el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1"

Transcripción

1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o de ls incógnits) que hcen que l iguldd se ciert. Resolver un ecución es hllr su solución, o soluciones, o llegr l conclusión de que no tiene. Ls ecuciones que tienen solución son comptiles. Ls ecuciones que no tienen solución son incomptiles. Dos ecuciones son equivlentes si tienen ls misms soluciones. ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: + +c=0. (El primer sumndo del primer miemro no puede ser nunc nulo, pues entonces no se trtrí de un ecución de segundo grdo). Pr resolver un ecución de segundo grdo, cuy epresión generl es, como y hemos visto: + +c=0, hy que despejr l. Esto se consigue medinte un lrgo proceso cuy epresión finl es l siguiente: c Posiles forms de l ecución de segundo grdo. Tods ls ecuciones de segundo grdo se pueden resolver con l ecución generl de l solución que hemos visto. Pero hy lguns ecuciones de segundo grdo que, por su form, se pueden resolver ms fácilmente por otros métodos. Veremos lgunos csos continución. Ecuciones sin término en : son de l form +c=0. En ests ecuciones se despej, y se otienen los vlores de, si los hy. Ejemplos: ) -7=0 ) 7-0=0 c) +0=0 Ecuciones que son producto de vrios fctores: son de l form: k (-p) (-q)=0. Teniendo en cuent que pr que el producto de vrios fctores se cero es necesrio que lguno de los fctores vlg cero, en ests ecuciones hy que igulr todos los fctores cero pr encontrr ls soluciones. Ejemplos: ) (-)(+)=0 ) 7(+)(-)=0 Ecuciones sin término independiente: son de l form: +=0. Ests ecuciones se pueden fctorizr scndo fctor común. Un solución es =0 y l otr solución se otiene resolviendo l ecución +=0. Ejemplos: ) 7 -=0 ) +0=0 Número de soluciones. El rdicndo, es decir, l epresión que prece dentro de l ríz, -c, se llm discriminnte de l ecución. El número de soluciones depende del signo de ést epresión:

2 el log de mte de id: Mtemátics I. Ecuciones. pág. - Si el discriminnte es positivo, entonces l ecución tiene dos soluciones reles y distints. - Si el discriminnte es cero, entonces l ecución tiene un solución únic, que se llm solución rel dole. - Si el discriminnte es negtivo, entonces l ecución no tiene solución rel. Interpretción gráfic de ls soluciones de l ecución de segundo grdo. L interpretción gráfic de ls ecuciones de segundo grdo y de ls soluciones de l ecución de segundo grdo se reliz prtir de l función cudrátic, y c, que se represent medinte un práol cuyo eje es prlelo l eje Y. El vértice de un práol se clcul encontrndo su coordend medinte l epresión: y su coordend y sustituyendo el vlor otenido en l ecución de l práol, es decir: V, f v, Orientción de l práol: Si > 0, l práol present un mínimo en su vértice y ls rms de l práol vn hci rri, y, si < 0, l práol present un máimo en su vértice y ls rms de l práol vn hci jo. Los puntos de corte de l práol con los ejes de coordends se clculn de l siguiente form: Con el eje X: se hce y=0 y se despej l, pudiendo her cero, uno o dos puntos de corte. Con el eje Y: l hcer =0 se otiene y=c el punto es (0,c). Pr clculr los puntos de corte con el eje X resolvemos l ecución c 0, que tendrá dos, c un o ningun solución, dependiendo del vlor de discriminnte (rdicndo). Dos soluciones implic dos puntos de corte, un solución quiere decir que l práol es tngente l eje OX y ningun solución implic que l práol no toc l eje: está enter por encim o por dejo del eje OX. RELACIONES DE CARDANO Ls soluciones y - Sum: - Producto: de l ecución de segundo grdo: c 0 S c P verificn ls relciones:

3 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág. Ejemplo: L ecución de º grdo cuys soluciones son: Sz P 0 y es: ECUACIONES BICUADRADAS Ls ecuciones icudrds son ecuciones polinómics de curto grdo que crecen de términos de grdo impr, es decir, de l form: + +c=0 con > 0 Ests ecuciones se resuelven hciendo el cmio: = z, oteniéndose l ecución de º grdo: z + z+c=0 Un vez clculdos los vlores de z, se clculn los vlores de etryendo l ríz cudrd. Según el signo de ls soluciones de z, se pueden otener hst cutro soluciones. Ejemplo: Clcul ls soluciones de l ecución: - +6=0 z z 6 0 z 9, z 9 EJERCICIOS º.- Resuelve ls siguientes ecuciones: ) ) ) 0 6) 0 7) ) 00 0 ) ) 6 0 Soluciones: ) =, ) =, ) =, / ) = ) =, 6) =, / 7) =, 9 8) = /, / REPASO DE POLINOMIOS El vlor numérico de un polinomio es el resultdo que se otiene l sustituir ls vriles por números determindos y operr: P ( ) P( ) Al dividir dos polinomios P():Q(), otenemos otros dos polinomios C(), polinomio cociente, y Q(), polinomio resto, que verificn: P() = Q() : C() + R() L regl de Ruffini es un procedimiento pr dividir polinomios cundo el divisor es de l form (-), siendo un número entero. Es muy frecuente tener que dividir un polinomio por epresiones del tipo -. Hy un procedimiento por el cul ests divisiones se relizn de form rápid y cómod. Lo veremos con el siguiente ejemplo:

4 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág ! ! Est división se puede relizr de l siguiente form: =resto Teorem del resto. El resto de dividir un polinomio P() entre (-) es igul l vlor numérico del polinomio P() pr =; es decir, R=P(). Teorem del fctor. Un polinomio P() tiene como fctor (-) si el vlor numérico del polinomio pr = es cero. Ríces de un polinomio. Ls ríces de un polinomio P() son ls soluciones de l ecución P()=0. Teorem fundmentl del álger. Un polinomio de grdo n tiene como máimo n ríces reles. Criterio de divisiilidd por - (pr vlores enteros de ) Si un polinomio tiene coeficientes enteros, pr que se divisile por - es necesrio que su término independiente se múltiplo de. Dicho de otr form: pr uscr epresiones - que sen divisores del polinomio, proremos con los vlores de que sen divisores del término independiente. Fctorizción. Fctorizr un polinomio es descomponerlo en ó más polinomios de form que su producto se igul l polinomio ddo. ECUACIONES POLINÓMICAS DE GRADO SUPERIOR A DOS Ls ecuciones de tercer grdo en ls que flt el término independiente, c 0, y ls de curto grdo en ls que fltn los dos últimos términos, c 0, se pueden resolver tmién reduciéndols ecuciones de segundo grdo.

5 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág. Pr ello se oper del siguiente modo: 0 c 0 c 0 c 0 L ecución tiene como soluciones =0 y ls que se otengn l resolver l ecución de segundo grdo resultnte. Ejemplo: Resuelve l ecución: + 6 = Resolución de ecuciones por fctorizción L epresión (-)(+)(-)=0 es un ecución de tercer grdo que podemos resolver plicndo un técnic que y conocemos: igulndo cd fctor cero: En generl, si en un ecución de culquier grdo, escrit en l form P()=0, el polinomio P() se puede descomponer en fctores de primer y segundo grdo, entonces st con igulr cero cd uno de los fctores y resolver ls ecuciones resultntes. Pr ello, ls ecuciones de tercer grdo o grdo superior deen tener ríces enters, que siempre se encuentrn entre los divisores del término independiente. (Ls podemos encontrr plicndo el teorem del resto o el teorem del fctor). Si se conoce un solución r de l ecución polinómic P()=0, entonces se puede fctorizr sí: P()=(-r) q()=0 Ls posiles soluciones enters de un ecución polinómic son divisores del término independiente, si es que lo tiene. Ejemplo: Resuelve ls ecuciones: ) + --=0 ) + --=0 Soluciones: ) =,-,- ) =, 7, 7 EJERCICIOS º.- Resuelve ls siguientes ecuciones: ) 6 0 ) ) 0 9) 0 ) ) 0 ) ) 0 8) 0 0) Soluciones: ) =, -, /, -/ ) =,, - ) =, - ) = -,, -, ) =,, - 6) =, - 7) =, -/, - 8) = -,,, ½ 9) = -/, -/, - 0) = -,,

6 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág. 6 ECUACIONES RACIONALES Un ecución con denomindores lgericos se llm ecución rcionl. Pr resolverl hy que trnsformrl en un ecución enter (sin denomindores), multiplicndo los dos miemros de l ecución por el m.c.m. de los denomindores. Como est operción no conduce un ecución equivlente, tenemos que compror si se hn producido soluciones etrñs, es decir, que ls soluciones que otenemos no sen ríz de ningún denomindor. Ejemplo: Resuelve l ecución:. El m.c.m. de los denomindores es. Entonces: 0 6 Ams soluciones son válids. EJERCICIOS º.- Resuelve ls siguientes ecuciones rcionles: ) ) ) ) ) 8 0 6) 7) 0 8) 8 9) 7 0) ) ) Soluciones: ) =/ ) = ) = 7 ) = ) = -/, 6) = 7) =, =0 no 8) =½ 9) = 0) sin solución ) =, -/ ) = 0, - ECUACIONES IRRACIONALES Ls ecuciones rdicles son quells en ls que l incógnit prece en lguno de sus términos, jo el signo rdicl. Resolveremos ecuciones con rdicles cudráticos. Pr resolverls, st seguir los siguientes psos: º. Se ísl un rdicl en uno de los miemros, psndo los restntes términos, rdicles y no rdicles, l otro miemro. º. Se elevn l cudrdo los dos términos. (Si qued todví lgún rdicl, se repiten los dos psos nteriores). º. Se resuelve l ecución otenid.

7 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág. 7 º. Se comprue cuáles de ls soluciones otenids son válids, sustituyéndols en l ecución dd. Al elevr l cudrdo los dos miemros de l ecución precen ls soluciones de l ecución dd más ls de otr ecución; por eso es fundmentl compror ls soluciones, descrtndo ls que no sen válids. Ejemplos: Resuelve ls ecuciones: ) ( no 0 ( si vle) vle) ) 0 ( si vle) EJERCICIOS Y PROBLEMAS º.- Resuelve ls siguientes ecuciones irrcionles: ) ) 6 7 ) 7 ) ) 6) 7 6 7) 8 8) 6 9) 7 0 0) ) ) ) ) ) 6) 7) 8) 9) 0) ) Soluciones: ) =67 si vle ) =8 si ) = si; -/ no ) = no; si ) = si; - si 6) = si 7) = si; 6 si 8) = si; no 9) =6 si; 76 no; 0) = si; 7/9 no ) =8 si ) = no; 9 si ) = si; 0 no ) =0 no; si ) =0 no; si 6) = si 7) =0 no; = si 8) =/9 si 9) = si 0) = si ) no tiene solución enter. º.- Descompón el número en dos prtes tles que l dividir l prte myor entre l menor resulte como cociente y 8 como resto. Solución: y 08 6º.- Clcul un número que sumdo con el dole de su ríz cudrd resulte. Solución: = 6 no vle y = 6 si vle 7º.- Clcul dos números enteros consecutivos siendo que l diferenci de sus cuos es 97. Solución: y ó - y -.

8 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág. 8 8º.- Se tienen tres segmentos de longitudes 8, y cm respectivmente, con los cuáles es clro que no se puede formr un triángulo rectángulo. ) Qué mism longitud hy que ñdir los tres pr que sí se pued construir? ) Cuánto medirán entonces los ctetos y l hipotenus? Solución: ) = cm ) 0, y 6 cm. 9º.- Encuentr tres números impres consecutivos cuyos cudrdos sumen 0. Solución: 9, y ó -, - y -9. 0º.- El illete de un museo cuest euros pr niños y euros pr dultos. Cierto dí, 0 persons, entre niños y dultos, pgron 60 euros. Cuántos dultos visitron el museo ese dí? Solución: 0 dultos y 0 niños. LOGARITMOS Un ecución logrítmic es quell en l que prece el logritmo de l incógnit, o de un epresión que l conteng. Recordmos l definición de logritmo. El logritmo en se ( > 0 y ) de un número N (positivo) es el eponente que hy que elevr l se pr otener dicho número. Log N = = N En culquier se se tiene: Log = 0 0 = Log = = Propieddes de los logritmos: I. log M N log M log N II. M log log M log N N n log M n log III. M IV. M log M log log Demostrción: log M N y y y I. M N y log M N log II. Se demuestr igul que I. log n n n III. IV. log M M M M M log n log n log M log M log M log M log

9 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág. 9 ECUACIONES LOGARÍTMICAS Pr resolver un ecución logrítmic se deen plicr ls propieddes de los logritmos hst conseguir epresrl en l form: log A log B, siendo A y B epresiones lgerics. Por trtrse de logritmos igules con igul se se deduce que: A = B. log no se puede clculr, sólo es válid l solución Ejemplo: log- log= log log log log log log Como. Así que es imprescindile compror ls soluciones, porque unque stisfgn l ecución A = B, pueden no stisfcer l ecución inicil, deido que lgún logritmo crezc de sentido. Alguns ecuciones eponenciles sólo se pueden resolver tomndo logritmos, puesto que no se reducen potencis de igul se. Ejemplo:. Aplicndo logritmos: log log log log log log otenemos '. y despejndo, EJERCICIOS º.- Resuelve ls siguientes ecuciones: ) log 7=- ) log = ) log =- ) log /8 =/ ) - = 6) =7 7) log 9 8) log =/ 9) Lg (/)= 0) = ) Lg =/ ) lg =- ) lg 8 = ) 0 ) log(-)+log(-)=+log(-) Soluciones: ) / 7 ) = 8 ) = /9 ) = ½ ) = 6) = ¾ 9 7) 8) = 9) = -/ 0) = /8 ) = ) / ) =/ ) = y = 0 ) = y - no vlen º.- Resuelve ls siguientes ecuciones eponenciles y logrítmics: ) =8 ) log(/)+log(8/)=log ) (/) - = ) lg + lg (9) - = lg (/) ) lg - lg = 9 6) - 6 7) 0 + = ) 8 9) + - =0 log(- ) 0) log(- ) ) =9 ) =8 + ) =0 ) =96 ) log -9log+0=0 6) log(-)+log(-)=+log(-) 7) =0 8) log-log(-6)-=0

10 el log de mte de id: Mtemátics I. Ecuciones, inecuciones y sistems de ecuciones. pág. 0 log log (- ) 9) log (- ) 0) log-log(-6)-=0 Soluciones: ) = si vle; = - no vle ) = ) = - ) = 8 ) = 0 6) = si vle 7) = lg 0,9 8) = -7 9) = ; = 0 0) sin sol. ) = ; = lg ) = 7 lg ) =; = ) = ) = 00 6) = y - no vlen 7) = - y - 8) = 600/99 9) = y / 0) = 0 y 80 ECUACIONES EXPONENCIALES Un ecución eponencil es quell en l que l incógnit está en el eponente. Pr resolver ecuciones eponenciles, demás del cálculo mentl, se utilizn distintos métodos según el tipo de ecución. Cundo los dos miemros de l ecución se pueden epresr como potencis de l mism se, hy que tener en cuent ls propieddes de ls potencis: 0 =, -m = m (m > 0) º. El producto de dos potencis de l mism se es otr potenci con l mism se y que tiene como eponente l sum de los eponentes: m n = m+n. º. El cociente de dos potencis de l mism se es otr potenci con l mism se y que tiene como eponente l rest de los eponentes: m : n = m-n. º. L potenci de un potenci es otr potenci con l mism se y que tiene como eponente el producto de los eponentes: ( m ) n = m n. º. El producto de dos potencis con el mismo eponente es otr potenci que tiene por se el producto de ls ses y por eponente el mismo: m m =( ) m. º. El cociente de dos potencis con el mismo eponente es otr potenci que tiene por se el cociente de ls ses y por eponente el mismo: m : m =(:) m. 6º. L potenci de eponente negtivo de un cociente es igul l mism potenci con eponente positivo de l invers del cociente: (/) -n =(/) n. Ejemplo: 8. 7 Descomponiendo 8 en fctores primos, qued:. Como son dos potencis de igul se, hn de ser igules los eponentes, por tnto: = 7, que tiene por solución =. - Todos los términos con incógnit se pueden epresr en función de lgún número elevdo dich incógnit. Ejemplo: 0 Como., qued 0 denomindores, se tiene: 0 0. Llmndo ; usndo ls propieddes de ls potencis y quitndo y, será ecución qued: y y 0 0, que tiene por soluciones 8 y 0. Como 0 ien. De puede ser negtiv. 8 result =. De y. Sustituyendo en l y, qued 8 o 0 no se otiene solución, y que un potenci no

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Integración de funciones racionales

Integración de funciones racionales Integrción de funciones rcionles P() Se l integrl d donde P() y Q() son funciones polinómics. Si el grdo P() Q() se Q() divide P() entre Q() medinte el método de l cj y se otiene un cociente () y un resto

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS EXPRESIONES LGERIS: MONOMIOS Y POLINOMIOS EXPRESIÓN LGERI.- Un epresión lgeric es culquier cominción de números letrs unidos por ls operciones ritmétics (sum, rest, multiplicción, división, potenci, (o)

Más detalles

c Ejemplo: 25 9x 2 = 0 x

c Ejemplo: 25 9x 2 = 0 x 1.- ECUACIONES POLINÓMICAS Ecuciones de º grdo Son ecuciones donde l incógnit está elevd. Ecuciones de º grdo complets Son del tipo x + bx + c = 0, con b, c 0. Pr resolverls usmos l fórmul b b 4c x L expresión

Más detalles

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA.

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA. TEORIA GENERAL DE LAS ECAUCIONES I. IGUALDADES Y ECUACIONES Ls igulddes son epresiones en donde precen el símolo = Ejemplos:. 5 + = 15-7. + 6 = 5 Alguns propieddes de ls igulddes que utilizremos son: Si

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1 TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

Fracciones algebraicas

Fracciones algebraicas Frcciones lgerics L histori del número irrcionl "" = 3.459653589793... Los ntiguos le dn un vlor de 3 con lo que errn en un 5 %; Arquímedes le dio el vlor, los chinos en el 7 siglo I le signron el vlor

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE: IES Fernndo de Herrer de enero de 04 Primer trimestre Exmen de utoevlución º Bch CCSS NOMBRE: 7 ) ) Representr en l rect rel: b) Qué número es el indicdo en el gráfico? 0 ) Clculr el resultdo simplificdo

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Tema 4A. Ecuaciones y sistemas

Tema 4A. Ecuaciones y sistemas Tem 4A Ecuciones y sistems Ecuciones de primer grdo Son de l form + b = 0, donde l incógnit está elevd l eponente ; debe ser un número distinto de cero b Pr resolverl bst con despejr l Así: + b = 0 = b

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

Potencias y radicales

Potencias y radicales Potencis y rdicles. Rdicles Definición Llmmos ríz n-ésim de un número ddo l número que elevdo n nos d. por ser n n Un rdicl es equivlente un potenci de eponente frccionrio en l que el denomindor de l frcción

Más detalles

La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es

La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es Curso 1/1 Mtemátics L ríz es l oerción contrri l otenci. c c L ríz cudrd de un número es otro nº que l elevrlo l cudrdo nos d el rdicndo. 9 L ríz cudrdo de 9 es. Pues es 9 9 L ríz cudrd de culquier nº

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor : RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

ÁLGEBRA: NIVEL MEDIO SUPERIOR ECUACIONES

ÁLGEBRA: NIVEL MEDIO SUPERIOR ECUACIONES . LINEALES. Concepto de iguldd. º. Si l seleccionr dos conjuntos se encuentr que tienen los mismos elementos, estos conjuntos son igules. c c A B Pr presentr l iguldd se utiliz el símolo por lo que A B

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales. NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen

Más detalles

Raíces de una ecuación cuadrática

Raíces de una ecuación cuadrática 8 Ríces de un ecución cudrátic Introducción Se bord en est sección l deducción de l fórmul pr hllr ls ríces de un ecución cudrátic. Se nlizn ls crcterístics de ls soluciones, según l form del discriminnte

Más detalles

POLINOMIOS. se denominan coeficientes.

POLINOMIOS. se denominan coeficientes. POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile, tod epresión de l form: tl que: 0... n n 0 R; R; R;... ; n R n 0 siendo n N0 En tl epresión, l letr represent un número rel

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

Tema 4: Polinomios. c) x 4 5x 3 + 5x 2 + 5x 6 = 0. d) 3x 3 10x 2 + 9x 2 = 0. e) x 5 16x = 0. f) x 3 3x 2 + 2x = 0. g) x 3 x 2 + 4x 4 = 0

Tema 4: Polinomios. c) x 4 5x 3 + 5x 2 + 5x 6 = 0. d) 3x 3 10x 2 + 9x 2 = 0. e) x 5 16x = 0. f) x 3 3x 2 + 2x = 0. g) x 3 x 2 + 4x 4 = 0 Tem 4 Polinomios. Ejercicio Demuestr que el resto l dividir P entre es precismente P Pist l demostrción es muy precid l de lgún teorem visto en clse. Ejercicio Si P = 5 y Q = + clcul P+Q,PQ y P Q Ejercicio

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

vectores Componentes de un vector

vectores Componentes de un vector Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Trigonometría. Prof. María Peiró

Trigonometría. Prof. María Peiró Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs

Más detalles

IES Capellanía 4º ESOB Departamento de Matemáticas. Alumno: Ejercicios Temas 1 y 2: Números Reales. Potencias y Radicales

IES Capellanía 4º ESOB Departamento de Matemáticas. Alumno: Ejercicios Temas 1 y 2: Números Reales. Potencias y Radicales IES Cpellní º ESOB Deprtmento de Mtemátics Alumno: Efectú el cociente Ejercicios Tems y : Números Reles Potencis y Rdicles,,0, 0, psndo frcciones genertrices Represent en l rect rel, utilizndo el teorem

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8º A/B Julio de 0 módulos

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto.

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile,

Más detalles

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a Sint Gspr College MISIONEROS DE LA PRECIOSA SANGRE Formndo Persons Íntegrs Deprtmento de Mtemátic RESUMEN PSU MATEMATICA GUÍA NÚMERO 9 ECUACIONES: () Un ecución es un iguldd condiciond en l que plicndo

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

GUIA Nº 3 ÁLGEBRA BÁSICA

GUIA Nº 3 ÁLGEBRA BÁSICA RECUERDA QUE: GUIA Nº ÁLGEBRA BÁSICA Un epresión lgeric es un cominción de números, vriles signos de operción. Dos o más términos son semejntes si difieren únicmente en su coeficiente. Sólo se puede dicionr

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

Manual de teoría: Álgebra Matemática Bachillerato

Manual de teoría: Álgebra Matemática Bachillerato Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4.

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4. Deprtmento de Mtemátics http://www.colegiovirgendegrci.org/eso/dmte.htm ARITMÉTICA: Rdicles. RADICALES... Ríz cudrd. Anlicemos los siguientes ejemplos: == es un potenci de se y exponente. El resultdo,,

Más detalles

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m. Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;

Más detalles