La Matriz de Transición

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La Matriz de Transición"

Transcripción

1 Caítulo La Matriz de Tranición. Reueta natural de un itema E la reueta que deende olamente de la condicione iniciale, e obtiene cuando la entrada al itema u (t) e hace igual a cero, analíticamente viene dada or: Donde u (t) =: entonce: _x (t) =Ax (t)+bu (t) (.) _x (t) =Ax (t) (.) Alicando la tranformada de Lalace a la ecuación (.) e obtiene: Re-acomodando la ecuación (.) e obtiene: La ecuación de alida e X () x () = AX () (.) X () =(I A) x () (.) y (t) =Cx (t)+du (t) (.) AlicandolatranformadadeLalacealaecuación(.)(conu (t) =)e obtiene: Y () =CX () =C (I A) x () (.6). Polinomio caracterítico o ecuación caracterítica E el olinomio que e obtiene al calcular el determinante de la matriz (I A) ; ara el cao de itema SISO correonde al denominador de la función de tranferencia. n + a n + + a n =det(i A) (.7)

2 . Autovalore o eigenvalue de la matriz A olo Son la raice de la ecuación caracterítica, en término de control e denominan. Matriz de tranición n + a n + + a n = (.8) E la matriz que de ne la tranición de lo etado dede un intante t hata un intante t Lo que imlica que Donde (t; t )=$ n (I A) o (.9) x (t) = (t; t ) x () (.) (t; t o )=e A(tt o) (.) Si t =e tiene que (t) =e At = I + At + A t +! A t + ::: (.) Método ara calcular (t) :Exiten mucho método ara hacer ete cálculo, a continuación e reentarán olo alguno de la ocione de olución oible... ) Directo e At = I + At + A t +! A t + ::: (.) E encillo de alicar i e tiene una herramienta numérica, i la exanión e in nita, e debe detener y tratar de reconocer la exanione exonenciale que e formen en cada uno de lo elemento de la matriz. Si la matriz A e nilotent de orden ; la reueta e cerrada i la exanión e hace hata A. Una matriz e nilotent i a artir de una otencia, todo lo elemento de la matriz A on iguale a cero.

3 .. ) Calculando la matriz diagonal Si todo lo autovalore de A on diferente e hace una tranformación de imilaridad ara obtener D = TAT (.) Donde D e una matriz diagonal. La diagonal etá formada or lo autovalore. En ete cambio e tiene que y La olucione homogenea on: _x (t) =Ax (t) (.) _z (t) =Dz (t) (.6) x (t) =e At x () (.7) Lo que imlica que z (t) =e Dt z () = e TATt z () (.8) e Dt = e TAT t (.9) Calculando directamente e TATt = I + TAT t + TAT t + TAT t + ::: (.)! e TATt = TT + TAT t + TAT t + TAT t + ::: (.)! Debido a que: TAT n = TAT TAT TAT = TA n T (.) Se tiene: µ e TATt = T I + At + A t +! A t + ::: T (.) e TATt = Te At T = e Dt (.) Arovechando la roiedade de lo autovalore y autovectore ( I A) x = (.)

4 6 eectro (A) =f ; ;::: ; ng (.6) Si x e un autovector de A aociado a un autovalor entonce x ( I A) =nulidad de ( I A) (.7) Ejemlo: Suonga que e deea hallar lo autovalore y autovectore de la matriz: A = (.8) Para hallar lo autovalore e calcula el determinante de I A I A = (.9) j I Aj = ( ) ( ) = + (.) (En MATLAB: CE = oly(a) ) Lo autovalore on la raice de j I Aj += (.) Lo cuale e calculan en MATLAB uando la función: lambda = root(oly(a)); donde e obtiene = :7 = :7 = : Para obtener lo autovectore e de ne v v = v v, v v = v v, v = Se calcula ( I A) v = :7 :7 : :7 v v v v v v (.) (.) = (.) :7v v = :7v = :v +:7v = (.)

5 7 Se obtiene v = :7v v = (.6) Si ademá e hace la norma del vector v igual a e tiene que q jv j = v + v + v = (.7) v + v = (.8) v +v = (.9) v =: (.) v = v =:866 (.) Procediendo de la mima manera ara v y v e obtiene : : :, v = :, v = :866 :866 : : : (.) Reuniendo lo autovectore en una matriz e tiene : : : V = : : : (.) :866 :866 : Donde ( I A) V = (.) V = AV (.) Si todo lo autovalore on diferente entonce V e invertible D = I = V AV (.6) D = : : :77 : : :77 : : : : : : : : : :866 :866 : (.7)

6 8 D = :7 : : : :7 : : : : (.8) (MATLAB:[V; D] =eig(a) ) Donde e fácil calcular e Dt Ademá Deejando e At Donde Entonce e Dt = e :7t : : : e :7t : : : e t (.9) e Dt = Te At T (.) e At = T e Dt T (.) T = V (.) e At = Ve Dt V (.) e At = : : : : : : :866 :866 : e :7t : : : e :7t : : : e t : : :77 : : :77 : : : (.) e At = :e :7t :e :7t : : : e t :866e :7t :866e :7t : e At = : : :77 : : :77 : : : : e :7t + e :7t : :8867 e :7t e :7t : e t : :866 e :7t e :7t : : e :7t + e :7t (.) (.6)

7 9.. ) Calculando (I A) ª Suonga que e deea hallar lo autovalore y autovectore de la matriz: I A = (.7) (I A) = adj (I A) ji Aj (.8) ji Aj = ( ) ( ) = ( ) (.9) cofact (I A) = ( ) ( ) ( ) (.6) adj (I A) =(cofact (I A)) T = ( ) ( ) ( ) (.6) (I A) = adj (I A) ji Aj = 6 7 (.6) Calculando cada uno de lo olo (I A) = (.6) Haciendo exanión en fraccione arciale K + K + (I A) = 6 K + K 6 + K + K + K + K + 7 (.6)

8 Calculando el valor de lo reiduo (uando la funcion reidue de MATLAB) : + : + : : (I A) = (.6) 6 :866 + :866 + : + : 7 + n $ (I A) o = : e :7t + e :7t : :8867 e :7t e :7t : e t : :866 e :7t e :7t : : e :7t + e :7t (.66).. ) Calculando analíticamente a artir de la ecuación de etado _x (t) =Ax (t) (.67) _x (t) _x (t) _x (t) = x (t) x (t) x (t) (.68) _x (t) = x (t) _x (t) = x (t) _x (t) = x (t) (.69) Alicando la tranformada de Lalace (coniderando la condicione iniciale) X () x () = X () X () x () = X () X () x () = X () (.7) Deejando X () = X ()+x () X () = X ()+x () X () = X ()+x () (.7) Multilicando la rimera y la tercera ecuación or X () = X ()+x () X () X () = x () X () = X ()+x () (.7)

9 Subtituyendo X () en la rimera ecuación y X () en la tercera X () = X ()+x () + x () ( ) X () = x () X () = (X ()+x ()) + x () X () = x () + x () ( ) X () = x () X () = x () + x () (.7) (.7) X () X () X () = 6 7 x () x () x () (.7) Lo cual e reuelve de la mima manera que e hizo en el método anterior, calculando lo olo, haciendo la exanión en fraccione arciale, calculando el valor de lo reiduo y alicando la invera de la tranformada de Lalace ara obtener x (t) x (t) x (t) = : e :7t + e :7t : :8867 e :7t e :7t : e t : :866 e :7t e :7t : : e :7t + e :7t.. ) Calculando grá camente a artir de la ecuación de etado (.76) x () x () x () _x (t) _x (t) _x (t) = _x (t) =Ax (t) (.77) x (t) x (t) x (t) (.78) El diagrama de ujo de eñale que rereenta la ecuación de etado e: x () dx /dt x (t) x () dx /dt x (t) x () dx /dt x (t) Figura

10 En eta cao e tiene un itema con tre entrada x () ;x () y x () ytre alida X () ;X () y X () Lazo de Realimentación: T = T = =T T +T T = + = + = ( ) M Camino Directo M k k M k k k k x ()! X () T = x ()! X () x ()! X () T = x ()! X () x ()! X () T = x ()! X () x ()! X () T = ( ) x ()! X () x ()! X () T = Agruando eto reultado en una ecuación matricial e tiene X () X () = x () X () 6 x () (.79) 7 x () El cual e el mimo reultado arcial que e obtuvo en la olución analítica. Proiedade de la matriz de tranición de etado (t) : ) ()=e A = I ) (t) = e At = e At = e A(t) = (t) ) (t + t )=e A(t +t ) = e At e At = (t ) (t ) ) ( (t)) n = (nt) ) (t t ) (t t )= (t t )= (t t ) (t t ) Finalmente en cualquiera de lo cao Entonce i y (t) or ejemlo e Y () =C (I A) x () (.8) y (t) = x (t) (.8)

11 Y () = 6 7 x () x () x () (.8) Y () = x () x () x () (.8) Calculando lo olo y exandiendo en fraccione arciale e tiene: Y () = K + K + K + K + x () x () x () (.8) Calculando el valor de lo reiduo (uando la funcion reidue de MATLAB) : Y () = + : + : :8867 x () + x () (.8) x () y (t) =$ fy ()g = : e :7t + e :7t e t :8867 e :7t e :7t (.86) x () x () x (). Reueta forzada de un itema E la reueta que deende olamente de la eñale de entrada, e obtiene cuando la condicione iniciale x () e aumen igual a cero, analíticamente e calcula a artir de la función de tranferencia.. Correlación entre la función de tranferencia y la ecuacione de etado La función de tranferencia ara un itema de una entrada - una alida (SISO) e de ne como: G () = Y () (.87) U ()

12 En el cao de itema de múltile entrada y múltile alida (MIMO) e de ne la matriz de funcione de tranferencia: Y () =G () U () (.88) q m. Unitemauedeerrereentadouandovariabledeetadoatravédelarealización: Donde Y () e un vector q ; U () e un vector m y G () e una matriz _x (t) =Ax (t)+bu (t) (.89) y (t) =Cx (t)+du (t) (.9) Donde x (t) e el vector de etado (n ); u (t) e el vector de entrada (m ); y (t) e el vector de alida (q ): La tranformada de Lalace de la ecuacione (.89) y (.9) e: X () x () = AX ()+BU () (.9) Y () =CX ()+DU () (.9) Re-acomodando la ecuación (.9) ara x () = e obtiene X () =(I A) BU () (.9) Subtituyendo la ecuación (.9) en la ecuación (.9) e obtiene Y () =C (I A) BU ()+DU () (.9) Donde la matriz de funcione de tranferencia G () e.6 Ejercicio G () =C (I A) B + D (.9) ) Si todo lo autovalore de la matriz A no on diferente entre í, no e uede obtener iemre la matriz diagonal D; en ee cao e debe obtener la matriz de Jordan J. Ecriba una rutina en MATLAB ara obtener la matriz de Jordan ara una matriz A arbitaria eleccionada or uted (no trivial) y demuetre analíticamente uando eta matriz como e uede obtener la matriz de tranición (t) =e At Veri que u reultado uando el método equivalente e At = $ n(i A) o :

Anexo 1.1 Modelación Matemática de

Anexo 1.1 Modelación Matemática de ELC-3303 Teoría de Control Anexo. Modelación Matemática de Sitema Fíico Prof. Francico M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/tic.html Modelación de Sitema Fíico Francico

Más detalles

CAPÍTULO TRES. FUNCIÓN DE TRANSFERENCIA Y COMPORTAMIENTO TRANSITORIO DE SISTEMAS MUESTREADOS.

CAPÍTULO TRES. FUNCIÓN DE TRANSFERENCIA Y COMPORTAMIENTO TRANSITORIO DE SISTEMAS MUESTREADOS. CAPÍULO RES. FUNCIÓN DE RANSFERENCIA Y COMPORAMIENO RANSIORIO DE SISEMAS MUESREADOS. III.. FUNCIÓN DE RANSFERENCIA. En forma análoga a como e define la función de tranferencia en un itema continuo, e oible

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

CAPÍTULO 2 RESPUESTA EN FRECUENCIA

CAPÍTULO 2 RESPUESTA EN FRECUENCIA CAPÍTULO RESPUESTA EN FRECUENCIA.1 GENERALIDADES Introducción Para el circuito de la figura.1, e encontrarán la funcione circuitale de admitancia de entrada y de ganancia de voltaje, la cuale e definen

Más detalles

3. SISTEMAS LINEALES DE PRIMER ORDEN (II)

3. SISTEMAS LINEALES DE PRIMER ORDEN (II) 3. SISTEMAS LINEALES DE PRIMER ORDEN (II) 3.1 INTRODUCCIÓN DOMINIO LAPLACE A la ecuación diferencial que modela matemáticamente a un itema lineal de rimer orden con una variable de entrada, " X ( ", y

Más detalles

Anexo A.- ADAPTACIÓN DE IMPEDANCIA

Anexo A.- ADAPTACIÓN DE IMPEDANCIA Comilado, anexado y redactado or el Ing. Ocar M. Santa Cruz - 003 Anexo A.- ADAPTACIÓN DE IMPEDANCIA Tradicionalmente, la adatación de imedancia ha ido coniderada como una oeración difícil y delicada,

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

Linealización de Modelos

Linealización de Modelos Caítulo Linealización de Modelos Debido a que la mayoría de herramientas ara el análisis de sistemas y diseño de sistemas de control requieren que el modelo sea lineal, es necesario entonces disoner de

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

Definición de Rendimientos

Definición de Rendimientos 4/7/0 Definición de Rendimiento rof. Miguel ASUAJE Marzo 0 Una Definición General de Rendimiento La Energía no e crea ni e detruye. Solo e tranforma ero ay que agar Dionible aróx. 60 enando en la dionibilidad

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N.

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N. TEORÍ E RUTOS 4 ño ngeniería Electrónica F.R.T. U.T.N. Teoría de lo uadripolo olaboración del alumno Juan arlo Tolaba efinición: Un cuadripolo e una configuración arbitraria de elemento de circuito, que

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES)

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) VALORES PROPIOS (AUTOVALORES) Y VECTORES PROPIOS (AUTOVECTORES) Autovalores y Autovectores Los vectores propios o autovectores de una matriz A son todos los vectores x i 0, a los que la transformación

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones Aplicación de lo parámetro de diperión en la caracterización de componente y equipo de radiofrecuencia para la indutria de telecomunicacione Suana adilla Laboratorio de Analizadore de Rede padilla@cenam.mx

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4 AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Indutrial. Epecialidad en Electrónica Indutrial Boletín n o. Hallar la tranformada de Laplace de cada una de la iguiente funcione: a) n Ch n + Sh n) b) en c)

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

FILTROS ACTIVOS CAPÍTULO 3

FILTROS ACTIVOS CAPÍTULO 3 FILTOS TIOS PÍTULO ealización ctiva en Matlab. Filtro ctivo. Lo filtro activo también tienen en u configuracione elemento paivo como capacitore, reitencia y elemento activo como el mplificador Operacional,

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T -1 CAPITULO II.1 INTRODUCCIÓN Fig..1: Diagrama de bloque de donde: A J : Momento de inercia B : Coeficiente de roce T() Torque : Amplificador + motor T J B W G FTLC 1 J ( + ) θ θ o i B J. ( ) ( ) + + Donde

Más detalles

XAX > i 0. i 4 2i. 2 i i 8

XAX > i 0. i 4 2i. 2 i i 8 Álgebra Lineal Caítulo. Tóicos Eseciales y Alicaciones.. Matrices y formas ositivas En esta sección estudiamos matrices ositivas, formas sesquilineales ositivas, y formas cuadráticas ositivas. a. Matrices

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Circuitos. Circuito Operacional y Circuito Complejo Marzo 2003

Circuitos. Circuito Operacional y Circuito Complejo Marzo 2003 ircuito. ircuito Operacional y ircuito omplejo Marzo 003 POBLEMA.1 El circuito de la Figura etá alimentado por un generador de tenión e(t) y otro de corriente i(t). Según lo valore numérico ue e dan a

Más detalles

Tema IV REPRESENTACIÓN DE LOS SISTEMAS

Tema IV REPRESENTACIÓN DE LOS SISTEMAS Tema IV REPRESENTACIÓN DE LOS SISTEMAS REPRESENTACIÓN DE LOS SISTEMAS.-Introducción..-Diagrama funcional o de bloque. Elemento...-Reducción de diagrama de bloque de entrada alida imple...-reducción de

Más detalles

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad Paridad Curo 0 Página Eta propiedad nuclear etá aociada a la paridad de la función de onda nuclear. La paridad de un itema ailado e una contante de movimiento y no puede cambiare por un proceo interno.

Más detalles

Propiedades de la Transformada de Laplace

Propiedades de la Transformada de Laplace Propiedade de la Tranformada de Laplace W. Colmenare Univeridad Simón Bolívar, Departamento de Proceo y Sitema Reumen En eto apunte demotramo alguna de la propiedade de la tranformada de Laplace y hacemo

Más detalles

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado ANÁLII DE ITEMA DE CONTROL CON EL EPACIO DE ETADO La teoria de control clásica se basa en técnicas gráficas de tanteo y error mientras el control moderno es mas preciso Además se puede usar en sistemas

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Control Automático II Má Problema UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página de 5. Control de un itema de Bola Riel La Figura muetra

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA DE CONTROL PRACTICA N 9 ANÁLISIS DE SISTEMAS DE CONTROL POR LUGAR GEOMÉTRICO DE LAS RAÌCES OBJETIVO Hacer uo del

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

Proyecto Fin de carrera Diseño de una planta piloto para la producción de bioetanol Anexo 6

Proyecto Fin de carrera Diseño de una planta piloto para la producción de bioetanol Anexo 6 Proyecto Fin de carrera Dieño de una lanta iloto ara la roducción de bioetanol Aneo 6 ANEO 6 INÉTIA 6. Introducción uando e iembran microorganimo en un medio de cultivo aroiado, lo mimo comienzan a dividire

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

NÚMEROS RACIONALES Q

NÚMEROS RACIONALES Q NÚMEROS RACIONALES Q Es el número ue se uede exresar como el cociente de dos números enteros, es decir, en forma de fracción 0. El conjunto se uede reresentar Q {, Z 0} {..., 2, 2, 1, 0, 1 8, 2 7, 1,...

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

1. Análisis de Sistemas Realimentados

1. Análisis de Sistemas Realimentados Análii v2.doc 1 1. Análii de Sitema Realimentado 1. Análii de Sitema Realimentado 1 1.1. INTRODUCCIÓN... 2 1.2. ESTABILIDAD... 2 1.3. ESTRUCTURAS DE REALIMENTACIÓN... 3 1.3.1. Sitema Etable e Inetable...

Más detalles

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W

Más detalles

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables Congreo Anual 2 de la Aociación de México de Control Automático. Puerto Vallarta, Jalico, México. Realizabilidad de Precompenadore en Sitema Lineale Multivariable E. Catañeda, J. Ruiz-León CINVESTAV-IPN,

Más detalles

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de Ejemplo 6-9 Se comprime aire, inicialmente a 7ºC, en un proceo ientrópico a travé de una razón de preión de 8:. Encuentre la temperatura final uponiendo calore epecífico contante y calore epecífico variable,

Más detalles

Preparaduría V. 1.- Sea A una matriz diagonal n n cuyo polinomio característico es

Preparaduría V. 1.- Sea A una matriz diagonal n n cuyo polinomio característico es Preparaduría V 1.- Sea A una matriz diagonal n n cuyo polinomio característico es (x c 1 ) d1 (x c 2 ) d2... (x c k ) d k donde los c 1,..., c k son distintos dos a dos. Sea V el espacio de matrices n

Más detalles

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017)

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017) VALORES PROPIOS (AUTOVALORES) Y VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017) Autovalores y Autovectores Los vectores propios o autovectores de una matriz A son todos los vectores x i ¹0,

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Pruebas de hipótesis para dos muestras.

Pruebas de hipótesis para dos muestras. Prueba de hiótei ara do muetra. Prueba de Hiótei ara do muetra grade, deviacioe etádar de la oblacioe deiguale. La roiedade de la Ditribució Normal o tambié umamete útile cuado queremo ecotrar i do cojuto

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

2. ESTADO PLANO Y ESPACIAL DE TENSIONES Estado Plano de Tensiones. Caso a) sen. Caso b) Se obtiene del caso a), pero con.

2. ESTADO PLANO Y ESPACIAL DE TENSIONES Estado Plano de Tensiones. Caso a) sen. Caso b) Se obtiene del caso a), pero con. . ESTADO PLANO Y ESPACIAL DE TENSIONES..- Etado Plano de Tenione Cao a Tenión Normal : co ( Tenión de Corte : en co ( Cao b Tenión Normal : en Tenión de Corte : en co Se obtiene del cao a, ero con 90 Cao

Más detalles

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial.

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial. . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes problemas de valor inicial. ẋ =5x, x0) =.. ẋ + x =0, x) =.. ẋ + x = te t, x0) =. si

Más detalles

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora Univeridad Diego Portale Primer Semetre 007 Facultad de Ingeniería Intituto de Ciencia Báica Aignatura: Ecuacione Diferenciale Laboratorio Nº 7 Definición de tranformada de Laplace Propiedad de la tranformada

Más detalles

Sistemas Físicos. Prof. Francisco M. González-Longatt ELC Teoría de Control

Sistemas Físicos. Prof. Francisco M. González-Longatt  ELC Teoría de Control ELC-3303 Teoría de Control Modelación Matemática de Sitema Fíico Prof. Francico M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm . Introducción En el análii y dieño de itema

Más detalles

CONTROL BÁSICO. Sistemas de Control Realimentados. Coeficientes estáticos de error. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1

CONTROL BÁSICO. Sistemas de Control Realimentados. Coeficientes estáticos de error. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1 CONTROL BÁSICO TEMAS: - Diseño de reguladores en bucle cerrado or método frecuencial Facultad de Ingeniería UNER Carrera: Bioingeniería Planes de estudios: 2008 y 993 Sistemas de Control Realimentados

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMRE INSTRUIONES: El examen resenta dos ociones y ; el alumno deerá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que consta dicha oción en h. min. OPIÓN Ejercicio. ( Puntuación

Más detalles

Tema 2. Redes de dos puertas: Cuadripolos

Tema 2. Redes de dos puertas: Cuadripolos Tema Rede de do puerta: Cuadripolo .. ntroducción En el capítulo anterior emo analiado el funcionamiento interno del circuito; aora, vamo a caracteriar el circuito dede el punto de vita externo, e decir,

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden: ROCESOS DE MARKOV rinciio de Markov: Cuando una robabilidad condicional deende únicamente del suceso inmediatamente anterior, cumle con el rinciio de Markov de rimer Orden, es decir. X ( t ) j X () K,

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

CAPITULO 3: DIFERENCIACIÓN

CAPITULO 3: DIFERENCIACIÓN CAPITULO 3: DIFERENCIACIÓN 3.1 Cociente de la diferencia En mucho cao, e de interé la taa de cambio en la variable dependiente de una función cuando hay un cambio en la variable independiente. Por ejemplo,

Más detalles

Comportamiento del nivel de líquido en un sistema de dos tanques en serie

Comportamiento del nivel de líquido en un sistema de dos tanques en serie Comportamiento del nivel de líquido en un itema de do tanque en erie Marcela Echavarria R., Gloria Lucía Orozco C., Alan Didier Pérez Á. Abtract Se deea conocer el comportamiento del nivel de un itema

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Algebra Lineal XXII: Determinantes y Singularidad.

Algebra Lineal XXII: Determinantes y Singularidad. Algebra Lineal XXII: Determinantes y Singularidad. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2 PROLEM Nº1. El mecanimo de la figura e compone de un diferencial que tranmite el movimiento a un tren de engranaje epicicloidal mediante un tornillo in fin. El brazo de ete tren de engranaje e el elabón

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

Derivadas en variedades

Derivadas en variedades Derivadas en variedades Luis Guijarro UAM 19 de mayo de 2010 Luis Guijarro ( UAM) Derivadas en variedades 19 de mayo de 2010 1 / 68 Curvas suaves en una variedad Definición Una curva suave en una variedad

Más detalles

Física 4º E.S.O. 2015/16

Física 4º E.S.O. 2015/16 Fíica 4º E.S.O. 15/16 TEMA 5: Dinámica Ficha número 1 1.- Un coche de 1 kg e ha quedado in batería en una calle horizontal. Tre erona lo emujan ara tratar de onerlo en marcha; cada una ejerce una uerza

Más detalles

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Diseño de controlador con referencia a la entrada, servosistemas Dr. Rodolfo Salinas mayo 2007

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Control Moderno. Ene.-Jun Observabilidad y Observadores de Estado. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Observabilidad y Observadores de Estado. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Observabilidad y Observadores de Estado Dr. Rodolfo Salinas mayo 2007 Control Moderno N1 mayo

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

Laboratorio 4. Piezoelectricidad.

Laboratorio 4. Piezoelectricidad. Laboratorio 4. Piezoelectricidad. Objetivo Analizar el comportamiento de un material piezoeléctrico ometido a un campo eléctrico de frecuencia variable. Etudiar el modelo eléctrico equivalente, determinado

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

CAPITULO 2 CONTROLADORES PID

CAPITULO 2 CONTROLADORES PID CAPITULO CONTROLADORES PID. INTRODUCCIÓN El ontrol automátio de un roeo requiere de un itema que ajute automátiamente una variable del roeo ara mantener otra dentro de límite etableido. Una de la forma

Más detalles

Transformadas de Laplace Funciones de Transferencia

Transformadas de Laplace Funciones de Transferencia Tranformada de aplace Funcione de Tranferencia 1.-Introducción. 2.-Tranformada de aplace. 3.-Tranformada Invera de aplace. 4.-Análii de Circuito en el dominio de aplace. 4.1.-Circuito Tranformado. 4.2.-Aplicación

Más detalles

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular. ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de

Más detalles

Valores especiales de la función zeta

Valores especiales de la función zeta Valore epeciale de la función zeta Alexey Behenov cadadr@gmail.com de Marzo de 7 La función zeta de Riemann Definición. La función zeta de Riemann etá definida por la erie infinita ζ := n n = + + 3 + 4

Más detalles

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}.

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}. Tema 6 Formas canónicas 6.1 Introducción Proposición 6.1.1. Sea V un espacio vectorial sobre K de dimensión n y B una base de V. La aplicación Φ B : End(V ) M(n n, K) definida por Φ B (f) = M B (f), es

Más detalles

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades Algebra ducción Los valores y vectores propios son muy importantes en el análisis sistemas lineales. En esta presentación veremos su finición y cómo se calculan. vectores propios Sea A una matriz cuadrada,

Más detalles

TEMA 2. CONTROL ANTICIPATIVO. CONTROL AVANZADO DE PROCESOS Prof. M.A. Rodrigo TEMA 3. CONTROL ANTICIPATIVO

TEMA 2. CONTROL ANTICIPATIVO. CONTROL AVANZADO DE PROCESOS Prof. M.A. Rodrigo TEMA 3. CONTROL ANTICIPATIVO TEMA 2. CONTOL ANTICIPATIVO . CONTOL PO ETOALIMENTACIÓN FEEDBACK CONTOL 2. CONTOL ANTICIPATIVO FEEDFOWAD CONTOL 2 VENTAJAS DEL CONTOL ANTICIPATIVO Atúa ante de qe la ertrbaión halla aetado al itema Adeado

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles