h, y + Nx, y + k Nx, y k h,k 2h 2k Mx + h, y Mx h, y Nx, y + k Nx, y k + h 2h k 2k Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 4

5 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno 1 2 h + 1 Nx, y + k Nx, y k 2 k 2k Mx + h, y Mx, y + Mx, y Mx h, y + h Mx + h, y Mx h, y h 1 2 h 1 2 k Nx, y + k Nx, y + Nx, y Nx, y k 2k M N p + x x p Supongmos que el cmpo F : R 2 R 2 ddo por F M, N denido en de R 2 es el cmpo de velociddes de un corriente de un uido, y se Γ un curv suve. Necesitmos encontrr un form de medir que tnto se expndir el uido trvés de Γ. Pr esto considermos un prtición ˆP, ˆP 1,..., ˆP k Γ si denotmos ˆPi ˆP i 1 l vector que se obtiene de girr novent grdos en l dirección horri l vector ˆP i ˆP i 1 el número F ξ i ˆP i ˆP i 1 con ξ i ˆPi 1 ˆPi es un proximción l expnsión del uido trvés del subrco Γ i en l dirección ˆP i ˆP i 1, de mner que F ξ i ˆP i ˆP i 1 i1 será un proximción l expnsión del uido trvés de tod l curv Γ en l dirección determind por ˆP i ˆP i 1. Si α : [, b] R 2 prmetriz Γ y P {t,..., t k } es un prtición de [, b] entonces l expresión se puede escribir F αξ i αt i αt i 1 i1 Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 5

6 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno donde ξ i [t i 1, t i ] es tl que αξ i ˆξ i Tenemos entonces que F αξ i αt i αt i 1 i1 F αξ i α ξ i t i t i 1 i1 F αξ i α ξ i t i t i 1 t i t i 1 i1 Tomndo un prtición sucientemente grnde F αξ i α ξ i t i t i 1 t i t i 1 i1 donde α t x t, y t y t, x t hor bien, si F M, N y αt xt, yt entonces F αt α t dt plicndo el Teorem de Green F αt α t dt F xt, yt y t, x t dt Mxt, yt, Nxt, yt y t, x t dt Mxt, yty t Nxt, ytx t dt Mxt, yt dy dt plicndo el teorem del vlor medio M dy N dx Nxt, ytdx dt dt N dx + M dy M x N M x + N N dx + M dy dx dy dx dy M x ˆξ i + N ˆξ i m por lo tnto F αt α t dt M x ˆξ i + N ˆξ i m Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 6

7 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno de mner que m F αt α t dt m F αt α t dt m M N ˆx + x ˆx M x ˆξ i + N ˆξ i M m x ˆξ i + N ˆξ i enición 1. Se F : R 2 R 2, ddo por F M, N y x, y M tl que x x, y + N x, y existen pr todo x, y. enimos l divergenci de F en x, y, que denotmos por div F x, y, como div F x, y M x x, y + N x, y Teorem de l ivergenci en el Plno Teorem 1. Teorem de l divergenci en el plno Se R 2 un región cuy fronter est positivmente orientd y que se puede ver como l imgen de l curv de clse C 1 α : [, b] R 2. Se F : R 2 R 2 un cmpo vectoril de clse C 1 denido en. Si ˆNt es el vector norml unitrio exterior, se tiene F N div F dx dy F r emostrción. Se α : [, b] R 2 un curv cerrd en R 2 tl que F r αt dd por Y el vector norml se puede escribir como αt xtî + ytĵ α t x tî + y tĵ y tî x tĵ Nt Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 7

8 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno Entonces ddo el cmpo F : R 2 R 2 como F x, y Mî + Nĵ se tiene F r F N F αt Nt dt Mxt, yt dy Nxt, ytdx dt dt plicndo el teorem de Green M x N F xt, yt y t, x tdt dt M dy N dx Mxt, yty t Nxt, ytx t dt N dx + M dy M dxdy x + N dxdy div F dxdy L generlizción de est form tres dimensiones se llm Teorem de l divergenci Guss. Ejemplo Vericremos el teorem de l divergenci con el cmpo F x, y x, y y se {x, y R 2 x + y 1, y x } un prmetrizción de l fronter serí α 1 : [, 1] R 2 dd por α 1 t t, α 2 : [, 1] R 2 dd por α 1 t 1 t, t α 1 : [, 1] R 2 dd por α 1 t, 1 t por lo tnto F α F + α 1 F + α 2 α 3 F Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 8

9 Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno en este cso se tiene que α 2 F α 1 F F t,, 1 dt F 1 t, t 1, 1 dt α 3 F F, 1 t 1, dt t,, 1 dt F t 1, t 1, 1 dt, t 1 1, dt por lo tnto el ujo trvés de será F F r F + α 1 F + α 2 F 1 α 3 El signo signic que el ujo es hci el interior de Por otro ldo div F div x, y x x + y 2 entonces div F dxdx 2 dxdy 2 dxdy 1 1 dt 1 Fcultd de Ciencis UNAM Cálculo iferencil e Integrl IV Prof. Estebn Rubén Hurtdo Cruz 9

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2 Unidd Integrl de Líne. Integrl de funciones vectoriles Cmpos Vectoriles Denición. Un cmpo vectoril en el plno R es un función F : R R que sign cd vector x D R un único vector F (x) R con F (x) = P (x)i

Más detalles

Integrales Elipticas. Longitud de una Curva

Integrales Elipticas. Longitud de una Curva Unidd 3 Función Logritmo y Exponencil 3. Logritmo trvés de l integrl. Integrles Eliptics Longitud de un Curv Se f un función continu en [, b]. Si {t, t,..., t n } es un prtición de [, b] tenemos que en

Más detalles

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE TEORÍA E CÁLCULO II PARA GRAOS E INGENIERÍA Elbord por omingo Pestn y José Mnuel Rodríguez 4.1. INTEGRALES E LÍNEA 4. INTEGRALES E LÍNEA Y E SUPERFICIE Hbitulmente suele identificrse un tryectori : [,

Más detalles

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera .7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

CALCULO VECTORIAL. Campos vectoriales

CALCULO VECTORIAL. Campos vectoriales mpos vectoriles ALULO VETORIAL Un cmpo vectoril o cmpo de vectores es un función que sign un vector un punto del plno o del espcio. Si M y N son funciones de vriles definids en un región R del plno, un

Más detalles

Sumas Superiores e inferiores (ó Sumas de Riemann)

Sumas Superiores e inferiores (ó Sumas de Riemann) Unidd 1 Integrl denid 1.2 Sums superiores e ineriores (o sums de Riemnn). Sums Superiores e ineriores (ó Sums de Riemnn) Denición 1. Se : [, b] R. Se dice que est cotd superiormente sobre [, b], cundo

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Sucesiones parte 5. a r = a m p < a. por lo tanto f es esctrictamente creciente Si 0 < a < 1, denimos f(r) = a r = 1 ( 1. = a.

Sucesiones parte 5. a r = a m p < a. por lo tanto f es esctrictamente creciente Si 0 < a < 1, denimos f(r) = a r = 1 ( 1. = a. rte 5 Lem. Se >. L función f : Q R dd or f(r) = r es estrictmente creciente en Q y si 0 < . Se r < s Q. Entonces

Más detalles

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a)

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a) Unidd 2 Teorem Fundmentl del Cálculo 2. L integrl como función del límite superior Integrndo Derivds Denición. Un función F es un ntiderivd de un función f sobre un conjunto A si tnto F, f estn denidos

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NCIONL DE FRONTER CEPREUNF CICLO REGULR 017-018 CURSO: FISIC Elementos básicos de un vector: SEMN TEM: NÁLISIS VECTORIL Origen Módulo Dirección CLSIFICCION DE LS MGNITUDES FÍSICS POR SU NTURLEZ

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

Clase 14: Teorema de Green

Clase 14: Teorema de Green lse 14: Teorem de Green.J. Vnegs 10 de junio de 008 Relcion un integrl de line lo lrgo de un curv cerrd c en el plno R con un intgrl doble en l región encerrd por. En Mtemátics 6 se extenderá este resultdo

Más detalles

Apunte sobre. Cálculo II Licenciatura en Matemática Aplicada Facultad de Ingeniería Química Universidad Nacional del litoral. 1. Integración numérica

Apunte sobre. Cálculo II Licenciatura en Matemática Aplicada Facultad de Ingeniería Química Universidad Nacional del litoral. 1. Integración numérica Apunte sobre Integrción Numéric y Polinomios de Tylor Cálculo II Licencitur en Mtemátic Aplicd Fcultd de Ingenierí Químic Universidd Ncionl del litorl 1. Integrción numéric En este tem veremos sólo dos

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Geometría diferencial de curvas y superficies - Taller 1

Geometría diferencial de curvas y superficies - Taller 1 Geometrí diferencil de curvs y superficies - Tller 1 G Pdill http://gbrielpdillleonwordpresscom Ofic 315-404 Deprtmento de Mtemátics Fcultd de Ciencis Universidd Ncionl de Colombi gipdilll@unleduco Ls

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

RESOLUCIÓN DE EJERCICIOS DE COLOQUIO CLASIFICADOS POR TEMAS

RESOLUCIÓN DE EJERCICIOS DE COLOQUIO CLASIFICADOS POR TEMAS RESOLUCIÓN E EJERCICIOS E COLOQUIO CLASIFICAOS POR TEMAS I) CIRCULACIÓN, FLUJO, IVERGENCIA Y TEOREMAS INTEGRALES II) CURVAS, SUPERFICIES, ÁREAS Y VOLÚMENES III) ECUACIONES IFERENCIALES I) CIRCULACIÓN,

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por Operdor nbl El operdor nbl es: = xˆ x + ŷ y + ẑ z Definimos el grdiente de un cmpo esclr ϕ(x ) por: ϕ =xˆ ϕ x + ŷ ϕ y + ẑ ϕ z e A (x ) =A x (x )xˆ +A y (x )ŷ +A z (x )ẑ un cmpo vectorl. L divergenci de

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA DE LA FÍSICA Índice 1. Símolos del lenguje mtemático 2. Álger 3. Geometrí 4. Trigonometrí 5. Cálculo vectoril 6. Cálculo diferencil 2 1 Símolos del lenguje mtemático = es igul, equivle x 0 incremento de

Más detalles

Integral de ĺınea. Tema Caminos y curvas en IR n.

Integral de ĺınea. Tema Caminos y curvas en IR n. Tem 3 Integrl de ĺıne 3.1 minos y curvs en IR n. Definición 3.1 Se [, b] IR, diremos que α: [, b] IR n es un cmino en IR n si α es continu en [, b]. A los puntos α y αb de IR n los llmremos extremos del

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Tem 10 Aplicciones de l integrl. 10.1. Áre de figurs plns. 10.1.1. Áre encerrd entre un curv y el eje de bsciss. Se f : [, b] R un función integrble, tl que f(x 0 x [, b]. El áre del recinto C = {(x, y

Más detalles

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por Operdor nbl El operdor nbl es: = xˆ x + ŷ y + ẑ z Definimos el grdiente de un cmpo esclr ϕ(x ) por: ϕ =xˆ ϕ x + ŷ ϕ y + ẑ ϕ z Se A (x ) =A x (x )xˆ +A y (x )ŷ +A z (x )ẑ un cmpo vectorl. L divergenci de

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

1 Métodos Matemáticos I. Parte: Integrales de ĺınea y superficie. I.T.I. en Mecánica

1 Métodos Matemáticos I. Parte: Integrales de ĺınea y superficie. I.T.I. en Mecánica 1 Métodos Mtemáticos I Prte II Integrles de ĺıne y superficie Prte: Integrles de ĺıne y superficie I.T.I. en Mecánic 2 Métodos Mtemáticos I : Integrl de ĺıne Tem 3 Integrl de ĺıne 3.1 minos y curvs en

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencil e integrl 4 Guí 2. emuestr el cso del teorem de Fubini que no se demostró en clse. Concretmente: se R = A B R n un rectángulo compcto con A y B rectángulos de dimensión menor. Supongmos

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

Funciones Vectoriales

Funciones Vectoriales Apendice 2 Funciones Vectoriles Definition 1. Un función f : I R R n cuy regl de correspondenci es ft = f 1 t,f 2 t,...,f n t se denomin función vectoril de un vrible rel t. 1. El nombre de función vectoril

Más detalles

4. Definición: Convergencia uniforme de una sucesión de funciones

4. Definición: Convergencia uniforme de una sucesión de funciones 1. Teorem de l funcion invers Se A un ierto de R N, f : A R m un funcion de clse n (n 1), se A tl que det(jf()) 0. Entonces existe un entorno U de tl que U A tl que: (1). det(jf (x)) 0 pr todo x U (2).

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: MAT 251 Integrción numéric: Regl del trpecio Método de Romberg Joquín Peñ (CIMAT) Métodos Numéricos (MAT 251) 19.10.2011 1 / 14 Integrción numéric Dd un función f : [, b] R continu, queremos

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst

Más detalles

Parte 7. Derivación e integración numérica

Parte 7. Derivación e integración numérica Prte 7. Derivción e integrción numéric Gustvo Montero Escuel Técnic Superior de Ingenieros Industriles Universidd de Ls Plms de Grn Cnri Curso 006-007 Los problems de derivción e integrción numéric El

Más detalles

MOMENTOS Y CENTROS DE MASA

MOMENTOS Y CENTROS DE MASA MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.2. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.2. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.2. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 5.2.1. L integrl como medid de áres. L definición de integrl se hce con un procedimiento

Más detalles

ANALISIS MATEMATICO II INTEGRAL DEFINIDA

ANALISIS MATEMATICO II INTEGRAL DEFINIDA ANALISIS MATEMATICO II INTEGRAL DEFINIDA Mrí Susn Montelr Fcultd de Ciencis Excts, Ingenierí y Agrimensur - UNR El problem del áre Dd f : [, b] R, tl que f(x) 0 pr todo x [, b] b x Se f un función no negtiv

Más detalles

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx Cpítulo 3 Integrción Numéric 3.1. Introducción Ls integrles que vmos trtr de resolver numéricmente son de l form f(x)dx donde [, b] es un intervlo finito. Sbemos que l integrl definid (de Riemnn) de un

Más detalles

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de, Deprtmento de Mtemátics I.E.S. Vlle del Jerte (Plsenci) CÁLCULO INTEGRAL 2.- INTEGRAL DEFINIDA. Definición: Sen y dos números reles

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn Mrí Muñoz Guillermo mri.mg@upct.es U.P.C.T. Mtemátics I (1 o Ingenierí Electrónic Industril y Automátic) M. Muñoz (U.P.C.T.) L integrl de Riemnn Mtemátics I 1 / 33 Sums superior e inferior

Más detalles

1.6. Integral de línea de un Campo Vectorial Gradiente.

1.6. Integral de línea de un Campo Vectorial Gradiente. 1.6. Integrl de líne de un mpo Vectoril Grdiente. n Definición. Se l función esclr f definid por f : D R R, un función continumente diferencible, y se l curv, un curv prcilmente suve definid prmétricmente

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y fx) y el eje OX desde y f x f x un punto hst

Más detalles

Integración numérica I

Integración numérica I Tems Regl del rectángulo. Regl del trpecio. Cpciddes Conocer y plicr l regl del rectángulo. Conocer y plicr l regl del trpecio. 1.1 Introducción Como y se h visto, pr clculr el vlor excto de un integrl

Más detalles

3 Funciones con valores vectoriales

3 Funciones con valores vectoriales GTP 3. Cálculo II - 20 3. Tryectoris: velocidd y longitud de rco 3 Funciones con vlores vectoriles 3. Tryectoris: velocidd y longitud de rco. Pr cd un de ls siguientes curvs determinr los vectores velocidd

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 014 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.c Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I semestre

Más detalles

INTEGRACIÓN DE FUNCIONES COMPLEJAS SOBRE CURVAS

INTEGRACIÓN DE FUNCIONES COMPLEJAS SOBRE CURVAS INTEGRCIÓN DE FUNCIONES COMPLEJS SOBRE CURVS. Curvs de clse C trozos en R n Recordemos que un curv prmetrizd de clse C en R n es un plicción : [, b] R n de clse C, donde, b R, < b, tl que (t) 0 pr todo

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

(Chpter hed:)integrles MULTIPLES El concepto de integrl de un función de un sol vrible sobre un intervlo estudido en el Cálculo I, se extiende de mner nturl primero funciones de dos vribles sobre un región

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas.

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas. Semn 2 - Clse 5 15/1/1 Tem 1: Series Series de Tylor Antes de comenzr con l series de Tylor, repsemos lguns propieddes importntes de ls series infinits. 1. Algebr de series de potencis El álgebr elementl

Más detalles

P 1 P 2 = Figura 1. Distancia entre dos puntos.

P 1 P 2 = Figura 1. Distancia entre dos puntos. ANÁLISIS MATEMÁTICO BÁSICO. LONGITUD DE UNA CURVA PARAMÉTRICA. Ddos dos puntos P 1 = (x 1, x 2,..., x n ), P 2 = (y 1, y 2,..., y n ) R n (pensemos en puntos del espcio, de R 3 ) sbemos clculr l distnci

Más detalles

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1 ELIPSE. Es el conjunto de todos los puntos con l propiedd de que l sum de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, myor que l distnci entre los dos puntos. L elipse

Más detalles

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{}

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{} Vmos lulr ls siguientes integrles de tryetori ) Se α(t) = (os(t), sin(t)) on t [, π ] y f(x, y) = x + y Sol. Tenemos que f(α(t)) = os(t) + sin(t) por otro ldo α (t) = ( sin(t), os(t) α (t) = ( os(t)) +

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

Examen de Admisión a la Maestría 1 de Julio de 2015

Examen de Admisión a la Maestría 1 de Julio de 2015 Exmen de Admisión l Mestrí 1 de Julio de 215 Nombre: Instrucciones: En cd rectivo seleccione l respuest correct encerrndo en un círculo l letr correspondiente. Puede hcer cálculos en ls hojs que se le

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

1. Introducción: longitud de una curva

1. Introducción: longitud de una curva 1. Introducción: longitud de un curv Integrles de L ide pr clculr l longitud de un curv contenid en el plno o en el espcio consiste en dividirl en segmentos pequeños, escogiendo un fmili finit de puntos

Más detalles

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite INTEGRALES LECCIÓN Índice: El prolem del áre. Ejemplos. Prolems..- El prolem del áre Se f un función continu y no negtiv en [,]. Queremos clculr el áre S de l región del plno limitd por l gráfic de f,

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Análisis de Señles en Geofísic 6 Clse Fcultd de Ciencis Astronómics y Geofísics, Universidd Ncionl de L Plt, Argentin Trnsformd Integrl de Fourier Recordemos que un función f( t), definid en un dominio

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

0.1 Sustituciones trigonométricas.-

0.1 Sustituciones trigonométricas.- Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC.. Sustituciones trigonométrics.- Cso.- El integrndo contiene un epresión de l form +. Se sugiere l sustitución = tn u d = sec udu de donde Z + = sec u d ( +)

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

es una dirección de movimiento en el tiempo t.

es una dirección de movimiento en el tiempo t. Algunos resultos sobre erivs e funciones vectoriles Definición: Si r(t) es un vector e posición e un prticul que se mueve lo lrgo e un curv suve en el espcio, entonces: ) l veloci es l eriv e l posición

Más detalles

1. Función primitiva. Integral de una función.

1. Función primitiva. Integral de una función. . Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí

Más detalles

Retos Matemáticos visuales

Retos Matemáticos visuales Retos Mtemáticos visules Bdjoz, 5 de junio de 207 Dpto. de Mtemátics Univ. de Extremdur Retos Mtemáticos visules Dpto. de Mtemátics Univ. de Extremdur «Retos Mtemáticos visules. 5 de junio de 207 Tem

Más detalles

Series de Potencias y Series de Taylor. 1. Algebra y convergencia de series de potencias

Series de Potencias y Series de Taylor. 1. Algebra y convergencia de series de potencias Semn 2 - Clse 5 19/09/08 Tem 1: Series Series de Potencis y Series de Tylor 1. Algebr y convergenci de series de potencis El álgebr elementl de series se puede reconsiderr l luz de ls series de potencis.

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores Semn 1: Tem 1: Vectores 1.1 Vectores dición de vectores 1.2 Componentes de vectores 1.3 Vectores unitrios 1.4 Multiplicción de vectores Vectores Los vectores son cntiddes que tienen tnto mgnitud como dirección

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

4.6. Teorema Fundamental del Cálculo

4.6. Teorema Fundamental del Cálculo Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

Identificación de propiedades de triángulos

Identificación de propiedades de triángulos Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles