ANÁLISIS REGIONAL DE LA POBREZA PARA EL COLECTIVO DE LA TERCERA EDAD: INFERENCIA CLÁSICA vs. TÉCNICAS BOOTSTRAP

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS REGIONAL DE LA POBREZA PARA EL COLECTIVO DE LA TERCERA EDAD: INFERENCIA CLÁSICA vs. TÉCNICAS BOOTSTRAP"

Transcripción

1 ANÁLISIS REGIONAL DE LA POBREZA PARA EL COLECTIVO DE LA TERCERA EDAD: INFERENCIA CLÁSICA vs. TÉCNICAS BOOTSTRAP Ortz Serrano, Salvador Unversdad Autónoma de Madrd. Departamento de Economía Aplcada. Tlfn.: Fax: e-mal: De Lucas Santos, Sona Unversdad Autónoma de Madrd. Departamento de Economía Aplcada. Tlfn.: Fax: e-mal: CÓDIGO JEL: I3, C13, C63 RESUMEN En este trabajo se analza el perfl regonal de la pobreza en los hogares encabezados por mayores de 65 años, un colectvo especalmente sensble a stuarse por debajo del umbral de pobreza. Para ello, a partr de los datos del fchero longtudnal de la Encuesta Contnua de Presupuestos Famlares del año, realzada por el Insttuto Naconal de Estadístca, se estman índces de la famla de Foster, Greer y Thorbecke que permten estudar la ncdenca, ntensdad y desgualdad de la pobreza. El objetvo de este trabajo es doble. Por un lado, se pretende obtener un mapa de la dstrbucón regonal de la pobreza para el colectvo de la tercera edad en España. Los resultados muestran que las comundades autónomas con mayores nveles de pobreza son Castlla La Mancha, Extremadura y Andalucía. Por el contraro, las comundades autónomas con menores nveles de pobreza son Navarra, Madrd y País Vasco. Por otro lado, se pretende comparar la precsón de las técncas de nferenca cláscas con técncas basadas en métodos computaconales. Para ello, se estman los índces de pobreza medante el cálculo de ntervalos de confanza utlzando dos métodos alternatvos. En prmer lugar, se obtenen los ntervalos medante la determnacón de dstrbucones asntótcas. Posterormente, se determnan los ntervalos utlzando metodología del bootstrap percentl. La comparacón de estos métodos de estmacón muestra cómo para muestras pequeñas, las técncas bootstrap permten obtener resultados más adecuados. 1 (3)

2 1.- INTRODUCCIÓN En los últmos años se han multplcado los trabajos que analzan la pobreza en España desde una perspectva estadístca, gracas, entre otras cosas, a la dsponbldad de nformacón de caldad para llevar a cabo este tpo de estudos. Cantó y otros () realzan una revsón bastante exhaustva de este tpo de trabajos durante las últmas décadas. Tal y como plantean estos autores el detonante de la explosón de este tpo de trabajos puede stuarse en la dsponbldad de los datos de las Encuestas Báscas de Presupuestos Famlares (EBPF) de , y , realzadas por en Insttuto Naconal de Estadístca (INE). La encuesta de fue la últma encuesta básca que se realzó y a partr de entonces el INE se planteó realzar encuestas de carácter contnuo. Sn embargo, esta nueva fuente de nformacón hace dfícl la comparacón con las encuestas báscas en lo que se refere a estudos estátcos de pobreza. A partr del tercer trmestre de 1997, el INE comenza a realzar una nueva Encuesta Contnua de Presupuestos famlares (ECPF). Esta encuesta, aunque trmestral, es capaz de proporconar datos anuales a través del fchero longtudnal proporconado por el INE, que permte una comparacón válda con las anterores Encuestas Báscas de Presupuestos Famlares. Muchos de los trabajos realzados en España sobre el análss de la pobreza han sdo enfocados en analzar colectvos especalmente sensbles. Ejemplos de éstos son los trabajos de Cantó y Mercader- Prats (1998, 1999 y 1), que se centran en la ncdenca de la pobreza sobre la poblacón nfantl. Tohara (1993) y Cantó (1997) analzan de manera conjunta el fenómeno del desempleo y de la pobreza. Gradín y otros (6) analzan las dferencas de género en la ncdenca de la pobreza. Otro aspecto nteresante del análss de la pobreza es el que se refere al análss regonal. En lo que a España se refere, son varos los trabajos que analzan las dferencas regonales. Se pueden destacar, entre otros, los trabajos de Ruz-Castllo (1987) que utlza datos de la EBPF de , Ruz- Huerta y Martínez (1994) que usan las EBPF de y de 199-9, y Martín-Guzmán y otros (1996) realzan comparacones regonales con datos de las EBPF de , y Del Río y Ruz-Castllo (1) realzan comparacones regonales utlzando curvas TIP a partr de datos de las ECPF de y Ayala y Palacos () utlzan los programas autonómcos contra la pobreza para establecer las líneas de pobreza. Martínez (5) plantea líneas de pobreza dferentes para cada comundad autónoma y realza un análss utlzando datos fscales comparando los resultados del análss de pobreza con el PIB per cápta de cada CC.AA. En el trabajo de Aldás y otros (6) se analza el gasto de las comundades autónomas españolas a partr de las ECPF desde 1998 hasta ; además de (3)

3 un análss exhaustvo del perfl del gasto de los hogares por CC.AA. realzan un análss comparatvo, en lo que a desgualdad se refere, para este período. En este trabajo se analza la dstrbucón regonal de la pobreza en España para el colectvo de los hogares encabezados por mayores de 65 años. Este tpo de hogares, especalmente sensble a estar por debajo del umbral de pobreza, ha do aumentando a lo largo de los últmos años en España 1. Para llevar a cabo este estudo se dspone de la nformacón del fchero longtudnal de la Encuesta Contnua de Presupuestos Famlares llevada a cabo por el Insttuto Naconal de Estadístca para el año. En el análss de la pobreza realzado, una parte mportante del msmo es la utlzacón de la nferenca estadístca a la hora de estmar los nveles de pobreza para cada una de las comundades autónomas. Concretamente, se determnarán los ntervalos de confanza para dstntos ndcadores utlzando dos técncas de nferenca estadístca alternatvas: la que denomnaremos nferenca clásca, basada en dstrbucones asntótcas, y las técncas basadas en métodos computaconales. El objetvo de este trabajo es doble. Por un lado, se pretende obtener un mapa de la dstrbucón regonal de la pobreza para el colectvo de la tercera edad en España. Por otro lado, se pretende comparar la precsón de las técncas de nferenca cláscas con técncas basadas en métodos computaconales..- MARCO TEÓRICO - METODOLOGÍA A lo largo del tempo se han producdo avances metodológcos que han supuesto una clara mejoría en la medcón de la pobreza, aunque sguen mantenéndose una sere de aspectos en los que el nvestgador tene que decdr el camno a segur. Estas decsones que deben adoptarse (en la mayoría de los casos de manera arbtrara ya que no exste consenso sobre cuál es la mejor eleccón) se referen a la eleccón del ndcador monetaro de benestar, a la determnacón de la línea de pobreza, a la eleccón del elemento objeto de estudo (hogares o ndvduos) y a la seleccón del índce para evaluar la pobreza. Respecto a la prmera cuestón, los ndcadores más frecuentemente utlzados son los ngresos y los gastos de los hogares o ndvduos de la poblacón que se pretende estudar. La eleccón de uno u otro está sujeta, por un lado, a las ventajas y desventajas de cada uno de ellos, sn exstr consenso sobre cuál de ellos es mejor. Aunque en prncpo el ngreso parece una mejor opcón para determnar los recursos de un hogar o ndvduo, de acuerdo con la teoría de la renta permanente de Fredman, el nvel de gastos es más estable y por tanto más acorde a la dea de renta permanente (ya que un hogar o ndvduo no 1 Según la Encuesta Básca de Presupuestos Famlares de , el 5% de los hogares en España estaban encabezados por mayores de 65 años. Esta cfra se ncrementa hasta un 7% según los datos de la Encuesta Contnua de Presupuestos Famlares de Y llega hasta un 3% según los datos de esa msma encuesta para el año. 3 (3)

4 reducrá su nvel de gasto ante una caída transtora de los ngresos y por tanto no reducrá su nvel de benestar). Por otro lado, y de manera especal, la decsón de cuál utlzar dependerá de las característcas partculares de la fuente de datos utlzada en cada estudo concreto. En este trabajo, dado que la fuente utlzada son las Encuestas de Presupuestos Famlares del INE, se consderará como ndcador el gasto total, ya que ésta es la varable que se recoge con un mayor grado de detalle. En cuanto a la segunda decsón a adoptar, la línea de pobreza, exsten dferentes opcones. De manera general, se pueden dstngur dos tpos báscos de umbrales o líneas de pobreza: aquellos de carácter objetvo (que, a su vez, se pueden dvdr en umbrales relatvos y umbrales absolutos, además de un tercero que sería una combnacón de los dos) y aquellos de carácter subjetvo. Los umbrales de pobreza objetvos se determnan a partr de la nformacón objetva que proporconan los hogares o ndvduos (como son los datos que ofrece el hogar o ndvduo sobre ngresos y gastos en las dstntas encuestas drgdas a hogares). Los umbrales subjetvos, por el contraro, se determnan a partr de la percepcón de los hogares o ndvduos sobre su stuacón y necesdades. En el caso de las líneas de pobreza relatvas, para determnar el umbral de pobreza se suele tomar una determnada fraccón de una medda de poscón central de los ngresos o gastos equvalentes. Es frecuente el uso del 5 o 4 por cento de la meda de los ngresos o gastos, o el 6 por cento de la medana, más robusta que la meda. Ésta últma es la utlzada con mayor frecuenca en las últmas nvestgacones y será la que se consdere en la parte empírca de este trabajo. Otra decsón mportante, y no exenta tampoco de problemas, es la eleccón del elemento objeto de estudo: el hogar o el ndvduo. S ben la pobreza puede consderarse como un concepto esencalmente ndvdual, la mayoría de las fuentes de nformacón sumnstran datos sobre hogares (este es el caso de las Encuestas de Presupuestos Famlares utlzados en este trabajo). Por tanto, habrá que decdr s se toman los hogares como elemento objeto de estudo o s, por el contraro, se determna a partr de los datos referdos a hogares, sus correspondentes valores para los ndvduos. En este paso de hogar a ndvduo habrá que tener en cuenta las dferencas de necesdades entre los ndvduos pertenecentes al hogar, las economías de escalas que se producen dentro del hogar, y cómo se dstrbuyen los recursos entre los dstntos membros del hogar. Aquí entran en juego las escalas de equvalenca cuyo objetvo es llevar a cabo una normalzacón que permta el análss comparatvo de hogares con dstntas composcones. Las escalas de equvalenca actúan de la sguente manera: se toma un hogar de referenca, que normalmente es un hogar formado por un solo membro adulto. Para cada hogar, en funcón de su tamaño 4 (3)

5 y de sus característcas demográfcas, se determnan sus necesdades con relacón al hogar de referenca. Una escala de equvalenca amplamente utlzada es la propuesta por Coutler, Cowels y Jenkns (199) y otros. Esta escala consste en suponer que los hogares dferen úncamente en el número de membros. Por ello la escala que proponen sólo depende del número de membros del hogar y de un parámetro mayor o gual a cero que determna el grado de economías de escala que se dsfruta dentro del hogar: E s = E(s,e) Según esta funcón, el tamaño equvalente del hogar será tan sólo funcón del tamaño (s) y del parámetro e. La funcón E s es crecente en e y en s y admte que el hogar de referenca sea el formado por un solo membro, de manera que E 1 =1. Para determnar el ngreso o gasto equvalente del hogar habrá que dvdr el ngreso o el gasto por el tamaño equvalente: y e = y E s, Un caso partcular de esta escala de equvalenca es la propuesta por Buhman y otros (1988) donde la forma funconal de E s sería: E s = s e Esta opcón ha sdo amplamente utlzada ya que permte una fácl nterpretacón en térmnos de economías de escala en funcón del valor del parámetro. El valor ntermedo de este parámetro e=,5 es el valor que se utlza de manera más habtual en los últmos trabajos y será el que utlcemos en este trabajo. Exsten dversos trabajos que analzan el efecto de la utlzacón de dstntas escalas de equvalenca donde se llega a la conclusón de que no hay nnguna que se pueda consderar superor a otras. En estos trabajos se observa que, aunque a nvel de mcrodato el uso de las escalas hace que las ordenacones de los hogares en cuanto a gasto o ngreso camben, sn embargo, a nvel agregado no se producen grandes dferencas. La últma decsón que habrá que tomar, desde esta aproxmacón al concepto de pobreza, es la que se refere a la forma de evaluar las dstntas dmensones de la pobreza: ncdenca, ntensdad y desgualdad. En este sentdo, la lteratura proporcona gran varedad de meddas que permten analzar tales dmensones. En este trabajo se utlzan la famla de índces de Foster, Creer y Thorbeke (1984). Estos índces que se utlzarán aquí han sdo selecconados atendendo, por un lado, a la necesdad de abarcar todas las dmensones de la pobreza y, por otro lado, a las propedades que cumplen. Una de sus En Martín-Guzmán y otros (1996) puede verse el efecto de dferentes escalas de equvalenca. 5 (3)

6 prncpales propedades es que son adtvamente descomponbles, lo que permte determnar la aportacón de cada CC.AA. al índce general, así como facltar la determnacón asntótca de su dstrbucón en la aplcacón de nferenca estadístca. Dchos índces quedan defndos a partr de la sguente expresón: α 1 q 1 z y FGTα ( y; z) =, α n > = 1 z, donde según el valor de α (parámetro de aversón a la desgualdad) se obtenen dstntos índces. A mayores valores de α más mportanca relatva se le da a los desnveles de pobreza relatva mayores. Tambén se puede comprobar que para α gual a uno, el índce muestra la proporcón de pobres 3. Para α gual a dos el índce es gual al producto de la proporcón de pobres por el desnvel de pobreza 4. Mentras que para un valor de α gual a tres el índce es: FGT H I I CV p 3 = + (1 ), Como se observa, ncorpora un índce de desgualdad en el índce de pobreza (el coefcente de varacón de Pearson (CV)), recogendo, de esta manera, ese aspecto de la pobreza. Estos índces de pobreza serán calculados a partr de los datos de la correspondente Encuesta de Presupuestos Famlares. Por tanto, serán estmacones de los valores poblaconales y por ello, es oblgado estudar su precsón a partr de herramentas de nferenca estadístca que permtan establecer la relevanca estadístca de las dferencas observadas. A contnuacón se descrben las dos técncas de nferenca utlzadas..1 Inferenca clásca El análss nferencal de los índces de pobreza según esta metodología se basa en el cálculo de las dstrbucones asntótcas de los estmadores de las meddas de pobreza 5. Los índces utlzados en este trabajo son índces descomponbles adtvamente del tpo: G z = g ( z, y) f ( y) dy, o 3 q H =, donde q es el número de pobres y n el total de elementos. n n z y 4 1 z = FGT = HI; I = donde I es el desnvel de pobreza, z es el umbral de pobreza e y es la renta del ndvduo -ésmo. q 5 Desarrollos más completos los encontramos en Kakwan (1989); Bshop, Chow y Zheng (1995); Bshop, Formby y Zheng (1997); Rongve (1997); Davdson y Duclos (); Formby, Km y Zheng (1) y Schluter y Trede (). 6 (3)

7 donde z es el umbral de pobreza, f(y) es la funcón de densdad de la varable Y (ndcador monetaro consderado) y ( z y) g, es una funcón del valor de la varable Y y del umbral de pobreza. Para este tpo de índces se va a segur la metodología propuesta por Kakwan (1989), lo que va a permtr determnar los ntervalos de confanza para las estmacones de los índces así como realzar contrastes de hpótess para los msmos. Por ello, el estudo de este tpo de índces parte de una muestra aleatora smple de la varable Y (ndcador monetaro), Yn = y1, y,, yn, obtenda de una determnada poblacón con esperanza µ y varanza σ. S se defne por G una medda de pobreza y por Ĝ el valor de la medda para la muestra Y n, se demuestra que ( ˆ TCL ) (, σ ( ) ) n G G N G Además, s ˆ σ ( G) es un estmador consstente de ˆ σ ( G), entonces se puede obtener un ˆ estadístco t que permte realzar análss nferencales para la medda de pobreza G: Gˆ G TCL t = N(,1), SE( Gˆ ) ˆ ( ˆ ˆ σ G) donde SE( G) = n Con esta metodología se determnan las dstrbucones asntótcas para cualquer índce de la famla de los índces de pobreza FGT α, adtvamente descomponbles, cuya estmacón muestral vendrá dada por: q ˆ 1 G = g( y, z), n = 1 que consderando: g( y, z) s y < z M = o. c. El estmador de G es: 1 n n = 1 G = M, que es un estmador nsesgado ya que su esperanza es el verdadero valor de G: n ˆ 1 1 E( G) = E( M ) = ne( M ) = E( M ) n n = 1 sendo E( M ) = Mf ( y) dy = g( y, z) f ( y) dy = G + z Por otro lado, la varanza de la varable M será: 7 (3)

8 Sendo la estmacón de dcha varanza: z Var( M) E M G = = g ( y, z) f ( y) dy G [ ] q 1 Var ˆ ( M ) (, ) ˆ = g y z G n = 1 Tal y como se ha construdo Ĝ, por el Teorema Central del Límte se obtene que ( ) ( ˆ TCL n G G) N, Var( M ), y a partr de esta dstrbucón asntótca se determna la expresón y dstrbucón del estadístco t que permtrá realzar análss nferencales para los índces G: Gˆ G n( Gˆ G) t = = N(,1) ( ˆ a SE G) Var ˆ ( M ) En concreto, para la famla de índces FGT α la funcón g(y,z) toma la sguente expresón: z y g( y, z) = z α 1 y por tanto α 1 q ˆ 1 z y G = FGT ˆ n = = 1 z α Por tanto, la varanza para este tpo de índces será la sguente: q q ( α 1) 1 ˆ 1 y z ˆ Var ˆ ( M ) = g ( y, z) G FGTα n = = 1 n = = 1 z = FGT ˆ FGT ˆ ( α 1) + 1 α y consguentemente el estadístco t vendrá dado por: G ˆ G n( G ˆ G) n ( FGT ˆ ) α FGTα t = = = N(,1) ( ˆ a SE G) Var ˆ ( M ) ˆ ˆ FGT FGT ( α 1) + 1 α. Metodología Bootstrap La aplcacón del bootstrap, para el caso de datos ndependentes, fue ntroducda por Efron (1979). Se trata de un método de remuestro desde los propos datos, a partr del cual se pueden obtener meddas de precsón sobre las estmacones estadístcas realzadas, o ntervalos de confanza para los estadístcos objeto de estudo. Las ventajas que aporta sobre los métodos tradconales, cuando se usa en modo no paramétrco, mplca el no tener que hacer supuestos sobre la forma de la poblacón a estudar; mentras que s se usa en modo paramétrco, ello puede aportar más precsón que las fórmulas tradconales en problemas donde se conoce algo de la forma de la funcón de dstrbucón. En concreto, Efron y Tbshran (1986, 1993) 8 (3)

9 demuestran que es un método fable y consstente para la estmacón de dstrbucones de un estmador o de un test estadístco; de hecho es más precso en muestras fntas que las aproxmacones asntótcas, según señala Horowtz (1). Formalmente, el método del bootstrap consste en, a partr del vector de datos observado x x1 x x N = (,,, ), obtener el estadístco de nterés s( x ). Para ello, remuestreando aleatoramente desde el vector de datos orgnales, N veces con reemplazamento, se obtene la muestra bootstrap * * * * x = ( x1, x,, x N ). Repténdose dcha operacón B 6 veces, se obtene el estmador bootstrap que se corresponde con alguna medda, como puede ser la meda o la desvacón estándar, de los valores * * s( x1 ),, s( x B ) de cada muestra bootstrap 7. En el presente trabajo, para cada muestra bootstrap se obtenen los índces de pobreza FGT 1, FGT y FGT 3, para el total de España y por comundades autónomas 8. El estadístco de nterés será la meda de cada uno de los índces de pobreza. La estmacón del estadístco bootstrap se realza en modo no parámetrco, ya que no se establece nngún supuesto sobre la dstrbucón de los datos. Para la comparacón de dchas estmacones con la nferenca clásca, se analzan los ntervalos de confanza medante el método percentl, que obtene el ntervalo percentl (1 α) como: donde θ %nf *( α ) *(1 α ) ICp = [ θ %nf ; θ %sup ] [ θ B, θ B ], y θ %sup son los percentles α y (1 α), respectvamente, de la funcón de dstrbucón acumulada F. Estos percentles se aproxmarían a los valores teórcos correspondentes, dada una dstrbucón conocda, y por defncón serían *( α ) θ 1 B = F ( α) y *(1 α ) θ 1 B = F (1 α ). En consecuenca, con este método se evta establecer supuestos a pror sobre la funcón de dstrbucón de los datos. La técnca bootstrap se ha desarrollado en MATLAB, un entorno computaconal, amplamente extenddo, aberto, efcente y de alta caldad numérca. Ello ha permtdo realzar un número elevado de réplcas de cada muestra, en concreto 1, con un tempo de cómputo reducdo. 6 A la hora de utlzar en la práctca el bootstrap, una de las prmeras cuestones que se plantea es decdr cuántas réplcas se van a realzar. Es claro que lo deal es que el número de las réplcas sea lo mayor posble, sn embargo, se debe consderar que el tempo de cómputo depende de lo que se tarde en evaluar cada una de las réplcas bootstrap, y que ncrementa lnealmente con el número de las msmas. Efron y Tbshran (1993) han explorado amplamente esta cuestón y, basándose en su experenca, señalan que el número de réplcas para la estmacón de errores estándar suele estar entre 5 y, mentras que para estmar ntervalos de confanza el número requerdo de réplcas es necesaramente mayor de. 7 Para más detalles ver Efron y Tbshran (1993). 8 Aplcacones de la metodología bootstrap en el análss de la pobreza pueden verse en Gradín (1) y Bemen (). 9 (3)

10 3.- ANÁLISIS EMPÍRICO Base de datos Para realzar el análss empírco se utlza el fchero longtudnal de la Encuesta Contnua de Presupuestos Famlares realzada por el INE para el año, con una muestra superor a 9 hogares. El objetvo de esta encuesta es conocer el consumo de los hogares españoles con dversas fnaldades: la determnacón del consumo para la contabldad naconal, así como determnar el sstema de ponderacones para el cálculo del IPC. Además de las varables destnadas a conocer el consumo de los hogares, hay una gran cantdad de nformacón adconal sobre condcones de vda que permte hacer dversos análss sobre el comportamento de los hogares españoles. El hecho de que este tpo de encuestas estén centradas en el cálculo del consumo, hace que el ndcador que se utlce para estudos de desgualdad y pobreza sea el del gasto en vez del ngreso, ya que, aunque se recoge este dato, la caldad es mucho mayor para el gasto. Para llevar a cabo el estudo se selecconarán, de la muestra total, los hogares cuyo sustentador prncpal sea mayor de 65 años. Esto hace que la muestra con la que se trabaje sea de 965 hogares Metodología Como se ha expuesto en el epígrafe dedcado al marco teórco, en los análss estadístcos de pobreza hay que tomar una sere de decsones en cuanto al ndcador de benestar, el umbral de pobreza y los ndcadores de pobreza utlzados. En este trabajo se ha optado por tomar como ndcador de benestar el gasto equvalente de los hogares, obtendo al dvdr el gasto total del hogar entre la raíz cuadrada del número de membros. El umbral de pobreza consderado es el 6% de la medana de la dstrbucón del gasto equvalente de los hogares. Como ndcadores de pobreza se han utlzado tres con la ntencón de abarcar las dferentes dmensones de la pobreza: ncdenca, ntensdad y desgualdad. Concretamente los ndcadores elegdos son: el índce FGT 1 (proporcón de pobres), que medrá la ncdenca de la pobreza; el índce FGT que, además de la ncdenca, tene en cuenta la ntensdad de la msma; y el índce FGT 3, que analza la desgualdad entre los hogares pobres. La estructura de este epígrafe es la sguente: en la prmera parte se calcularán los índces de pobreza para el colectvo elegdo tanto para el total naconal como para cada una de las comundades autónomas de manera que se obtenga un perfl regonal de la pobreza para el colectvo de mayores de 65 años, mentras que en la segunda parte se compararán los resultados de nferenca estadístca aplcando 1 (3)

11 por un lado la metodología clásca y por otro la metodología bootstrap. Para ello se obtendrán los ntervalos de confanza para cada uno de los índces Dstrbucón regonal de la pobreza en España en para hogares encabezados por mayores de 65 años 9 Para determnar el perfl de la pobreza en España para los hogares encabezados por mayores de 65 años se estuda el valor de los índces en las dstntas comundades autónoma. La nferenca estadístca nos ayudará a la hora de determnar dferencas sgnfcatvas entre CC.AA. El índce FGT 1 ndca la proporcón de pobres, según este ndcador, el 5% de los hogares españoles encabezados por mayores de 65 años están por debajo del umbral de pobreza de la socedad española. Esta proporcón es sensblemente superor a la del total de los hogares españoles que se stúa en el 15%. No obstante, su dstrbucón a lo largo del terrtoro naconal no es homogénea. Las comundades con mayor ncdenca de la pobreza, en hogares encabezados por mayores de 65 años, son Extremadura (cas un 5% de hogares pobres), Castlla La Mancha (43%) Andalucía (4%) y Castlla León (35%). A contnuacón aparece un grupo de comundades con ncdenca de la pobreza ntermeda formado por Galca (3%), Canaras (8%) Comundad Valencana (7%), Islas Baleares (4%) y Asturas (3%). Un tercer grupo de regones con nveles ntermedos de pobreza pero por debajo de la meda naconal lo formarían Cataluña (%), Cantabra (19%), Aragón (19%), Murca (18%) y La Roja (17%). Por últmo, el grupo de las regones con menos ncdenca de la pobreza lo formarían Ceuta y Mellla (11%), Navarra (9%), Madrd (6%) y País Vasco (1%). Esta ordenacón de las comundades autónomas, para los hogares cuyo sustentador prncpal es mayor de 65 años, es parecda a la relatva al total de la poblacón española. Las úncas excepcones se referen a Ceuta y Mellla, Islas Baleares y Cataluña. En lo referente a Ceuta y Mellla, esta comundad autónoma presenta unos nveles de ncdenca de pobreza por encma de la meda naconal cuando se consderan todos los hogares, formando parte del grupo de comundades con nveles de pobreza ntermeda por encma de la meda naconal y, sn embargo, para la poblacón mayor de 65 años está stuada dentro del grupo de comundades con menores nveles de ncdenca de la pobreza. En el caso opuesto nos encontramos a las comundades de Islas Baleares y Cataluña. Estas regones presentan, en térmnos relatvos, peor nvel en cuanto a la ncdenca de la pobreza, ya que ocupan peores poscones 9 Ver tablas 1 y del anexo (3)

12 relatvas dentro del conjunto de regones españolas cuando se consderan los hogares encabezados por mayores de 65 años. Cabe destacar que, aunque en general la ncdenca de la pobreza es mayor entre la poblacón mayor de 65 años s se compara con el total de hogares, esta regla no se cumple para Ceuta y Mellla donde es sensblemente nferor (16% frente al 11%), n para el País Vasco donde es smlar (cerca del 1% en ambos casos). S nos centramos en el índce FGT, que además de la ncdenca de la pobreza, tene en cuenta la ntensdad de la msma, observamos cómo la poscón relatva de las comundades camba. Para este índce se observa un grupo de comundades con altos nveles de pobreza formado por Castlla - La Mancha, Extremadura, Andalucía, Castlla León y Galca. A contnuacón estaría un grupo con nveles ntermedos formado por Cantabra, Comundad Valencana, Aragón y Asturas. En este grupo hay que destacar el caso de Cantabra y Aragón que empeoran bastante su poscón relatva para este índce respecto al índce FGT 1, lo que ndca que tenen nveles de ntensdad de la pobreza altos, mayores que el resto de comundades. El sguente grupo, formado por regones con nveles ntermedos de pobreza por debajo de la meda naconal, estaría compuesto por Canaras, Cataluña, Murca, Baleares y La Roja. De este grupo cabe destacar la mejoría relatva en la poscón de los dos archpélagos respecto a la ordenacón del índce FGT 1, esto ndcaría que tanto en Canaras como en Baleares la ncdenca de la pobreza es alta, pero, sn embargo, la ntensdad es baja. Por últmo se tene a las comundades de Ceuta y Mellla, Navarra, Madrd y País Vasco como las que menores nveles de pobreza presentan de acuerdo al índce FGT. La ordenacón de las comundades autónomas que se obtene para los hogares encabezados por mayores de 65 años con el índce FGT es smlar a la obtenda para todos los hogares salvo el caso de Ceuta y Mellla que mejora ostensblemente su poscón relatva al gual que ocurría con el índce FGT 1. Lo msmo ocurre con Canaras, que mejora lgeramente su poscón relatva cuando se consdera sólo a los hogares encabezados por mayores de 65 años. En el caso opuesto se stúa Aragón, que empeora su poscón relatva aunque lgeramente. Al gual que ocurría con el índce FGT 1, en el caso del índce FGT los valores son superores al consderar sólo los hogares encabezados por mayores de 65 años salvo en el caso de Ceuta y Mellla que se reduce -.45 para todos los hogares y.9 para los hogares encabezados por mayores- y el País Vasco que presenta valores muy parecdos (.). 1 (3)

13 Al consderar el índce FGT 3, que tene en cuenta, además de la ntensdad y la ncdenca, la desgualdad entre los pobres nos encontramos con una ordenacón smlar a la vsta para el índce FGT. En este caso cabe destacar el empeoramento relatvo de Galca que ndcaría una fuerte desgualdad entre los hogares pobres de dcha regón. S se compara esta ordenacón de las comundades autónomas para los hogares encabezados por mayores con la obtenda para el conjunto total de hogares españoles se observan resultados muy parecdos, donde cabría destacar la mejor stuacón de los hogares encabezados por mayores en el caso de Ceuta y Mellla, Islas Canaras y Extremadura y la peor stuacón en el caso de Galca. Tras este análss por separado de los tres ndcadores de pobreza se podría generar un mapa de la dstrbucón regonal de la pobreza en hogares encabezados por mayores de 65 años representado en la fgura 1. El grupo de las comundades más pobres lo formarían Castlla La Mancha, Extremadura, Andalucía, Galca y Castlla León. Seguría un grupo con nveles ntermedos de pobreza formado por Cantabra, Comundad Valencana, Aragón y Canaras. A contnuacón vendría un grupo con nveles ntermedos de pobreza aunque por debajo de la meda naconal formado por Asturas, Cataluña, Murca, Islas Baleares y La Roja. Por últmo, estaría el grupo de las comundades con hogares encabezados por mayores de 65 años con menores nveles de pobreza compuesto por Ceuta y Mellla, Navarra, Madrd y País Vaso. Fgura 1. Dstrbucón regonal de la pobreza en España en de los hogares encabezados por mayores de 65 años Más pobreza Menos pobreza 13 (3)

14 3.4.- Inferenca clásca vs metodología bootstrap. La nferenca clásca para los índces de pobreza estudados, cuando se dspone de muestras pequeñas, puede presentar problemas a la hora de asumr la convergenca del estadístco a la dstrbucón normal. La utlzacón de la metodología bootstrap supone una ventaja al no establecer supuestos a pror sobre la funcón de dstrbucón. En este trabajo comparamos los resultados obtendos con la nferenca clásca y con la metodología bootstrap (realzándose 1 réplcas de las muestras). Para ello se han calculado los ntervalos de confanza con ambas metodologías, con el propósto de determnar cuál de los métodos proporcona ntervalos de menor ampltud para un msmo nvel de confanza. Tambén se han obtendo las funcones Kernel y los dstntos gráfcos box-plot, para los dstntos índces generados por las muestras bootstrap, para determnar en qué medda las dstrbucones de los índces se aproxman a la campana de Gauss. S nos fjamos en la ampltud de los ntervalos, observamos que, de manera general, no se observa una reduccón con la metodología bootstrap, lo que mplcaría una mejora en la precsón de las estmacones sólo en algunas comundades, y para algunos ndcadores observamos una reduccón en la ampltud del ntervalo con la metodología bootstrap. En la tabla 4 del anexo 1 pueden verse estos resultados donde se observa mayor precsón para aquellos ntervalos bootstrap en los que la nferenca clásca ncluye valores negatvos, y para las muestras más pequeñas representadas por las comundades autónomas de Ceuta y Mellla, el País Vasco, la Roja, Navarra, Extremadura, Aragón y Asturas. Una de las ventajas de la utlzacón de la metodología bootstrap se observa claramente en los ntervalos de confanza calculados con la metodología clásca que presentan valores negatvos para el ntervalo nferor. Como puede aprecarse en la tabla del anexo 1, esto ocurre para las comundades autónomas con pocos datos, como Ceuta y Mellla, el País Vasco, Navarra, e ncluso para alguna muestra grande, como es el caso de Madrd. Este tpo de resultados, fuera del rango de posbles valores del ndcador, no se dan con la metodología bootstrap, como se puede observar en la tabla 3 del anexo 1, ya que ésta se basa en la dstrbucón empírca de dcho ndcador. Las dstrbucones empírcas generadas por el remuestreo representan de forma más adecuada el comportamento de los datos orgnales. Como puede observarse en las fguras del anexo, para muchas de las comundades las dstrbucones no presentan normaldad debdo a la asmetría y/o apuntamento en la mayoría de las muestras. Esto últmo justfcaría el uso del bootstrap para la construccón de ntervalos de confanza, como señalan Efron y Tbshran (1993), en vez de los dervados de la metodología clásca 14 (3)

15 basados en la convergenca a dstrbucones normales que cuando se dspone de muestras reducdas pueden alejarse de la realdad. 4.- CONCLUSIONES La realzacón de este trabajo ha permtdo conocer la dstrbucón regonal de la pobreza para los hogares españoles encabezados por mayores de 65 años. El grupo de las comundades más pobres lo formarían Castlla La Mancha, Extremadura, Andalucía, Galca y Castlla León. Seguría un grupo con nveles ntermedos de pobreza formado por Cantabra, Comundad Valencana, Aragón y Canaras. A contnuacón vendría un grupo con nveles ntermedos de pobreza aunque por debajo de la meda naconal formado por Asturas, Cataluña, Murca, Islas Baleares y La Roja. Por últmo, estaría el grupo de las comundades con hogares encabezados por mayores de 65 años con menores nveles de pobreza compuesto por Ceuta y Mellla, Navarra, Madrd y País Vaso. En térmnos generales se puede decr en todos los aspectos de la pobreza, ésta es mayor entre los hogares encabezados por mayores de 65 años, salvo en las comundades del País Vasco y en Ceuta y Mellla. En lo que se refere al mapa regonal de pobreza, tanto el de los hogares encabezados por mayores como el del conjunto de hogares españoles se parecen bastante salvo en lo que se refere a algunas comundades. Concretamente, las comundades de Ceuta y Mellla, Canaras y Extremadura presentan una mejor poscón relatva para los hogares encabezados por mayores de 65 años frente a la stuacón para el total de hogares. En el otro extremo estarían las comundades de Galca, Baleares y Aragón. Estas comundades están stuadas en una peor poscón relatva cuando se consderan los hogares encabezados por mayores de 65 años que la obtenda para el total de hogares. El resto de comundades mantenen, más o menos su poscón dentro de la ordenacón tanto para hogares encabezados por mayores como para el total. En lo que se refere a la comparacón entre la nferenca clásca basada en dstrbucones asntótcas y la dervada de la metodología bootstrap, se puede conclur que aunque esta últma no presenta ntervalos de confanza menos amplos de manera general, sí que ofrece resultados más adecuados ya que se basan en las dstrbucones observadas, lo que permte adaptar los ntervalos a las asmetrías y curtoss de las dstrbucones de los índces analzados, de manera que no ofrece ntervalos fuera del rango de los valores posbles de los índces, como es el caso de los ntervalos dervados de la nferenca clásca, sobre todo para aquellas muestras de tamaño reducdo que presentan varanzas relatvamente elevadas. 15 (3)

16 BIBLIOGRAFÍA Aldás, J.; Goerlch, F.J. y Mas, M. (6). "Gasto de las famlas en las CC.AA. españolas (1998-): Pautas de consumo, desgualdad y convergenca".fundacón Caxa Galca, Centro de Investgacón Económca y Fnancera. Ayala, L.; Palaco, J. I. (). Hogares de baja renta en España: caracterzacón y determnantes. Revsta de Economía Aplcada. Nº 3, vol. VIII, pp Bemen, M. (). Bootstrap nference for nequalty, movlty and poverty measurement. Journal of Econometrc Research. 47:4, pp Bshop, J.A.; Chow, K.V. ; Zheng, B. (1995). Statstcal nference and decomposable poverty measures. Bulletn of Economc Research. 47:4, pp Bshop, J.A.; Formby, J.P.; Zheng, B. (1997). Statstcal nference and the Sen ndex of poverty. Internatonal Economc Revew. Vol. 38, nº. Mayo 1997, pp Buhmann, B.; Ranwater, L.; Schmaus, G.; Smeedng, T. (1988). Equvalence scales, Well-Beng, Inequalty and Poverty: Senstve Estmates across then countres usng the Luxembourg Income Study (LIS) database. Revew of Income and Wealth. 34, pp Cantó, O. (1997). Desempleo y pobreza en la España de los noventa. Papeles de Economía Española, 7, pp Cantó, O; del Río, C.; Gradín, C. (). "La stuacón de los estudos de desgualdad y pobreza en España" Cuadernos de Goberno y Admnstracón,, pp Cantó, O. y Mercader-Prats, M. (1998), Chld Poverty n Span: What Can Be Sad?. Innocent Occasonal Papers, Economc and Socal Polcy Seres, nº 66, UNICEF Internatonal Chld Development Centre, Florenca. Cantó, O. y Mercader-Prats, M. (1999), Poverty among chldren and youth n Span: The role of parents and youth employment status. Documento de Trabajo, nº 99-7, Departament d Economa Aplcada, Unverstat Autònoma de Barcelona. Cantó, O. y Mercader; M. (1). Pobreza y famla: son los jóvenes una carga o una ayuda?. Papeles de Economía Española: Dstrbucón de la renta en España. Nº 88. Coutler, F.; Cowell, F.; Jenkns, S. (1991). Equvalence scale relatvtes and the extent of neualty and poverty. The Economc Journal. 1. pp Dalton, H. (19). The measurament of the nequalty of ncomes. Economc Journal (3). Davdson, R.; Duclos, J.Y. (). Statstcal nference for stochastc domnance and for the measurement of poverty and nequalty. Econometrca. Vol. 68, nº 6. Del Río, C. y Ruz-Castllo, J. (1). TIPs for Poverty. The Case of Span, to Investgacones Económcas. XXV, pp. 63-9, enero 1. Efron, B. (1979), Bootstrap methods: another look at the jackknfe, Annals Statstcs, 7, pp Efron, B. y Tbshran, R. J. (1986), Bootstrap methods for standard errors, confdence ntervals, and other measures fo statstcal accuracy (wth dscusson), Statst. Scj., 1, pp Efron, B. y Tbshran, R.J. (1993), An Introducton to the Bootstrap, Monograps on Statstcs and Appled Probablty, 57, Chapman & Hall Inc, New York. Formby, J.P.; Km, H.; Zheng, B. (1). Sen measures of poverty n the Unted States: cash versus comprehensve ncomes n the 199s. Pacfc Economc Revew. 6:, pp Foster, J.E.; Greer, J.; Thorbercke, E. (1984). A class of decomposable poverty measures. Econmetrca, 3 (5). Gradín, C. (1). "Polarzacón y desgualdad en Galca y España, un análss comparatvo". Revsta de Estudos Regonales. nº 59, pp Gradín, C.; del Río, C.; Cantó, O.(6). "Poverty and women's labor market actvty: the role of gender wage dscrmnaton n the EU". ECINEQWP 6-4. Horowtz, J.L. (1), The Bootstrap, Handbook of Econometrcs, v. 5, Edtors: Heckman, J.J. and Leamer, E., North Holland. 16 (3)

17 Kakwan, N. (1989). Testng for Sgnfcance of poverty Dfferences wth applcaton to Côte d'ivore. Indana Unversty Lbrares. Martín-Guzmán, P. y otros (1996). Desgualdad y pobreza en España. Estudo basado en las Encuestas de Presupuestos Famlares de , y Publcacones del INE. Martínez, M. (5). "Gastos redstrbutvos y federalsmo fscal: el gasto de los sstemas de rentas mínmas".ed: Insttuto de Estudos Fscales. Rongve, I. (1997). Statstcal nference for poverty ndces wth fxed poverty lnes. Appled Economcs. Nº 9, pp Ruz-Castllo, J. (1987). La medcón de la pobreza y la desgualdad en España. Banco de España, Estudos Económcos. Nº 4. Schluter, Chrstan; Trede, Mark (). Statstcal nference for nequalty and poverty measurement wth dependent data. Internatonal Economc Revew. Vol. 43, nº, mayo. Serra, L. y Corral, J. M. (1998), La pobreza en la Comundad Autónoma del País Vasco, Ekonomaz, 4, pp Tohara, L. (1993), La ncdenca famlar del paro, en L. Garrdo y E. Gl Campos (comps.), Estrategas Famlares, Alanza Edtoral, Madrd. 17 (3)

18 ANEXO 1. TABLAS. Tabla 1: Estmacón de los índces de pobreza e ntervalos de confanza al 95%, con nferenca clásca para todos los hogares. INFERENCIA CLÁSICA FGT1 nf sup FGT nf sup FGT3 nf sup Andalucía,3,5,55,51,44,58,17,139,5 Aragón,97,7,14,5,16,33,97,5,144 Asturas (Prncpado de),118,87,149,7,19,36,9,54,19 Baleares (Islas),19,76,143,17,1,3,43,19,67 Canaras,,165,39,37,7,46,1,74,17 Cantabra,117,76,159,31,16,45,136,54,17 Castlla y León,4,193,56,56,46,66,11,161,61 Castlla - La Mancha,77,36,318,66,54,79,7,171,84 Cataluña,96,78,114,19,15,4,6,39,81 Comundad Valencana,148,14,17,9,3,35,94,66,1 Extremadura,364,313,415,86,71,1,88,17,36 Galca,194,165,3,47,38,56,184,137,31 Madrd (Comundad de),5,36,68,7,4,1,18,5,3 Murca (Regón de),15,73,137,3,14,3,8,35,14 Navarra (C. Foral de),46,18,73,5,1,8,9 -,3, País Vasco,1,1,19,,,3,4 -,1,8 Roja (La),76,4,19,16,8,4,44,13,76 Ceuta y Mellla,157,91,,45,1,69,191,44,338 TOTAL ESPAÑA,148,14,155,3,3,34,19,1,119 Tabla : Estmacón de los índces de pobreza e ntervalos de confanza al 95%, con nferenca clásca para los hogares encabezados por mayores de 65 años. INFERENCIA CLÁSICA FGT1 nf sup FGT nf sup FGT3 nf sup Andalucía,398,34,453,95,77,11,3,43,398 Aragón,19,13,5,53,31,74,,1,343 Asturas (Prncpado de),9,16,99,5,31,7,17,8,58 Baleares (Islas),41,155,37,36,18,55,99,31,167 Canaras,84,9,358,45,8,63,13,55,9 Cantabra,19,113,7,63,31,96,35,116,494 Castlla y León,351,96,46,91,7,11,357,55,459 Castlla - La Mancha,49,356,5,15,98,151,477,35,65 Cataluña,198,154,43,43,31,56,149,85,14 Comundad Valencana,74,19,33,57,4,73,188,119,56 Extremadura,495,47,58,18,8,133,37,3,431 Galca,34,48,36,89,68,11,371,6,48 Madrd (Comundad de),61,9,9,8,,14,1 -,4,46 Murca (Regón de),179,1,55,4,18,65,156,6,87 Navarra (C. Foral de),89,,157,13,,6,3 -,1,7 País Vasco,1 -,7,6, -,1,5,3 -,3,9 Roja (La),175,85,66,36,13,59,15,7,4 Ceuta y Mellla,17,,13,9 -,3,6,98 -,6,3 TOTAL ESPAÑA mayores,54,38,7,6,55,65,14,191,37 18 (3)

19 Tabla 3: Estmacón de los índces de pobreza e ntervalos de confanza al 95%, con metodología bootstrap para los hogares encabezados por mayores de 65 años. BOOTSTRAP CON 1 RÉPLICAS FGT1 nf sup FGT nf sup FGT3 nf sup Andalucía,395,336,459,94,76,114,3,38,41 Aragón,188,17,51,5,33,74,5,114,35 Asturas (Prncpado de),3,156,93,49,31,69,163,79,56 Baleares (Islas),46,155,341,37,17,6,1,8,198 Canaras,87,1,368,46,8,67,134,6,8 Cantabra,18,14,73,63,3,1,39,17,556 Castlla y León,348,91,46,9,7,11,355,5,476 Castlla - La Mancha,49,355,55,15,99,156,485,354,65 Cataluña,199,151,51,43,9,61,153,8,44 Comundad Valencana,77,4,338,58,43,75,19,18,67 Extremadura,493,43,584,16,8,13,3,4,437 Galca,36,5,363,9,7,113,374,75,499 Madrd (Comundad de),6,31,99,8,3,14,1,,49 Murca (Regón de),183,99,7,43,1,69,161,48,33 Navarra (C. Foral de),93,1,178,13,,8,31,1,78 País Vasco,1,,6,,,5,3,,9 Roja (La),17,78,73,36,16,6,11,36,9 Ceuta y Mellla,9,,195,5,1,56,74,4,183 TOTAL ESPAÑA mayores,54,36,71,6,54,65,14,189,4 Tabla 4: Comparacón de la ampltud de los ntervalos de confanza bootstrap con los ntervalos de confanza dervados de la nferenca clásca con los datos orgnales, al 95% de nvel de confanza. nferenca clásca/método percentl FGT1 FGT FGT3 Andalucía,9,9,89 Aragón,97 1,3 1,1 Asturas (Prncpado de) 1, 1,4,99 Baleares (Islas),9,83,8 Canaras,95,9,9 Cantabra,9,93,88 Castlla y León,95,96,9 Castlla - La Mancha,97,93,94 Cataluña,89,81,79 Comundad Valencana,97,98,98 Extremadura,96 1,,97 Galca 1,,97,97 Madrd (Comundad de),94 1,4 1,5 Murca (Regón de),89,98,9 Navarra (C. Foral de),86,97 1,8 País Vasco 1,8 1,9 1,5 Roja (La),93 1,4 1,14 Ceuta y Mellla 1,9 1,18 1,4 TOTAL ESPAÑA mayores,9,87,87 19 (3)

20 Tabla 5: Tamaños muestrales de las dstntas comundades autónomas para los hogares encabezados por mayores de 65 años. n Andalucía 3 Aragón 165 Asturas (Prncpado de) 141 Baleares (Islas) 95 Canaras 141 Cantabra 97 Castlla y León 89 Castlla - La Mancha 177 Cataluña 31 Comundad Valencana 5 Extremadura 16 Galca 58 Madrd (Comundad de) 15 Murca (Regón de) 96 Navarra (C. Foral de) 68 País Vasco 134 Roja (La) 68 Ceuta y Mellla 33 TOTAL ESPAÑA mayores 965 (3)

21 ANEXO. FIGURAS Fgura 1: Gráfcos Box-Plot del índce FGT 1 bootstrap para los hogares encabezados por mayores de 65 años por comundades autónomas con 1 réplcas Andaluca Aragón Asturas Baleares Canaras Cantabra Castlla y León Castlla-La Mancha Cataluña Comundad Valencana Extremadura Galca Madrd Murca Navarra País Vasco Roja Ceuta y Mellla Fgura : Gráfcos Box-Plot del índce FGT bootstrap para los hogares encabezados por mayores de 65 años por comundades autónomas con 1 réplcas Andaluca Aragón Asturas Baleares Canaras Cantabra Castlla y León Castlla-La Mancha Cataluña Comundad Valencana Extremadura Galca Madrd Murca Navarra País Vasco Roja Ceuta y Mellla 1 (3)

22 Fgura 3: Gráfcos Box-Plot del índce FGT 3 bootstrap para los hogares encabezados por mayores de 65 años por comundades autónomas con 1 réplcas Andaluca Aragón Asturas Baleares Canaras Cantabra Castlla y León Castlla-La Mancha Cataluña Fgura 4: Funcones Kernel del índce FGT 1 bootstrap para los hogares encabezados por mayores de 65 años por comundades autónomas con 1 réplcas. Comundad Valencana Extremadura Galca Madrd Murca Navarra País Vasco Roja Ceuta y Mellla 15 Andalucía 15 Aragón 1 Asturas Baleares Castlla y León Comundad Valencana Madrd País Vasco Canaras Castlla-La Mancha Extremadura Murca Roja Cantabra Cataluña Galca Navarra Ceuta y Mellla (3)

23 Fgura 5: Funcones Kernel del índce FGT bootstrap para los hogares encabezados por mayores de 65 años por comundades autónomas con 1 réplcas. 5 Andalucía 4 Aragón 5 Asturas Baleares Castlla y León Comundad Valencana Madrd País Vasco x Canaras Castlla-La Mancha Extremadura Murca Roja Cantabra Cataluña Galca Navarra Ceuta y Mellla x x 1-4 Fgura 6: Funcones Kernel del índce FGT 3 bootstrap para los hogares encabezados por mayores de 65 años por comundades autónomas con 1 réplcas. 1 Andalucía 8 Aragón 1 Asturas Baleares Castlla y León Comundad Valencana Madrd País Vasco x x Canaras Castlla-La Mancha Extremadura Murca Roja Cantabra Cataluña Galca Navarra Ceuta y Mellla x (3)

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Análisis regional de la pobreza para el colectivo de la tercera edad: inferencia clásica vs. Técnicas Bootstrap(1)

Análisis regional de la pobreza para el colectivo de la tercera edad: inferencia clásica vs. Técnicas Bootstrap(1) ESTADÍSTICA ESPAÑOLA Vol. 52, núm. 173, 21, págs. 155 a 191 Análisis regional de la pobreza para el colectivo de la tercera edad: inferencia clásica vs. Técnicas Bootstrap(1) por SALVADOR ORTIZ SERRANO

Más detalles

La reforma del FCI ante las nuevas Perspectivas Financieras de la UE

La reforma del FCI ante las nuevas Perspectivas Financieras de la UE La reforma del FCI ante las nuevas Perspectvas Fnanceras de la UE Mara CUBEL (cubel@ub.edu) Crstna de GISPERT (crsdegspert@ub.edu) Unverstat de Barcelona Insttut d Economa de Barcelona Abstract En este

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

DESARROLLO HUMANO Y CALIDAD DE VIDA. APROXIMACIÓN PARA LAS REGIONES ESPAÑOLAS

DESARROLLO HUMANO Y CALIDAD DE VIDA. APROXIMACIÓN PARA LAS REGIONES ESPAÑOLAS DESARROLLO HUMANO Y CALIDAD DE VIDA. APROXIMACIÓN PARA LAS REGIONES ESPAÑOLAS Noela Somarrba Arechavala - nomarr@econo.unov.es Ana Jesús López Menéndez anaj@aulanet.unov.es Unversdad de Ovedo Reservados

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos Consderacones empírcas del consumo de los hogares: el caso del gasto en electrcdad y almentos Emprcal Consderatons of the Famles Consumpton: the Case uf the Expense n Electrcty and Food Maro Andrés Ramón

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

PORTAL MAYORES. Métodos de cálculo de la gravedad de la discapacidad. Palabras clave Discapacidad; Estadísticas; Encuestas; Evaluación; Metodología.

PORTAL MAYORES. Métodos de cálculo de la gravedad de la discapacidad. Palabras clave Discapacidad; Estadísticas; Encuestas; Evaluación; Metodología. INFORMES PORTAL MAYORES ISSN: 15-67 Juno 21 Métodos de cálculo de la gravedad de la dscapacdad Cecla Esparza Catalán Consejo Superor de Investgacones Centífcas (CSIC). Centro de Cencas Humanas y Socales

Más detalles

MEDICIÓN DE LA DESIGUALDAD: CONTRIBUCIÓN A UNA BASE DE DATOS REGIONAL*

MEDICIÓN DE LA DESIGUALDAD: CONTRIBUCIÓN A UNA BASE DE DATOS REGIONAL* MEDICIÓN DE LA DESIGUALDAD: CONTRIBUCIÓN A UNA BASE DE DATOS REGIONAL* Francsco J. Goerlch y Matlde Mas Correspondenca a M. Mas: IVIE. C/. Guarda Cvl, 22, Esc. 2, 1º. 46020 Valenca. Tel.: 963 930 816 /

Más detalles

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos Desgualdad de oportundades y el rol del sstema educatvo en los logros de los jóvenes uruguayos Cecla Llambí Marcelo Perera Pablo Messna Febrero de 2009 Esta nvestgacón fue fnancada por el Fondo Carlos

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

EL DESARROLLO HUMANO EN LAS COMUNIDADES AUTÓNOMAS. 1. Introducción. Antonio Villar *

EL DESARROLLO HUMANO EN LAS COMUNIDADES AUTÓNOMAS. 1. Introducción. Antonio Villar * EL DESARROLLO HUMANO EN LAS COMUNIDADES AUTÓNOMAS Antono Vllar * 1. Introduccón Desde hace ya algunos años se vene utlzando algunas meddas de desarrollo económco de carácter multdmensonal que van más allá

Más detalles

Focalización Geográfica del Gasto Social: Mapas de Pobreza. Javier Escobal Máximo Torero * Carmen Ponce ** RED CIES DE POBREZA GRADE-APOYO

Focalización Geográfica del Gasto Social: Mapas de Pobreza. Javier Escobal Máximo Torero * Carmen Ponce ** RED CIES DE POBREZA GRADE-APOYO Focalzacón Geográfca del Gasto Socal: Mapas de Pobreza Javer Escobal Máxmo Torero * Carmen Ponce ** RED CIES DE POBREZA GRADE-APOYO INFORME FINAL Juno, 2001 Investgador Prncpal, GRADE ** Investgadora Asstente,

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

La financiación autonómica en el Estatuto de Cataluña*

La financiación autonómica en el Estatuto de Cataluña* Hacenda Públca Española / Revsta de Economía Públca, 181-(2/2007): 119-161 2007, Insttuto de Estudos Fscales La fnancacón autonómca en el Estatuto de Cataluña* ANTONIO ZABALZA Unversdad de Valenca Recbdo:

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto Maestría en Economía Facultad de Cencas Económcas Unversdad Naconal de La Plata TESIS DE MAESTRIA ALUMNO Laura Carella TITULO Educacón unverstara: medcón del rendmento académco a través de fronteras de

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES *

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * Mª Consuelo Colom, Rosaro Martínez y Mª Cruz Molés WP-EC 2000-02 Correspondenca:

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE Resolucón de 3 de juno de 2016, por la que se establece el proyecto educatvo nsttuconal denomnado JOSCAN, joven orquesta snfónca para Cantabra. Ley de Cantabra

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

PARTICIPACIÓN LABORAL DE LAS MUJERES EN LAS REGIONES DE CHILE

PARTICIPACIÓN LABORAL DE LAS MUJERES EN LAS REGIONES DE CHILE Revsta UNIVERSUM Nº 25 Vol. 2 2010 Unversdad de Talca Partcpacón laboral de las mujeres en las regones de Chle Luz María Ferrada Bórquez Plar Zarzosa Espna Pp. 79 a 99 PARTICIPACIÓN LABORAL DE LAS MUJERES

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A.

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. PERÍODO 201-2020 Introduccón Las Bases Técnco Económcas Prelmnares, en

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Avances en Medcón, 5, 9 26 2007 ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Resumen Jame Arnau Gras ** Unverstat de Barcelona, España Las estructuras de dseño, así como

Más detalles

El Índice de Desarrollo Humano y su aplicación a las entidades federativas en México

El Índice de Desarrollo Humano y su aplicación a las entidades federativas en México Gaceta de Economía Año, Núm. El Índce de Desarrollo Humano y su aplcacón a las entdades federatvas en Méxco Rodrgo García-Verdú * Síntess En este trabajo se analza al Índce de Desarrollo Humano (IDH) como

Más detalles

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se MATERIAL Y MÉTODOS Fuentes de nformacón Los datos de hosptalzacón se obtenen del Conjunto Mínmo de Datos de Egresos Hosptalaros del Seguro Públco de Salud Costarrcense (SPSC) y las proyeccones de poblacón

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

DESIGUALDAD Y CONVERGENCIA EN EL ÁREA DE LA OCDE*

DESIGUALDAD Y CONVERGENCIA EN EL ÁREA DE LA OCDE* DESIGUALDAD Y CONVERGENCIA EN EL ÁREA DE LA OCDE* Francsco J. Goerlch y Matlde Mas** WP-EC 98-9 Correspondenca to F. Goerlch: Unverstat de Valènca. Facultad de Cencas Económcas. Depto. de Análss Económco.

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

Algunos métodos de clasificación de puestos de trabajo en la empresa

Algunos métodos de clasificación de puestos de trabajo en la empresa lgunos métodos de clasfcacón de puestos de trabajo en la empresa. lgunos métodos de clasfcacón de puestos de trabajo en la empresa Canós Darós, Lourdes, loucada@omp.upv.es Pers Ortz, Marta, marpeor1@omp.upv.es

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS Explcacón de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS EMBARGO: 21 de agosto de 2012, 15:00 (CEST) Objetvo angular de 24 mm, con zoom óptco 30x (PowerShot SX500 IS) Desarrollado usando

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Patrimonio en planes de pensiones privados individuales, nivel educativo y hábitos financieros de las familias en España

Patrimonio en planes de pensiones privados individuales, nivel educativo y hábitos financieros de las familias en España Patrmono en planes de pensones prvados ndvduales, nvel educatvo y hábtos fnanceros de las famlas en España José Sánchez Campllo jsanchez@ugr.es Manuel Salas Velasco msalas@ugr.es Dolores Moreno Herrero

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

Presentación. Carmen Alcaide Guindo Presidenta del INE

Presentación. Carmen Alcaide Guindo Presidenta del INE Presentacón El Índce de Precos de Consumo (PC), base 20, es el punto de partda de una nueva forma de concebr este ndcador, cuya característca prncpal es su rápda adaptacón a los cambos de la economía y,

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

Metodología para el diseño de mecanismos en el esquema de seguridad social en Colombia. Wilson Mayorga M.

Metodología para el diseño de mecanismos en el esquema de seguridad social en Colombia. Wilson Mayorga M. . La Caldad Académca, un Compromso Insttuconal Close up marquta - hoja Mayorga M., Wlson (2009). Metodología para el dseño de mecansmos en el esquema de segurdad socal en Colomba. Crtero Lbre, 7 (), 5-46

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

4 Contraste de hipótesis en el modelo de regresión múltiple

4 Contraste de hipótesis en el modelo de regresión múltiple 4 Contraste de hpótess en el modelo de regresón múltple Ezequel Urel Unversdad de Valenca Versón: 9-13 4.1 El contraste de hpótess: una panorámca 1 4.1.1 Formulacón de la hpótess nula y de la hpótess alternatva

Más detalles

Índice de los Derechos de la Niñez Mexicana

Índice de los Derechos de la Niñez Mexicana Índce de los Derechos de la Nñez Mexcana Nota técnca sobre la construccón y el cálculo del índce para los prmeros años (IDN), de 0 a 5 años, 1998 2003 Introduccón La construccón y el cálculo del Índce

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

INTENSIDAD DE LAS PREFERENCIAS EN VOTACIONES. VISUALIZACIÓN GRÁFICA DE SU IMPORTANCIA *

INTENSIDAD DE LAS PREFERENCIAS EN VOTACIONES. VISUALIZACIÓN GRÁFICA DE SU IMPORTANCIA * INTENSIDAD DE LAS PREFERENCIAS EN VOTACIONES. VISUALIZACIÓN GRÁFICA DE SU IMPORTANCIA * Alberto Turón Lanuza Grupo Decsón Multcrtero Zaragoza Facultad de Cencas Económcas y Empresarales. Unversdad de Zaragoza

Más detalles

CARACTERÍSTICAS DETERMINANTES DEL TURISMO EN LAS ISLAS CANARIAS

CARACTERÍSTICAS DETERMINANTES DEL TURISMO EN LAS ISLAS CANARIAS CARACTERÍSTICAS DETERMINANTES DEL TURISMO EN LAS ISLAS CANARIAS Santago Rodríguez Feoo - sant@empresarales.ulpgc.es Dela Dávla Quntana - dela@empresarales.ulpgc.es Aleandro Rodríguez Caro - alek@empresarales.ulpgc.es

Más detalles

CUADRIENIO 2011 2014

CUADRIENIO 2011 2014 INFORME TÉCNICO PEAJE POR USO DE INSTALACIONES DE TRANSMISIÓN ADICIONAL POR PARTE DE USUARIOS SOMETIDOS REGULACIÓN DE PRECIOS QUE SE CONECTAN DIRECTAMENTE DESDE INSTALACIONES ADICIONALES CUADRIENIO 2011

Más detalles

Gonio espectrofotómetro para medir la función de distribución bidireccional de dispersión (BSDF)

Gonio espectrofotómetro para medir la función de distribución bidireccional de dispersión (BSDF) ÓPTICA PURA Y APLICADA. www.sedoptca.es Gono espectrofotómetro para medr la funcón de dstrbucón bdrecconal de dspersón (BSDF) Gono spectrophotometer for bdrectonal scatterng dstrbuton functon (BSDF) measurements

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

UNIDAD DE ANÁLISIS DE POLÍTICAS SOCIALES Y ECONÓMICAS

UNIDAD DE ANÁLISIS DE POLÍTICAS SOCIALES Y ECONÓMICAS UNIDAD DE ANÁLISIS DE POLÍTICAS SOCIALES Y ECONÓMICAS ANÁLISIS ECONÓMICO VOLUMEN 21 UNA APROXIMACIÓN DE LOS DETERMINANTES DEL CRECIMIENTO ECONÓMICO EN BOLIVIA 1960-2004 Julo Humérez Quroz Hugo DoradoAranbar

Más detalles

La evolución de la pobreza difusa multidimensional en México, 1994-2006 *

La evolución de la pobreza difusa multidimensional en México, 1994-2006 * Banco de Méxco Documentos de Investgacón Banco de Méxco Workng Papers N 2009-04 La evolucón de la pobreza dfusa multdmensonal en Méxco, 1994-2006 * Eduardo Morales-Ramos Banco de Méxco Febrero 2009 La

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero

Más detalles

Uno de los temas más conflictivos en el desarrollo del sistema de financiación

Uno de los temas más conflictivos en el desarrollo del sistema de financiación Revsta de Economía Aplcada E Número 8 (vol. X), 00, págs. a 50 A FINANCIACIÓN DE SERVICIOS PÚBLICOS EN TERRITORIOS CON DESIGUAL DENSIDAD DE DEANDA * JULIO LÓPEZ LABORDA VICENTE SALAS Unversdad de Zaragoza

Más detalles

Índice de Precios de Consumo. Base 2006

Índice de Precios de Consumo. Base 2006 NSTTUTO NACONAL DE ESTADÍSTCA Índce de Precos de Consumo. Base 2006 Metodología Madrd, Subdreccón General de Estadístcas de Precos y Presupuestos Famlares Índce 1. ntroduccón 2. Defncón del ndcador 3.

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

Estimación de la siniestralidad no declarada en el seguro de automóviles: una aplicación a través de modelos de recuento *

Estimación de la siniestralidad no declarada en el seguro de automóviles: una aplicación a través de modelos de recuento * Estmacón de la snestraldad no declarada en el seguro de automóvles: una aplcacón a través de modelos de recuento * Ordaz Sanz, José Antono jaordsan@upo.es Melgar Hraldo, María del Carmen mcmelhr@upo.es

Más detalles

ANÁLISIS GEOGRÁFICO DE LA SINIESTRALIDAD EN EL SEGURO DEL AUTOMÓVIL EN ESPAÑA

ANÁLISIS GEOGRÁFICO DE LA SINIESTRALIDAD EN EL SEGURO DEL AUTOMÓVIL EN ESPAÑA ANÁLISIS GEOGRÁFICO DE LA SINIESTRALIDAD EN EL SEGURO DEL AUTOMÓVIL EN ESPAÑA María del Carmen Melgar Hraldo Flor María Guerrero Casas Departamento de Economía, Métodos Cuanttatvos e Hstora Económca Unversdad

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

Detección de cluster espaciales de cáncer pediátrico en los municipios de la Región de Murcia.

Detección de cluster espaciales de cáncer pediátrico en los municipios de la Región de Murcia. Deteccón de cluster espacales de cáncer pedátrco en los muncpos de la Regón de Murca. López Hernández, Fernando Ant. Fernando.lopez@upct.es Departamento de Métodos Cuanttatvo e Informátcos Unversdad Poltécnca

Más detalles

LAS CAUSAS DE LA POBREZA EN VENEZUELA Por Matías Riutort

LAS CAUSAS DE LA POBREZA EN VENEZUELA Por Matías Riutort LAS CAUSAS DE LA OBREZA EN VENEZUELA or Matías Rutort Este trabajo tene por fnaldad, en una prmera nstanca, descrbr una metodología que permta separar los componentes que determnan la pobreza y, en segundo

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

Diseño de una metodología sistémica de evaluación de impacto territorial de intervenciones urbanísticas

Diseño de una metodología sistémica de evaluación de impacto territorial de intervenciones urbanísticas Dseño de una metodología sstémca de evaluacón de mpacto terrtoral de ntervencones urbanístcas Report de recerca Nº 1 Jorge Cerda Troncoso Enero 2009 Problema de nvestgacón: el problema que se enfrenta

Más detalles

Comercio y Desigualdad Salarial en Argentina: Un Enfoque de Equilibrio General Computado 1

Comercio y Desigualdad Salarial en Argentina: Un Enfoque de Equilibrio General Computado 1 Comerco y Desgualdad Salaral en Argentna: Un Enfoque de Equlbro General Computado 1 Martín Ccowez Documento de Trabajo Nro. 40 Juno 2002 1 Tess de la Maestría en Economía de la UNLP drgda por el Dr. Omar

Más detalles

GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA

GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA Lma, 2004 Tabla de contendo 1. Introduccón...3 2. Ventajas y desventajas...3 Págna 3. Factbldad...3 3.1 Factor técnco...4 3.2 Factor económco...4 3.3 Factor

Más detalles

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA * CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente

Más detalles