MOVIMIENTO DE UNA PARTICULA EN EL CAMPO GRAVITACIONAL REAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MOVIMIENTO DE UNA PARTICULA EN EL CAMPO GRAVITACIONAL REAL"

Transcripción

1 MOVIMIENTO DE N PRTICL EN EL CMPO RVITCIONL REL Consdeaemos el movmento de una patícula en el campo gavtaconal Real donde el Sstema de Laboatoo es despecado poque se toma en cuenta la geodesa de la tea el Campo avtaconal a no es compenddo como un campo de gavedad constante a no tene sentdo habla del plano de la tea se debe consdea la uea de taccón avtaconal ente patículas según dcta el Concepto de avtacón nvesal. Según la le de avtacón nvesal dos patículas de masas m M se ataen con una fuea cua deccón coesponde con la línea que une los centos de ambas patículas su sentdo es detemnado po consdea que la fuea es de ataccón ente ellas. La magntud de esas fueas es dectamente popoconal al poducto de las masas e nvesamente popoconal al cuadado de la dstanca que sepaa los centos de esas patículas. La constante de popoconaldad ente la uea el poducto de las masas dvddo po el cuadado de la dstanca es una CONSTNTE NIVERSL denomnada CONSTNTE DE RVITCIÓN NIVERSL. Esa fueas aplcadas a cada patícula patcpante cumple la tecea le de Newton a que sus magntudes son déntcas sus sentdos contaos po lo tanto cumplen que s una de ellas es la accón la ota es la eaccón a que la fuea de ataccón gavtaconal puede consdease como una fuea de accón a dstanca. S se supone que una de las patículas está en el ogen de coodenadas la ota es colocada en el punto P de coodenadas cuo vecto de poscón es entonces la como se ve en la gua 46 La fuea que oba sobe la patícula m debdo a la pesenca de la patícula M es dada po: m M

2 Donde es el vecto untao en deccón del vecto de poscón multplcado po la magntud de la fuea da el vecto fuea. Sn embago el sgno negatvo apaece poque el vecto untao la fuea de ataccón tenen sentdos opuestos aún cuando tenen la msma deccón. La fgua 47 pesenta un Campo vectoal de smetía adal mu paecdo al que tatamos en este eemplo. Se puede ve la constanca que pesentan los vectoes de campo sobe la supefce de una esfea centada en el ogen se epesentan los vectoes de campo en una deccón ecuatoal cote con el plano XY se epesentan los vectoes de campo en una deccón medonal. Nuesto eemplo se paece mucho a la stuacón dbuada sólo que los vectoes de campo se dgen haca el cento de la esfea como lo muesta la gua 48. Hemos en esa fgua dbuado el campo paa los puntos en el ecuado de la esfea nteseccón con el plano XY asmsmo hemos dbuado los vectoes de campo paa un hemsfeo se obseva la constanca de los vectoes de campo sobe la esfea asmsmo se ve que la deccón de los msmos es adal. Podemos entonces asegua lo sguente: - El campo vectoal geneado po la fuea de ataccón gavtaconal es constante en magntud sobe todos los puntos de una msma esfea centada en el ogen. - Confome cambamos de ado de la esfea camba la magntud del vecto de ataccón gavtaconal dsmnue la magntud confome cece el ado de la esfea. En la gua 49 epesentamos el dececmento de la magntud del vecto al aumenta el ado.

3 Calculemos ahoa la ntegal de línea sobe una ceta taectoa de desplaamento de la patícula en el Campo de fueas avtaconal que tatamos: W d m M m M d d m M d m M m M d m M d d m M de tal manea que podemos asegua que el tabao ealado sobe la patícula es dado po:

4 mm mm m M W NLISIS DEL EJEMPLO PLICNDO EL TEOREM DEL TRJO Y L ENERI: El teoema del tabao la enegía nos pemte escb: W K de donde esulta: mm mm m v m v W NLISIS DEL EJEMPLO POR MEDIO DEL TRTMIENTO DEL CMPO COMO CMPO CONSERVTIVO : El campo m M debe mostase s es o no consevatvo. Paa ello se calcula su Rotaconal : mm mm mm mm mm mm mm

5 mm mm mm mm mm mm mm mm Este calculo nos ndca que el Campo es Iotaconal o Consevatvo En consecuenca el Campo Vectoal es devable de un potencal es dec este una uncón potencal tal que su gadente negatvo se guala con el Campo Vectoal: Esa funcón potencal se puede conoce a pat de la solucón de las ecuacones dfeencales: que en el caso patcula de nuesto eemplo se conveten en las ecuacones: mm mm mm las cuales se esuelven po ntegacón pacal smple: H mm d mm d d

6 d d d mm mm d d d mm mm Estas últmas ecuacones nos dan la funcón al compaalas tenemos: m M C en la cual al susttu que la dstanca de sepaacón ente las dos patículas es entonces: L M m M C donde la constante de ntegacón esulta poque a lo sumo las tes ecuacones que dan la solucón geneal dfeen en una constante. Debemos ahoa enconta el valo de la Constante de Integacón po medo de una Condcón Incal. Esa condcón es dada po: cuando la dstanca es nfnta la funcón potencal tene valo nulo es dec: s mm C 0 C entonces 0 En consecuenca la uncón potencal toma el valo: m M que se denomna Enegía Potencal avtaconal paa las condcones ncales que acabamos de mpone. Es mpotante hace ve que se cumple la elacón: calculando el gadente de la funcón potencal: m M m M m M m M

7 mm m M mm m M m M de tal manea que calculando tenemos: m M que sgnfca que en ealdad el campo de fueas es el gadente negatvo de la funcón potencal. Mu nteesante esulta demosta que el tabao efectuado sobe la patícula al del punto al punto tene la popedad sguente: [ ] [ ] d d w d W aplcando la epesón de la enegía potencal tenemos: m M m M W que sgnfca que el tabao efectuado sobe la patícula guala al cambo negatvo en la enegía potencal m M m M W esultado que habíamos obtendo po medo de calcula el tabao po la ntegal de línea del campo po medo de aplca el teoema del tabao la enegía.

8 NLISIS DE L ENERI MECNIC TOTL Paa un campo consevatvo la Enegía mecánca Total es una constante del movmento es dec: E E que nos ndca que la enegía mecánca total en el punto es déntca a la enegía mecánca total en el punto. En foma conceta: K K susttuendo los valoes espectvos de la enegía cnétca de la potencal esta últma déntca a los valoes de la funcón potencal tenemos: m M m v m v m M * ecuacón en la cual podemos dea en el membo quedo la enegía potencal en el deecho la cnétca llegando a: m M m M m M [ ] mv mv m M ndcándonos que el cambo negatvo de la enegía potencal se guala al cambo postvo de la enegía cnétca. K Es necesao anala la deccón de los vectoes tascendenca. Paa ello tenemos que toma en cuenta lagua 0: paa establece esultados de

9 En esa fgua el potencal cece desde el cento de las esfeas equpotencales haca fuea poque s los ados de las esfeas equpotencales son los potencales cumplen: cecmento del potencal que concde con < < mm mm mm φ < φ < φ φ po ello la deccón de va del cento haca el eteo como se cumple la elacón φ la fuea se dge haca el ogen del sstema coodenado donde se supone que esta pesente la masa M. En la fgua se epesentan de las esfeas centadas en el ogen que consttuen las supefces equpotencales de la uncón Potencal en ellas se ven epesentados algunos de los vectoes paa cada supefce equpotencal se dbua el vecto paa cada uno de los puntos donde se ha dbuado. Estos dos últmos vectoes tenen sentdos opuestos e gual magntud. El potencal cece en deccón de la fuea que eece el campo de fueas es dgda haca la deccón opuesta de cecmento de la uncón potencal.

10 La deccón del vecto de fuea soltada desde el eposo. ndca la deccón en que se desplaaía una patícula s ella fuea Señala tambén la fgua que la patícula se mueve de manea natual de las egones de mao potencal a las de potencal nfeo.

OBJETIVO. La guía debe ser resuelta de manera grupal o individual y tendrá un valor según lo pactado.

OBJETIVO. La guía debe ser resuelta de manera grupal o individual y tendrá un valor según lo pactado. 1 DEPARTAMENTO DE CIENCIAS BÁSICAS CALCULO VECTORIAL Y MULTIVARIADO TALLER 1 CAMPOS VECTORIALES CAMPOS CONSERVATIVOS ROTACIONAL Y DIVERGENCIA BIBLIOGRAÍA SUGERIDA CALCULO JAMES STEWART CALCULO THOMAS INNEY

Más detalles

Coordenadas Generales.

Coordenadas Generales. oodenadas eneales. k cte. j cte. cte. Base catesana Base cíndca. j k cos, cos, φ cte. cte. cte. Base esféca Base geneal. cos cos En una base geneal, un elemento de aco está detemnado po llamando ds ds

Más detalles

ANEXO 4.1: Centro de masa y de gravedad

ANEXO 4.1: Centro de masa y de gravedad Cuso l Físca I Auto l Loenzo Ipaague ANEXO 4.: Cento de asa de gavedad El punto que poeda la ubcacón de la asa se denona cento de asa (), dado que la accón de la gavedad es popoconal a la asa, es natual

Más detalles

Potencial eléctrico. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Potencial eléctrico. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla Potencal eléctco Físca II Gado en Ingeneía de Oganzacón Industal Pme Cuso Joaquín enal Méndez Cuso 11-1 Depatamento de Físca plcada III Unvesdad de Sevlla Índce Intoduccón: enegía potencal electostátca

Más detalles

Solucionario de las actividades propuestas en el libro del alumno

Solucionario de las actividades propuestas en el libro del alumno Soluconao de las actvdades popuestas en el lbo del alumno 7.. LEY DE COULOMB Págna 47. La dstanca que sepaa ente sí los dos potones de un núcleo de helo es del oden de fm (0 5 m). a) Calcula el módulo

Más detalles

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas COTEIDO Defncón y cálculo del cento de masas ovmento del cento de masas Fuezas ntenas y fuezas enas Enegía cnétca de un sstema de patículas Teoemas de consevacón paa un sstema de patículas B. Savon /.A.

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas: VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes

Más detalles

TEMA 2. MOVIMIENTO EN UNA DIMENSION.

TEMA 2. MOVIMIENTO EN UNA DIMENSION. Tema. Movmento en una dmensón. TEMA. MOVIMIENTO EN UNA DIMENSION. La cnemátca es la ama de la mecánca que estuda la geometía del movmento. Usa las magntudes undamentales longtud, en oma de camno ecodo,

Más detalles

Electromagnetismo: Electrostática

Electromagnetismo: Electrostática lectomagnetsmo: lectostátca Octube 7 Índce 1.1. Intoduccón.. 1.. Caga eléctca... 1.. Ley de Coulomb 1.4. Campo eléctco y fueza eléctca 1.5. Líneas de fueza y supefces equpotencales. 1.6. Potencal eléctco

Más detalles

CAPÍTULO III TRABAJO Y ENERGÍA

CAPÍTULO III TRABAJO Y ENERGÍA TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.

Más detalles

CAPITULO 5. TRABAJO Y ENERGIA.

CAPITULO 5. TRABAJO Y ENERGIA. CAPITULO 5. TRABAJO Y ENERGIA. El poblema undamental de la Mecánca es descb como se moveán los cuepos s se conocen las uezas aplcadas sobe él. La oma de hacelo es aplcando la segunda Ley de Newton, peo

Más detalles

2 pr = (B.5) Fig. B.2 Tensión longitudinal en un cilindro

2 pr = (B.5) Fig. B.2 Tensión longitudinal en un cilindro ANXO B- Tensones en un clndo debdas a pesón hdáulca ANXO B Tensones en un clndo debdas a la pesón hdáulca. B.1 Tensones en un anllo ccula y en un clndo de paed guesa S se somete un anllo ccula delgado

Más detalles

3.DINÁMICA DE LOS SISTEMAS DE PUNTOS

3.DINÁMICA DE LOS SISTEMAS DE PUNTOS 3.DINÁMICA DE OS SISTEMAS DE PUNTOS 3.1. Cento de masas. Detemnacón 3.. Movmento del cento de masas. 3.3. Cantdad de movmento. Consevacón de la cantdad de movmento 3.4. Sstema de efeenca del cento de masas

Más detalles

I ESCUELA DE EMPRESARIALES DIPLOMATURA DE EMPRESARIALES ESTADÍSTICA

I ESCUELA DE EMPRESARIALES DIPLOMATURA DE EMPRESARIALES ESTADÍSTICA Depatamento de Economía Aplcada I EUELA DE EMPREARIALE DIPLOMATURA DE EMPREARIALE ETADÍTIA Ejeccos Resueltos REGREIÓ O LIEAL Y REGREIÓ LIEAL MÚLTIPLE uso 006-00 Escuela de Empesaales Depatamento de Economía

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Reflexión y Refracción

Reflexión y Refracción eflexón y efaccón Unvesdad de Pueto co ecnto Unvestao de Mayagüez Depatamento de Físca Actvdad de Laboatoo 8 La Ley de eflexón y La Ley de Snell Objetvos: 1. Detemna, paa una supefce eflectoa, la elacón

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Notas de clase. Trabajo de las fuerzas internas

Notas de clase. Trabajo de las fuerzas internas Notas de clase. Tabajo de las fuezas ntenas J Güémez Depatamento de Físca Aplcada, Unvesdad de Cantaba, España M Folhas CFsUC, Depatamento de Físca, Unvesdade de Comba, Potugal Mazo, 06 El concepto de

Más detalles

Tema 1: Campo eléctrico en el vacío. Física II Grado en Química Curso 1º. 2º Cuatrimestre

Tema 1: Campo eléctrico en el vacío. Física II Grado en Química Curso 1º. 2º Cuatrimestre Tema 1: Campo eléctco en el vacío Físca II Gado en Químca Cuso 1º. º Cuatmeste 1 Índce 1. Intoduccón: la caga y la matea. Fueza electostátca: ley de Coulomb 3. El campo eléctco Líneas de fueza del campo

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inoduccón a las Ondas. Ondas en cuedas 3. Ondas sonoas acúsca Modulo II: Ondas. Ecuacón de ondas en una cueda ensa. Enegía de una onda en una cueda.3 Aenuacón.4 Refleón ansmsón de ondas.5 Supeposcón

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo.

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo. 5. otencales emonámcos * Intouccón * ncpo e mínma enegía * ansomacones e Legene * Funcones (o potencales) temonámcas. ncpos e mínmo. * Enegía lbe (potencal) e Helmholtz lt * Entalpía. * Enegía lbe e Gbbs.

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

UNIDAD I: CARGA Y CAMPO ELECTRICO

UNIDAD I: CARGA Y CAMPO ELECTRICO UNN Facultad de Ingeneía Físca III UNIDAD I: CARGA Y CAMPO LCTRICO Caga eléctca. Induccón eléctca. Consevacón y cuantzacón de la caga. Conductoes y asladoes. Ley de Coulomb. Analogía ente la Ley de Coulomb

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades.

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades. 1 Espacios vectoiales 2 Combinaciones lineales 3 Dependencia e independencia lineal 4 Bases 5 Rango de un conjunto de vectoes 6 Tansfomaciones elementales 7 Método de Gauss TEMA I 1 Espacios vectoiales

Más detalles

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el Mdel 0. Pegunta. l camp electstátc cead p una caga puntual, stuada en el gen de cdenadas, vene dad p la expesón: u, dnde se expesa en m y u es un vect unta dgd en la deccón adal. S el taba ealzad paa lleva

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

r r r m m El signo menos se interpreta como que son fuerzas atractivas, es decir que tiene la dirección del vector unitario u r

r r r m m El signo menos se interpreta como que son fuerzas atractivas, es decir que tiene la dirección del vector unitario u r LEY DE GRITCIÓN UNIERSL Todos las masas en el univeso, po el hecho de selo, se ataen con una fueza que es popocional al poducto de las masas e invesamente popocional al cuadado de la distancia que las

Más detalles

Definir los conceptos de autoinducción, inducción mutua. Analizar circuitos con bobinas y resistencias. Definir energía magnética.

Definir los conceptos de autoinducción, inducción mutua. Analizar circuitos con bobinas y resistencias. Definir energía magnética. Capítulo 8 nduccón electomagnétca 8.1 ntoduccón 8. Fenómenos de nduccón electomagnétca 8.3 Ley Faaday. Ley de Lenz 8.4 nduccón mutua. Autonduccón 8.5 Ccuto L 8.6 Enegía almacenada en una autonduccón. 8.7

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx Matemátcas II UNIDAD 8 VECTORES EN EL ESPACIO VECTORES FIJOS EN EL ESPACIO Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo de ogen

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

6 Sistemas Autoorganizativos

6 Sistemas Autoorganizativos 6 Sstemas Autooganzatvos 6.1 Intoduccón Las edes de neuonas atfcales con apendzae no supevsado se han aplcado con éxto a poblemas de econocmento de patones y deteccón de señales. Estas edes constuyen clases

Más detalles

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS Tea. DIÁMICA DE SISTEMAS DE PARTÍCULAS. Intoduccón. Cento de asas.. Movento del cento de asas.. Masa educda..3 Consevacón del oento lneal..4 Consevacón del oento angula.3 Enegía de un sstea de patículas.3.

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

CAPITULO 8. DINAMICA DE ROTACIÓN.

CAPITULO 8. DINAMICA DE ROTACIÓN. CAPITULO 8. DINAMICA DE ROTACIÓN. Cuando un objeto eal ga alededo de algún eje, su movmento no se puede analza como s fuea una patícula, poque en cualque nstante, dfeentes pates del cuepo tenen velocdades

Más detalles

F. Trig. para ángulos de cualquier magnitud

F. Trig. para ángulos de cualquier magnitud F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS LA LY D COULOMB COMO CASO PATICULA D LA LY D GAUSS Una caga eléctica genea un campo eléctico cuyas líneas de fueza son adiales ue pemiten conclui ue el vecto de intensidad de campo eléctico ti hay desde

Más detalles

Tema 2 Masas de galaxias

Tema 2 Masas de galaxias Tema Masas de galaxas Esquema: Hace dagamas y esquemas paa ve como se mden velocdades adales de estellas desde el sol Explca como vaían las velocdades de las estellas en un escenao de otacón galáctca Utlza

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

CI41A HIDRAULICA REPASO DE CI31A, MECANICA DE FLUIDOS. Prof. ALDO TAMBURRINO

CI41A HIDRAULICA REPASO DE CI31A, MECANICA DE FLUIDOS. Prof. ALDO TAMBURRINO CI41A HIDRAULICA REPASO DE CI31A, MECANICA DE FLUIDOS Pof. ALDO TAMBURRINO 1. Intoduccón. 1.1 Tanspote de masa 1. Tanspote de calo 1.3 Tanspote de momentum 1.4 Analogías en el tanspote de masas, calo y

Más detalles

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO Insttuto de Poesoes Atgas Físca Expemental 1 Guía páctca Nº ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO DISPOSITIVO EXPERIMENTAL El dspostvo expemental se muesta en la gua 1. Un egstado electónco o tme

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos. CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

PROBLEMA EXAMEN B2. CURSO MODELO A

PROBLEMA EXAMEN B2. CURSO MODELO A OEM EMEN. USO 007-008. MODEO Un clndo hueco y homoéneo, de ado nteo y ado exteo, ueda sn deslza a lo lao de un plano nclnado un ánulo sobe la hozontal. Suponendo que ncalmente se encontaba en eposo, se

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

RR 1 Para interpretar los fenómenos de reflexión y refracción de la luz, debemos considerar que la luz se propaga en forma de rayos.

RR 1 Para interpretar los fenómenos de reflexión y refracción de la luz, debemos considerar que la luz se propaga en forma de rayos. 3. Refaccón de la Luz. Psmas. 3.. Intoduccón. S un ayo de luz que se popaga a tavés de un medo homogéneo ncde sobe la supefce de un segundo medo homogéneo, pate de la luz es eflejada y pate enta como ayo

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

Cálculo del tensor de deformaciones en puntos cuánticos enterrados en matrices semiconductoras.

Cálculo del tensor de deformaciones en puntos cuánticos enterrados en matrices semiconductoras. Cálculo del tenso de defomacones en puntos cuántcos enteados en matces semconductoas. Fenando Rajadell, Josep Planelles y Juan Ignaco Clmente Depatament de Cènces Expementals, Unvestat Jaume I, Apatado

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

seni nsenr seni nsenr nsen(90 i) ncos i r

seni nsenr seni nsenr nsen(90 i) ncos i r 0. Dos espejos planos están colocados pependculamente ente sí. Un ayo que se desplaza en un plano pependcula a ambos espejos es eflejado pmeo en uno y después en el oto espejo. Cuál es la deccón fnal del

Más detalles

PARTE 1: Campo eléctrico. Magnitudes que lo caracterizan: intensidad de campo y potencial eléctrico.

PARTE 1: Campo eléctrico. Magnitudes que lo caracterizan: intensidad de campo y potencial eléctrico. TEM 4: INTERCCIÓN ELECTROMGNÉTIC PRTE 1: Campo eléctico. Magnitudes que lo caacteizan: intensidad de campo y potencial eléctico. Fueza ente cagas en eposo; ley de Coulomb. Caacteísticas de la inteacción

Más detalles

Ley de Coulomb F = K 2 K = 9 10

Ley de Coulomb F = K 2 K = 9 10 Lcdo. Eleaza J. Gacía Ley de oulob La Ley de oulob se define así: el ódulo de la fueza de atacción o de epulsión ente dos cagas elécticas es, diectaente popocional al poducto de los valoes absolutos de

Más detalles

Aplicaciones de las leyes de conservación de la energía

Aplicaciones de las leyes de conservación de la energía Aplcacones de las leyes de conservacón de la energía Estratega para resolver problemas El sguente procedmento debe aplcarse cuando se resuelven problemas relaconados con la conservacón de la energía: Dena

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

1.6. DINÁMICA DEL PUNTO MATERIAL

1.6. DINÁMICA DEL PUNTO MATERIAL Fundamentos y Teoías Físicas ETS quitectua.6. DINÁMIC DEL PUNTO MTERIL Hemos visto anteiomente que la Cinemática estudia los movimientos, peo sin atende a las causas que los poducen. Pues bien, la Dinámica

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

El Modelo IS LM: un enfoque Conceptual, Geométrico y Algebraico.

El Modelo IS LM: un enfoque Conceptual, Geométrico y Algebraico. El Modelo IS LM: un enfoque Conceptual, Geoétco Algeaco. 1.- Intoduccón El Modelo IS LM es una epesentacón splfcada del funconaento de una econoía e ntenta explca la nteelacón ente las pncpales vaales

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA. CURSO FEBRERO. Código de carrera 43. Código de asignatura 203. n i l

INTRODUCCIÓN A LA ESTADÍSTICA. CURSO FEBRERO. Código de carrera 43. Código de asignatura 203. n i l TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. º CURSO ECOOMÍA e-mal: mozas@elx.uned.es www.telefonca.net/web/mm ITRODUCCIÓ A LA ESTADÍSTICA. CURSO.000-.00. FEBRERO. Códgo de caea 43. Códgo de asgnatua 03. Peguntas

Más detalles

OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS

OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS 27 Congeso Naconal de Estadístca e Investgacón Opeatva Lleda, 8- de abl de 2003 OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS J.C. Gacía-Díaz,

Más detalles

Expresión que permite despejar la masa del planeta en función de g y R. 2

Expresión que permite despejar la masa del planeta en función de g y R. 2 UNVESDADES ÚBLCAS DE LA COUNDAD DE ADD UEBA DE ACCESO A ESTUDOS UNVESTAOS (LOGSE) FÍSCA Septiembe 05 NSTUCCONES Y CTEOS GENEALES DE CALFCACÓN Después de lee atentamente todas las peguntas, el alumno debeá

Más detalles

SOLUCIONES DE LOS EJERCICIOS de CAMPOS Y CURVILÍNEAS (2)

SOLUCIONES DE LOS EJERCICIOS de CAMPOS Y CURVILÍNEAS (2) ETSI de CAMINOS, CANALES Y PUERTOS DE MADRID Pepaacón del Examen fnal extaodnao Gado en I. C. y T. TEORÍA DE CAMPOS JUNIO de 3 SOLUCIONES DE LOS EJERCICIOS de CAMPOS Y CURVILÍNEAS () a) Eeccos de coodenadas

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resolución de tiángulos ectángulos Ahoa vamos a aplica las funciones tigonométicas paa esolve tiángulos ectángulos. Resuelve el siguiente tiángulo ectángulo: Ejemplo y 60 Empezamos notando que podemos

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

DISEÑO Y SIMULACIÓN DE UN FILTRO KALMAN PARA UN ROBOT MÓVIL

DISEÑO Y SIMULACIÓN DE UN FILTRO KALMAN PARA UN ROBOT MÓVIL XXV Jonadas de Automátca Cudad Real del 8 al de septembe de 4 ISEÑO Y SIMUACIÓN E UN FITRO KAMAN PARA UN ROOT MÓVI egoña Fenando Aguado Janelc Alees Castaño CARTIF Paue tecnológco de oecllo begonle@nca.es

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

r r r r r µ Momento dipolar magnético

r r r r r µ Momento dipolar magnético A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

TEMA 4. SISTEMAS DE PARTÍCULAS

TEMA 4. SISTEMAS DE PARTÍCULAS EMA 4. SISEMAS DE PARÍCULAS. Cento de asas y coodenadas elatvas. Fuezas ntenas y enas.. Consevacón del oento lneal total de un sstea. Ssteas de asa vaable y ejeplos. 3. Consevacón del oento angula de un

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles