Función exponencial y logarítmica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Función exponencial y logarítmica"

Transcripción

1 Fnción eponencil rímic Bchillero Fnción eponencil rímic Repso de poencis Definición: llmmos poenci de bse eponene n, lo denomos por n l prodco n... eces ( ). Pr eponenes negios enemos n n. Pr eponenes frccionrios m n n m.. Propieddes r r : s s rs rs r r b b r r : b : b r rs s r r r b r b - Págin - A.G.Onndí

2 Fnción eponencil rímic Bchillero. Fnción eponencil Definición: Ddo n número rel posiio, se llm fnción eponencil de bse, l epresremos por.- ep ep, l plicción: ep : ep - /6 - /8 - / - / 8 Ejercicio: hcer ep / / /8 ep / Ejercicio: Hcer l gráfic de ep / - Págin - A.G.Onndí

3 Fnción eponencil rímic Bchillero Conclsiones qe se scn de ls gráfics: Si es esricmene creciene si es esricmene decreciene. Domf= Imf= Tods psn por (,). Si = es l fnción consne.. Propieddes Se dedcen de ls propieddes de ls poencis:. L imgen de n sm es igl l prodco de ls imágenes de los smndos: ep ep ep Demosrción: ep ep ep. ep ep : ep Demosrción: ep ep : ep. ep m ep m m m Demosrción: ep m ep. L fnción eponencil ps siempre por el pno (,) por el pno (,).. ) si l bse de l fnción eponencil es menor qe posii l fnción es esricmene decreciene. b) si l bse es mor qe l fnción esricmene creciene.. Ecciones eponenciles eponene. Definición: Se llm ección eponencil l ección en l qe l incógni figr como,, En generl, l resolción de n ección eponencil no es fácil se redce los rimos, qe se esdirán más delne. Por hor redciremos el esdio dos ipos: Ls ecciones monómics. Ls ecciones polinómics... Ecciones monónics Definición: ls ecciones eponenciles monónics son qells qe se peden epresr como igldd de dos epresiones monómics. m - Págin - A.G.Onndí

4 Fnción eponencil rímic Bchillero - Págin - A.G.Onndí Ejemplos:, 8 Pr resolerls es necesrio epresr los dos miembros como poencis de l mism bse e iglr los eponenes respecios. g f g f No: Cándo no se peden epresr los dos miembros como poencis de l mism bse, ls ecciones no ienen solción o se reselen por rimos, por ejemplo.. Ecciones polinómics Definición: Se llmn ecciones eponenciles polinómics qells qe medine n cmbio de rible, se peden redcir ecciones polinómics. Pr resoler n ección eponencil polinómic h qe segir los sigienes psos: Cmbio de rible Resolción de l ección polinómic obenid por el cmbio. Deshcer el cmbio, donde nos precerán ecciones mónics qe sbemos solcionr..) Relizmos el cmbio de rible Obenemos: L resolemos obeniendo = = Deshcemos el cmbio si si.) hcemos / /.) hcemos

5 Fnción eponencil rímic Bchillero - Págin - A.G.Onndí / imposible.. Sisems de ecciones eponenciles Definición: Se llmn sisems de ecciones eponenciles, los sisems de ecciones en los qe ls incógnis se encenrn como eponenes. L resolción de esos sisems se hce como los ordinrios, pero eniendo en cen qe ls ecciones son eponenciles endremos qe plicr los méodos neriores..- Hcemos los cmbios de rible Resoliéndolo obenemos: Deshcemos el cmbio: L solción es el pr ordendo: (,)=(,) Ejercicios:

6 Fnción eponencil rímic Bchillero. Fnción rímic En memáics ods ls operciones fnciones ienen ss inerss por ejemplo: ; ; sen rcsen;... pr l fnción eponencil mbién h n fnción iners qe mos denominr fnción rímic. f No: Se llm fnción iners de f() or fnción, l qe se design por, qe cmple l sigiene condición si f b f b. Pr obenerl nlíicmene se procede de l sigiene form: f f Inercmbimos l por l en l epresión inicil Se despej l de l epresión obenid f f lego l fnción iners es f f L fnción iners de l eponencil nos serir pr despejr epresiones del ipo, qe hs hor no podímos. Definición de rimo: El rimo de n número esricmene posiio en n bse mbién esricmene posii, es el número l qe debe elerse pr obener. Se deno por se lee rimo en bse de igl. Definición: Ddo n número rel, se llm fnción rímic de en bse, l epresremos como l plicción: : - Págin 6- A.G.Onndí

7 Fnción eponencil rímic Bchillero / - / - /7-7 - /7 - / - / 7 / /8 / / Ejercicios: Relizr ls gráfics de ls fnciones: Conclsiones qe se obienen de ls gráfics: Si es creciene Si es decreciene - /7 - / - / 7 Domf= Imf= son simérics respeco de l bisecriz del I III cdrne. Tods psn por el pno (,) Ejemplos de rimos:.- 6?.- 8? Págin 7- A.G.Onndí

8 Fnción eponencil rímic Bchillero.- 8? Ejercicios: 8 / Escribir ls sigienes iglddes eponenciles en form rímic: ) 7 8 b) c).- Escribir ls sigienes iglddes rímics en form eponencil: ) 8 6 b) 6 6 /. Propieddes: A B A B Ej: Ej: Ej: 8 Ej: Ej: / n n Ej: Fórml de cmbio de bse: Ejemplos:.- Clclr: 8 8 c b 8 b Ej: 8, / /.- Epresr en n rimo simple ls sigienes epresiones: ) b) / c) c d) - Págin 8- A.G.Onndí

9 Fnción eponencil rímic Bchillero.- Epresr en fnción de, b, c Ejercicios: ) b b b) b c b c c c.- Escribir ls sigienes poencis en form rímic: 8 / 6 /.- Clclr: / 7 / / / / (/ ) / 6,.- Escribir en fnción de b. 6 b / b b / / b / b / b l / /.- Epresr como n solo rimo: / b b b / 8 / (/ ) b c / b c b.- Resoler, eniendo en cen qe e son esricmene posiios: 6.- Sbiendo qe p q pq demosrr qe p q 7. Ecciones rímics Definición: Un ección rímic es n ección en l cál l rible esá fecd por n rimo. L écnic pr ss resolciones es plicr ls propieddes de los rimos pr llegr n epresión: f g por no g f. Cándo enconremos l solción, h qe comprobr si es álid eniendo en cen qe no eisen rimos de números negios. - Págin - A.G.Onndí

10 Fnción eponencil rímic Bchillero Ejemplos:.- ( álid).- álid álids no álid, no álid eise álid 8 no álid, no eise 6. Uso de los rimos pr resoler ecciones En ocsiones nos enconrmos con ecciones eponenciles qe no hemos podido resoler, por ejemplo Aplicndo rimos /, 8.-, - Págin - A.G.Onndí

11 Fnción eponencil rímic Bchillero , , , si si cmbio Deshcemos el cmbio 6 no eise / solción,8 - Págin - A.G.Onndí

12 Fnción eponencil rímic Bchillero Ejemplos de plicción. Inerés compeso. Crecimieno decrecimieno..- L poblción de n grnj ícol ps de indiidos en n mes. Sponiendo qe sige n le eponencil, clclr: ) L le qe epres l poblción en fnción del iempo. b) Cál será l poblción l cbo de n ño? c) Cándo hbrá 66 indiidos?. ) L le qe epres l poblción en fnción del iempo es de l form f()=k pr = f()= =k pr = f()= =k Resoliendo el sisem obenemos: k= =, Por no l fnción es =.(,) b) L poblción denro de n ño será: f()=.(,) =8 indiidos. c) Si debe hber 66 indiidos, se iene qe cmplir: 66=.(,) Resoliendo: =66,/,=6 meses.- Un lgo esá pobldo con n ne especie de peces. Aclmene se esim n poblción de 6 ejemplres res ños nes, 7 peces. Sponiendo n crecimieno eponencil, clclr: ) L fnción qe epres el número de peces en fnción del iempo. b) Cándo hbrá n millón de ejemplres? c) Cános ños hce qe se inrodjeron los primeros ejemplres? ) Tommos como origen de iempos =, el momeno cl. L le qe epres l poblción en fnción del iempo es de l form f()=k. pr =- f(-)=7 7=k - pr = f()=6 6=k Resoliendo el sisem obenemos: k=6 = por no f()=6. b) pr de peces: =6. despejndo =(/6)/=,88 ños. c) Si debe hber peces: =6. despejndo =- ños, es decir hce ños..- Un bol de niee pes inicilmene g. Red por n monñ ned incremenndo s peso en n % cd m. ) Cáno pesrá l bol despés de descender m? si h descendido km? b) Enconrr l fnción qe permi epresr el peso de l bol de niee en fnción de l disnci recorrid por l mism. c) Si en n momeno deermindo l bol pes,8 kg Cános meros h descendido hs ese momeno?. - Págin - A.G.Onndí

13 Fnción eponencil rímic Bchillero ) los m del inicio del recorrido l bol pes:, pes los m. los m l bol pes: los m l bol pes,,,,,,8 gr los m l bol pes, 8677,6 gr b) l fnción qe epres el peso (P) de l bol en fnción de l disnci () de meros recorridos iene dd por: P, c) si l bol pes,8 kg=8 gr h recorrido meros, es decir: 7,7 8, despejndo m,.- Inflción. L inflción es l pérdid del lor dqisiio del dinero, es decir, si n bolígrfo cosó el ño psdo, ese ño ces,, es decir l inflción h sido de n % nl. Si l inflción se mniene consne en n % nl, l epresión de l fnción qe d el cose de ese bolígrfo l cbo de ños es:, ) dibjr l gráfic qe mesr el cose del bolígrfo en el psdo en fro. b) Cáno cosrá ese bolígrfo denro de ños? hce ños? c) Cános ños hn de psr pr qe el bolígrfo lg? ) b) denro de ños cosrá, =,77 hce ños cosb, - =,6 c) pr qe el bolígrfo lg hn de psr ños:, = despejndo 7, ños.-un empresrio incremen el precio de ss prodcos en n % nl. Aclmene, no de ss prodcos le 8. Enconrr l fnción qe dé el precio del prodco en fnción de los ños rnscrridos. A prir de es, conesr ls sigienes cesiones: ) Cáno cosrá el prodco denro de ños? b) Cáno cosb hce ños? c) Cános ños hn de psr pr qe el precio cl se dpliqe? ) l fnción es: P 8 P 8, Denro de ños P=8., =,87 b) Hce ños P=8-, - =,8 c) pr qe lg hn de psr ños: =8., despejndo =, ños - Págin - A.G.Onndí

Función exponencial y logarítmica

Función exponencial y logarítmica Fnción eponencil logrímic Bchillero Inerncionl N-M. Fnción eponencil logrímic Repso de poencis Definición: llmmos poenci de bse ( 0) eponene n, lo denomos por n l prodco n... eces 0 ( 0). Pr eponenes negios

Más detalles

TRANSFORMACIONES EN EL ESPACIO (R 2 ) ECUACIONES

TRANSFORMACIONES EN EL ESPACIO (R 2 ) ECUACIONES TRNSFORMIONES EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR TRNSFORMIONES EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR Unidd Docene de Memáics de l E.T.S.I.T.G.. EUIONES DE LOS MOVIMIENTOS, HOMOTEIS Y SEMEJNZS

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE.

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE. CAMBIO E VAIABLES EN LA INEGAL OBLE. 7. Se = [, ] [, ] se define : como (, ) = ( +, ). Encontrr = ( ). Es inecti? Cd n de ls componentes = +, =, es fnción de n sol rible. Pr er qe es inecti, bst comprobr

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

t el espacio recorrido por los dos coches es el mismo t t 300; t 20s (20 10) 600m

t el espacio recorrido por los dos coches es el mismo t t 300; t 20s (20 10) 600m 0. Un cuerpo pre del reposo y se muee con celerción consne. En un momeno ddo iene un elocidd de 9,4 m/s, y 48,8 meros más lejos lle un elocidd de 5, m/s. Clcul: ) L celerción. b) El iempo empledo en recorrer

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

EJERCICIOS DE INTEGRAL DOBLE PROPUESTOS EN EXÁMENES

EJERCICIOS DE INTEGRAL DOBLE PROPUESTOS EN EXÁMENES TUTORÍA DE MATEMÁTICAS III (º A.D.E.) e-mil: imozs@elx.ned.es º) Obtener el lor de l integrl doble I ( y)( x y) R x dxdy efectndo el sigiente cmbio de rible: x ; y, siendo R l región del plno limitd por

Más detalles

Figura 11.1 Corriente en el diodo en función de la tensión aplicada en un diodo real. i D

Figura 11.1 Corriente en el diodo en función de la tensión aplicada en un diodo real. i D OS EFDOES OS EFDOES 11.1 ilización del diodo El diodo semicondcor se lo emplea en circios en los qe se qiere aproechar la diferene resisencia qe presena en n senido o en el oro. El gráfico de la corriene

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Jun nonio González o Proesor de emáics del Colegio Jun XIII Zidín de Grnd ITEGRCIÓ ITEGRES IDEFIIDS ÉTODOS DE ITEGRCIÓ PRIITIV DE U FUCIÓ ITEGR IDEFIID Sen y F dos unciones reles deinids en un mismo dominio

Más detalles

Definición de un árbol Rojinegro

Definición de un árbol Rojinegro Definición de un árol Rojinegro Árol inrio esrico (los nodos nulos se ienen en cuen en l definición de ls operciones odo nodo oj es nulo) Cd nodo iene esdo rojo o negro Nodos oj (nulos) son negros L rí

Más detalles

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD : Geometrí eclíde. Prodcto esclr. PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores y y se not por l nº rel qe se obtiene de l sigiente form: = es decir el

Más detalles

SOLUCIONES EJERCICIOS MATRICES

SOLUCIONES EJERCICIOS MATRICES SOLUIONES EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de

Más detalles

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio 0. Ls gus de un río de 400 m de nchur se desplzn con un elocidd de 8 m/s. Un brc cruz el río de orill orill, mneniéndose perpendiculr l corriene. L brc se muee con un elocidd consne de 0 m/s. Clculr: )

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL 1 SOSTENIBILIDAD DE UNA POLÍTICA FISCAL Definición de un políic fiscl sosenible El concepo de políic fiscl sosenible no cep un definición precis. Sin embrgo, un definición generl (unque lgo rivil) es que

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

PROBLEMAS DE TEOREMA DE GREEN

PROBLEMAS DE TEOREMA DE GREEN PROBLEMAS E TEOREMA E GREEN ENUNIAO EL TEOREMA Se un curv simple cerrd suve rozos oriend posiivmene se F(; (P;Q un cmpo vecoril cus funciones coordends ienen derivds prciles coninus sore un región ier

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

55 EJERCICIOS DE VECTORES

55 EJERCICIOS DE VECTORES 55 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) d = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coordends de los vectores fijos

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1,

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1, ES Medieáneo de Málg Solción Jnio Jn Clos lonso Ginoni OPCÓN Ejecicio - -. Cliicción máim: pnos. Ddos el pno P(- ls ecs: s se pide: ( pno Deemin l posiion eli de s. b ( pno Deemin l ección de l ec qe ps

Más detalles

TEMA 11: PROBLEMAS MÉTRICOS

TEMA 11: PROBLEMAS MÉTRICOS Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos

Más detalles

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.-

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.- EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de queso neriores

Más detalles

SISTEMAS DE ECUACIONES LINEALES amn

SISTEMAS DE ECUACIONES LINEALES amn Apunes de A. Cbñó Memáics plicds cc.ss. SISTEMAS DE ECUACIONES LINEALES. CONTENIDOS: Plnemienos de problems lineles. Soluciones de un sisem de ecuciones lineles. Sisems lineles equivlenes. Méodo de reducción

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Integración y Derivación Fraccionaria

Integración y Derivación Fraccionaria Cpíulo 2 Inegrción y Derivción Frccionri Anes de denrrnos en los operdores de inegrción y derivción generlizdos recordremos lgunos resuldos y nociones del cálculo elemenl que servirán como puno de prid

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

4. Modelos AR(1) y ARI(1,1).

4. Modelos AR(1) y ARI(1,1). 4. Modelos AR( ARI(,. Los modelos uorregresivos son quellos modelos ARMA(p,q en los que q0. En generl, vmos denorlos por AR(p. En un modelo AR(p en vlor en el momeno de l serie se expres como un combinción

Más detalles

MATEMÁTICAS II TEMA 5: GRÁFICA DE UNA FUCIÓN

MATEMÁTICAS II TEMA 5: GRÁFICA DE UNA FUCIÓN MTEMÁTIS II UNIDD : LÍMITE ONTINUIDD Y DERIVD TEM : LÍMITE DE UN FUNIÓN. Límie de n nción en n pno.. Límies lerles.. Limies ininios.. Límies en el ininio.. Propieddes de los límies.. Operciones con ininio.

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Fórmulas de Derivación. Fórmulas de Integración

Fórmulas de Derivación. Fórmulas de Integración Integrl Inefini A l operción e clclr l ntieriv (primitiv) e n fnción se le llm integrción se enot con el símbolo qe es l inicil e l plbr sm. Si F( es n fnción primitiv e f( se epres: f ( F( C si sólo si

Más detalles

el blog de mate de aida. MATE I. Derivadas. Pág. 1

el blog de mate de aida. MATE I. Derivadas. Pág. 1 el blo de mte de id. MATE I. erivds. Pá. TASAS E VARIACIÓN L siuiente tbl orece el número de ncimientos en cd mes lo lro de un ño en un determind poblción: Meses 7 8 9 Ncimientos 7 8 98 9 8 7 Pr sber,

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTCS RUEBS DE CCESO L UNVERSDD DE OVEDO.- MTRCES Y DETERMNNTES.- MODELO DE RUEB roduco de mrices: concepo. Condiciones pr su relición. Es posible que pr dos mrices B no cudrds puedn eisir B B?. b Si

Más detalles

Hasta el momento solo hemos trabajado con funciones reales de la forma

Hasta el momento solo hemos trabajado con funciones reales de la forma Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD.- Geometrí eclíde. Prodcto esclr (tem 6 del libro). PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores se not por sigiente form: del ánglo qe formn dichos ectores.

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS Un specto importnte pr el nálisis y l dministrción de n inventrio es determinr qé rtíclos representn l myor prte del vlor del mismo - midiéndose s

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse

Más detalles

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis 59 Memáics I : Cálculo inegrl en IR Tem 5 Inegrles impropis 5. Inroducción En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Domf = [, ] es un conjuno codo. f: [, ] IR esá cod

Más detalles

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. LA FUNCIÓN EXPONENCIAL Ejercicio: º) Resuelve ls siguientes ecuciones plicndo ls propieddes de ls potencis:. = 8 + 6 9. 5. = = 0. + = 6 8

Más detalles

Integrales impropias.

Integrales impropias. Tem Inegrles impropis.. Inroducción. En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Dom(f) = [, ] es un conjuno codo. f: [, ] IR esá cod en [, ]. Si lgun de ess condiciones

Más detalles

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis 5 Fundmenos de Memáics : Cálculo inegrl en R Cpíulo Inegrles impropis En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Domf = [, ] es un conjuno codo. f: [, ] R esá cod en [,

Más detalles

Guía de Ejercicios 2 Econometría II

Guía de Ejercicios 2 Econometría II Gía de Ejercicios Economería II.- Para el sigiene proceso : donde es n rido blanco con ariana. a Calcle la media la ariana marginal condicional del proceso. Compare los alores marginales condicionales.

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Fuerza y Movimiento. I. Movimiento de un carro con ventilador ignorando la fricción

Fuerza y Movimiento. I. Movimiento de un carro con ventilador ignorando la fricción Fuerz y Moimieno I. Moimieno de un crro con enildor ignorndo l fricción En los siguienes experimenos, uilizrá el sensor de moimieno y un crro de bj fricción. L dirección posii es lejándose del sensor.

Más detalles

dec. per. puros dec. per. mixtos Irracionales dec. inf. cifras no periódicas.

dec. per. puros dec. per. mixtos Irracionales dec. inf. cifras no periódicas. Cmo numérico. Nurles N Eneros Z Negivos Rcionles Q dec. excos dec. er. uros dec. er. mixos Reles R Frccionrios Irrcionles dec. inf. cifrs no eriódics. Alguns considerciones. Pr sr de un nº en form frccionri

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=.

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=. .MATRICES. DEINICION, TERMINOLOGIA, TIPOS DE MATRICES Y OPERACIONES LINEALES: Definición : Se llm mri de dimensiones m n ( m fils n columns) un colección de dos epresdos de l siguiene form A=. m. m..........

Más detalles

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto.

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. LOGARITMOS John Neper (550-67) Henry Briggs (56-60) MATEMÁTICAS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que l vrible

Más detalles

Potencias y radicales

Potencias y radicales CUADERNO Nº Potencis y rdicles Es necesrio que repsemos ls propieddes de ls potencis. En l escen puedes bordr este repso y ver múltiples ejemplos de cd propiedd. Complet l siguiente tbl: Propiedd (Complet

Más detalles

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd

Más detalles

Observabilidad. U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 2

Observabilidad. U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 2 Observbilidd Inroducción Definiciones Observbilidd en sisems lineles Observbilidd en sisems lineles e invrines. Subespcio no-observble Subsisem observble Seprción del subsisem conrolble y observble U.P.M.-DISAM

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionrio Deerminnes CTIVIDDES INICILES.I. usc ls relciones de dependenci linel enre ls fils columns de ls siguienes mrices e indic el vlor de su rngo. rg() F F Como C C C rg().ii. Comprue que ls siguienes

Más detalles

Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10:

Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10: Potencis Potenci Qué es un potenci? Relizr el siguiente cálculo : 7 Utilizndo solmente tres doses escribe tods ls epresiones numérics que se pueden formr con ellos. No vle usr otros signos. Cuál es el

Más detalles

Guía de Movimiento Rectilíneo Uniformemente Variado

Guía de Movimiento Rectilíneo Uniformemente Variado Experienci demori DEPARTAMENTO DE FÍSICA Guí de Moimieno Recilíneo Uniformemene Vrido 1) Ver lo ideo que e encuenrn en lo iguiene link pr poder reponder l pregun que e encuenrn coninución hp://www.youube.com/wch?=lmfbwzjyml0

Más detalles

Manual de teoría: Álgebra Matemática Bachillerato

Manual de teoría: Álgebra Matemática Bachillerato Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX IES Medierráneo de Málg Solución Seiembre Jun Crlos lonso Ginoni OPCIÓN..- Dds ls mrices: Deerminr l mri invers de b Deerminr un mri X l que X X X X X dj dj IES Medierráneo de Málg Solución Seiembre Jun

Más detalles

RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL

RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL 2º ESPA! I.E.S Slmedin (Chipion) RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL N=No t/tr tiempo trnscurrido/tiempo

Más detalles

LÍMITE DE UNA FUNCIÓN

LÍMITE DE UNA FUNCIÓN LÍITE DE UNA FUNCIÓN. Limite de un unción en un punto.. Límites lterles.. Limites ininitos.. Límites en el ininito.. Propieddes de los límites. 6. Operciones con ininito. 7. Cálculo de límites. 8. Cálculo

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Límite de funciones. Continuidad MATEMÁTICAS II 1

Límite de funciones. Continuidad MATEMÁTICAS II 1 Límite de funciones. Continuidd MATEMÁTICAS II LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor 0? En generl, pr tener un ide de l respuest

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( )

LOGARITMOS. John Neper ( ) Henry Briggs ( ) LOGARITMOS John Neper (550-67) Henry Briggs (56-630) MATEMÁTICAS CCSS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles